blob: 9651ea83871ff5948525779411a463111aa1a842 [file] [log] [blame]
Vadim Bendeburye31d2432016-04-09 18:33:49 -07001/*
2 * Copyright 2016 The Chromium OS Authors. All rights reserved.
3 * Use of this source code is governed by a BSD-style license that can be
4 * found in the LICENSE file.
5 *
6 * This is a driver for a SPI interfaced TPM2 device.
7 *
8 * It assumes that the required SPI interface has been initialized before the
9 * driver is started. A 'sruct spi_slave' pointer passed at initialization is
10 * used to direct traffic to the correct SPI interface. This dirver does not
11 * provide a way to instantiate multiple TPM devices. Also, to keep things
12 * simple, the driver unconditionally uses of TPM locality zero.
13 *
14 * References to documentation are based on the TCG issued "TPM Profile (PTP)
15 * Specification Revision 00.43".
16 */
17
18#include <commonlib/endian.h>
19#include <console/console.h>
20#include <delay.h>
21#include <endian.h>
22#include <string.h>
23#include <timer.h>
24
25#include "tpm.h"
26
Vadim Bendebury05155c02016-06-23 12:03:18 -070027#define TPM_LOCALITY_0_SPI_BASE 0x00d40000
28
Vadim Bendeburye31d2432016-04-09 18:33:49 -070029/* Assorted TPM2 registers for interface type FIFO. */
Vadim Bendebury05155c02016-06-23 12:03:18 -070030#define TPM_ACCESS_REG (TPM_LOCALITY_0_SPI_BASE + 0)
31#define TPM_STS_REG (TPM_LOCALITY_0_SPI_BASE + 0x18)
32#define TPM_DATA_FIFO_REG (TPM_LOCALITY_0_SPI_BASE + 0x24)
33#define TPM_DID_VID_REG (TPM_LOCALITY_0_SPI_BASE + 0xf00)
34#define TPM_RID_REG (TPM_LOCALITY_0_SPI_BASE + 0xf04)
Vadim Bendebury58826fc2016-06-23 18:17:33 -070035#define TPM_FW_VER (TPM_LOCALITY_0_SPI_BASE + 0xf90)
Vadim Bendeburye31d2432016-04-09 18:33:49 -070036
37/* SPI Interface descriptor used by the driver. */
38struct tpm_spi_if {
39 struct spi_slave *slave;
40 int (*cs_assert)(struct spi_slave *slave);
41 void (*cs_deassert)(struct spi_slave *slave);
42 int (*xfer)(struct spi_slave *slave, const void *dout,
43 unsigned bytesout, void *din,
44 unsigned bytesin);
45};
46
47/* Use the common SPI driver wrapper as the interface callbacks. */
48static struct tpm_spi_if tpm_if = {
49 .cs_assert = spi_claim_bus,
50 .cs_deassert = spi_release_bus,
51 .xfer = spi_xfer
52};
53
54/* Cached TPM device identification. */
55struct tpm2_info tpm_info;
56
57/*
58 * TODO(vbendeb): make CONFIG_DEBUG_TPM an int to allow different level of
59 * debug traces. Right now it is either 0 or 1.
60 */
61static const int debug_level_ = CONFIG_DEBUG_TPM;
62
63/* Locality management bits (in TPM_ACCESS_REG) */
64enum tpm_access_bits {
65 tpm_reg_valid_sts = (1 << 7),
66 active_locality = (1 << 5),
67 request_use = (1 << 1),
68 tpm_establishment = (1 << 0),
69};
70
71/*
72 * Variuous fields of the TPM status register, arguably the most important
73 * register when interfacing to a TPM.
74 */
75enum tpm_sts_bits {
76 tpm_family_shift = 26,
77 tpm_family_mask = ((1 << 2) - 1), /* 2 bits wide. */
78 tpm_family_tpm2 = 1,
79 reset_establishment_bit = (1 << 25),
80 command_cancel = (1 << 24),
81 burst_count_shift = 8,
82 burst_count_mask = ((1 << 16) - 1), /* 16 bits wide. */
83 sts_valid = (1 << 7),
84 command_ready = (1 << 6),
85 tpm_go = (1 << 5),
86 data_avail = (1 << 4),
87 expect = (1 << 3),
88 self_test_done = (1 << 2),
89 response_retry = (1 << 1),
90};
91
92/*
93 * SPI frame header for TPM transactions is 4 bytes in size, it is described
94 * in section "6.4.6 Spi Bit Protocol".
95 */
96typedef struct {
97 unsigned char body[4];
98} spi_frame_header;
99
100void tpm2_get_info(struct tpm2_info *info)
101{
102 *info = tpm_info;
103}
104
105/*
106 * Each TPM2 SPI transaction starts the same: CS is asserted, the 4 byte
107 * header is sent to the TPM, the master waits til TPM is ready to continue.
108 */
109static void start_transaction(int read_write, size_t bytes, unsigned addr)
110{
111 spi_frame_header header;
112 uint8_t byte;
113 int i;
114
115 /*
116 * Give it 10 ms. TODO(vbendeb): remove this once cr50 SPS TPM driver
117 * performance is fixed.
118 */
119 mdelay(10);
120
121 /*
122 * The first byte of the frame header encodes the transaction type
123 * (read or write) and transfer size (set to lentgh - 1), limited to
124 * 64 bytes.
125 */
126 header.body[0] = (read_write ? 0x80 : 0) | 0x40 | (bytes - 1);
127
128 /* The rest of the frame header is the TPM register address. */
129 for (i = 0; i < 3; i++)
130 header.body[i + 1] = (addr >> (8 * (2 - i))) & 0xff;
131
132 /* CS assert wakes up the slave. */
133 tpm_if.cs_assert(tpm_if.slave);
134
135 /*
136 * The TCG TPM over SPI specification introduces the notion of SPI
137 * flow control (Section "6.4.5 Flow Control").
138 *
139 * Again, the slave (TPM device) expects each transaction to start
140 * with a 4 byte header trasmitted by master. The header indicates if
141 * the master needs to read or write a register, and the register
142 * address.
143 *
144 * If the slave needs to stall the transaction (for instance it is not
145 * ready to send the register value to the master), it sets the MOSI
146 * line to 0 during the last clock of the 4 byte header. In this case
147 * the master is supposed to start polling the SPI bus, one byte at
148 * time, until the last bit in the received byte (transferred during
149 * the last clock of the byte) is set to 1.
150 *
151 * Due to some SPI controllers' shortcomings (Rockchip comes to
152 * mind...) we trasmit the 4 byte header without checking the byte
153 * transmitted by the TPM during the transaction's last byte.
154 *
155 * We know that cr50 is guaranteed to set the flow control bit to 0
156 * during the header transfer, but real TPM2 might be fast enough not
157 * to require to stall the master, this would present an issue.
158 * crosbug.com/p/52132 has been opened to track this.
159 */
160 tpm_if.xfer(tpm_if.slave, header.body, sizeof(header.body), NULL, 0);
161
162 /* Now poll the bus until TPM removes the stall bit. */
163 do {
164 tpm_if.xfer(tpm_if.slave, NULL, 0, &byte, 1);
165 } while (!(byte & 1));
166}
167
168/*
169 * Print out the contents of a buffer, if debug is enabled. Skip registers
170 * other than FIFO, unless debug_level_ is 2.
171 */
172static void trace_dump(const char *prefix, uint32_t reg,
173 size_t bytes, const uint8_t *buffer,
174 int force)
175{
176 static char prev_prefix;
177 static unsigned prev_reg;
178 static int current_char;
179 const int BYTES_PER_LINE = 32;
180
181 if (!force) {
182 if (!debug_level_)
183 return;
184
185 if ((debug_level_ < 2) && (reg != TPM_DATA_FIFO_REG))
186 return;
187 }
188
189 /*
190 * Do not print register address again if the last dump print was for
191 * that register.
192 */
193 if ((prev_prefix != *prefix) || (prev_reg != reg)) {
194 prev_prefix = *prefix;
195 prev_reg = reg;
196 printk(BIOS_DEBUG, "\n%s %2.2x:", prefix, reg);
197 current_char = 0;
198 }
199
200 if ((reg != TPM_DATA_FIFO_REG) && (bytes == 4)) {
201 /*
202 * This must be a regular register address, print the 32 bit
203 * value.
204 */
205 printk(BIOS_DEBUG, " %8.8x", *(const uint32_t *)buffer);
206 } else {
207 int i;
208
209 /*
210 * Data read from or written to FIFO or not in 4 byte
211 * quantiites is printed byte at a time.
212 */
213 for (i = 0; i < bytes; i++) {
214 if (current_char && !(current_char % BYTES_PER_LINE)) {
215 printk(BIOS_DEBUG, "\n ");
216 current_char = 0;
217 }
218 current_char++;
219 printk(BIOS_DEBUG, " %2.2x", buffer[i]);
220 }
221 }
222}
223
224/*
225 * Once transaction is initiated and the TPM indicated that it is ready to go,
226 * write the actual bytes to the register.
227 */
228static void write_bytes(const void *buffer, size_t bytes)
229{
230 tpm_if.xfer(tpm_if.slave, buffer, bytes, NULL, 0);
231}
232
233/*
234 * Once transaction is initiated and the TPM indicated that it is ready to go,
235 * read the actual bytes from the register.
236 */
237static void read_bytes(void *buffer, size_t bytes)
238{
239 tpm_if.xfer(tpm_if.slave, NULL, 0, buffer, bytes);
240}
241
242/*
243 * To write a register, start transaction, transfer data to the TPM, deassert
244 * CS when done.
245 *
246 * Returns one to indicate success, zero (not yet implemented) to indicate
247 * failure.
248 */
249static int tpm2_write_reg(unsigned reg_number, const void *buffer, size_t bytes)
250{
251 trace_dump("W", reg_number, bytes, buffer, 0);
252 start_transaction(false, bytes, reg_number);
253 write_bytes(buffer, bytes);
254 tpm_if.cs_deassert(tpm_if.slave);
255 return 1;
256}
257
258/*
259 * To read a register, start transaction, transfer data from the TPM, deassert
260 * CS when done.
261 *
262 * Returns one to indicate success, zero (not yet implemented) to indicate
263 * failure.
264 */
265static int tpm2_read_reg(unsigned reg_number, void *buffer, size_t bytes)
266{
267 start_transaction(true, bytes, reg_number);
268 read_bytes(buffer, bytes);
269 tpm_if.cs_deassert(tpm_if.slave);
270 trace_dump("R", reg_number, bytes, buffer, 0);
271 return 1;
272}
273
274/*
275 * Status register is accessed often, wrap reading and writing it into
276 * dedicated functions.
277 */
278static int read_tpm_sts(uint32_t *status)
279{
280 return tpm2_read_reg(TPM_STS_REG, status, sizeof(*status));
281}
282
283static int write_tpm_sts(uint32_t status)
284{
285 return tpm2_write_reg(TPM_STS_REG, &status, sizeof(status));
286}
287
288/*
289 * The TPM may limit the transaction bytes count (burst count) below the 64
290 * bytes max. The current value is available as a field of the status
291 * register.
292 */
293static uint32_t get_burst_count(void)
294{
295 uint32_t status;
296
297 read_tpm_sts(&status);
298 return (status >> burst_count_shift) & burst_count_mask;
299}
300
301int tpm2_init(struct spi_slave *spi_if)
302{
303 uint32_t did_vid, status;
304 uint8_t cmd;
305
306 tpm_if.slave = spi_if;
307
308 tpm2_read_reg(TPM_DID_VID_REG, &did_vid, sizeof(did_vid));
309
310 /* Try claiming locality zero. */
311 tpm2_read_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
312 if ((cmd & (active_locality & tpm_reg_valid_sts)) ==
313 (active_locality & tpm_reg_valid_sts)) {
314 /*
315 * Locality active - maybe reset line is not connected?
316 * Release the locality and try again
317 */
318 cmd = active_locality;
319 tpm2_write_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
320 tpm2_read_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
321 }
322
323 /* The tpm_establishment bit can be either set or not, ignore it. */
324 if ((cmd & ~tpm_establishment) != tpm_reg_valid_sts) {
325 printk(BIOS_ERR, "invalid reset status: %#x\n", cmd);
326 return -1;
327 }
328
329 cmd = request_use;
330 tpm2_write_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
331 tpm2_read_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
332 if ((cmd & ~tpm_establishment) !=
333 (tpm_reg_valid_sts | active_locality)) {
334 printk(BIOS_ERR, "failed to claim locality 0, status: %#x\n",
335 cmd);
336 return -1;
337 }
338
339 read_tpm_sts(&status);
340 if (((status >> tpm_family_shift) & tpm_family_mask) !=
341 tpm_family_tpm2) {
342 printk(BIOS_ERR, "unexpected TPM family value, status: %#x\n",
343 status);
344 return -1;
345 }
346
347 /*
348 * Locality claimed, read the revision value and set up the tpm_info
349 * structure.
350 */
351 tpm2_read_reg(TPM_RID_REG, &cmd, sizeof(cmd));
352 tpm_info.vendor_id = did_vid & 0xffff;
353 tpm_info.device_id = did_vid >> 16;
354 tpm_info.revision = cmd;
355
356 printk(BIOS_INFO, "Connected to device vid:did:rid of %4.4x:%4.4x:%2.2x\n",
357 tpm_info.vendor_id, tpm_info.device_id, tpm_info.revision);
358
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700359 /* Let's report device FW version if available. */
360 if (tpm_info.vendor_id == 0x1ae0) {
361 int chunk_count = 0;
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700362 size_t chunk_size;
363 /*
364 * let's read 50 bytes at a time; leave room for the trailing
365 * zero.
366 */
367 char vstr[51];
368
369 chunk_size = sizeof(vstr) - 1;
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700370
371 printk(BIOS_INFO, "Firmware version: ");
372
373 /*
374 * Does not really matter what's written, this just makes sure
375 * the version is reported from the beginning.
376 */
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700377 tpm2_write_reg(TPM_FW_VER, &chunk_size, 1);
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700378
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700379 /* Print it out in sizeof(vstr) - 1 byte chunks. */
380 vstr[chunk_size] = 0;
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700381 do {
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700382 tpm2_read_reg(TPM_FW_VER, vstr, chunk_size);
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700383 printk(BIOS_INFO, "%s", vstr);
384
385 /*
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700386 * While string is not over, and is no longer than 300
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700387 * characters.
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700388 */
Vadim Bendebury9e561f82016-07-31 11:19:20 -0700389 } while (vstr[chunk_size - 1] &&
390 (chunk_count++ < (300 / chunk_size)));
Vadim Bendebury58826fc2016-06-23 18:17:33 -0700391
392 printk(BIOS_INFO, "\n");
393 }
Vadim Bendeburye31d2432016-04-09 18:33:49 -0700394 return 0;
395}
396
397/*
398 * This is in seconds, certain TPM commands, like key generation, can take
399 * long time to complete.
400 *
401 * Returns one to indicate success, zero (not yet implemented) to indicate
402 * failure.
403 */
404#define MAX_STATUS_TIMEOUT 120
405static int wait_for_status(uint32_t status_mask, uint32_t status_expected)
406{
407 uint32_t status;
408 struct stopwatch sw;
409
410 stopwatch_init_usecs_expire(&sw, MAX_STATUS_TIMEOUT * 1000 * 1000);
411 do {
412 udelay(1000);
413 if (stopwatch_expired(&sw)) {
414 printk(BIOS_ERR, "failed to get expected status %x\n",
415 status_expected);
416 return false;
417 }
418 read_tpm_sts(&status);
419 } while ((status & status_mask) != status_expected);
420
421 return 1;
422}
423
424enum fifo_transfer_direction {
425 fifo_transmit = 0,
426 fifo_receive = 1
427};
428
429/* Union allows to avoid casting away 'const' on transmit buffers. */
430union fifo_transfer_buffer {
431 uint8_t *rx_buffer;
432 const uint8_t *tx_buffer;
433};
434
435/*
436 * Transfer requested number of bytes to or from TPM FIFO, accounting for the
437 * current burst count value.
438 */
439static void fifo_transfer(size_t transfer_size,
440 union fifo_transfer_buffer buffer,
441 enum fifo_transfer_direction direction)
442{
443 size_t transaction_size;
444 size_t burst_count;
445 size_t handled_so_far = 0;
446
447 do {
448 do {
449 /* Could be zero when TPM is busy. */
450 burst_count = get_burst_count();
451 } while (!burst_count);
452
453 transaction_size = transfer_size - handled_so_far;
454 transaction_size = MIN(transaction_size, burst_count);
455
456 /*
457 * The SPI frame header does not allow to pass more than 64
458 * bytes.
459 */
460 transaction_size = MIN(transaction_size, 64);
461
462 if (direction == fifo_receive)
463 tpm2_read_reg(TPM_DATA_FIFO_REG,
464 buffer.rx_buffer + handled_so_far,
465 transaction_size);
466 else
467 tpm2_write_reg(TPM_DATA_FIFO_REG,
468 buffer.tx_buffer + handled_so_far,
469 transaction_size);
470
471 handled_so_far += transaction_size;
472
473 } while (handled_so_far != transfer_size);
474}
475
476size_t tpm2_process_command(const void *tpm2_command, size_t command_size,
477 void *tpm2_response, size_t max_response)
478{
479 uint32_t status;
480 uint32_t expected_status_bits;
481 size_t payload_size;
482 size_t bytes_to_go;
483 const uint8_t *cmd_body = tpm2_command;
484 uint8_t *rsp_body = tpm2_response;
485 union fifo_transfer_buffer fifo_buffer;
486 const int HEADER_SIZE = 6;
487
488 /* Skip the two byte tag, read the size field. */
489 payload_size = read_be32(cmd_body + 2);
490
491 /* Sanity check. */
492 if (payload_size != command_size) {
493 printk(BIOS_ERR,
494 "Command size mismatch: encoded %zd != requested %zd\n",
495 payload_size, command_size);
496 trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
497 printk(BIOS_DEBUG, "\n");
498 return 0;
499 }
500
501 /* Let the TPM know that the command is coming. */
502 write_tpm_sts(command_ready);
503
504 /*
505 * Tpm commands and responses written to and read from the FIFO
506 * register (0x24) are datagrams of variable size, prepended by a 6
507 * byte header.
508 *
509 * The specification description of the state machine is a bit vague,
510 * but from experience it looks like there is no need to wait for the
511 * sts.expect bit to be set, at least with the 9670 and cr50 devices.
512 * Just write the command into FIFO, making sure not to exceed the
513 * burst count or the maximum PDU size, whatever is smaller.
514 */
515 fifo_buffer.tx_buffer = cmd_body;
516 fifo_transfer(command_size, fifo_buffer, fifo_transmit);
517
518 /* Now tell the TPM it can start processing the command. */
519 write_tpm_sts(tpm_go);
520
521 /* Now wait for it to report that the response is ready. */
522 expected_status_bits = sts_valid | data_avail;
523 if (!wait_for_status(expected_status_bits, expected_status_bits)) {
524 /*
525 * If timed out, which should never happen, let's at least
526 * print out the offending command.
527 */
528 trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
529 printk(BIOS_DEBUG, "\n");
530 return 0;
531 }
532
533 /*
534 * The response is ready, let's read it. First we read the FIFO
535 * payload header, to see how much data to expect. The response header
536 * size is fixed to six bytes, the total payload size is stored in
537 * network order in the last four bytes.
538 */
539 tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body, HEADER_SIZE);
540
541 /* Find out the total payload size, skipping the two byte tag. */
542 payload_size = read_be32(rsp_body + 2);
543
544 if (payload_size > max_response) {
545 /*
546 * TODO(vbendeb): at least drain the FIFO here or somehow let
547 * the TPM know that the response can be dropped.
548 */
549 printk(BIOS_ERR, " tpm response too long (%zd bytes)",
550 payload_size);
551 return 0;
552 }
553
554 /*
555 * Now let's read all but the last byte in the FIFO to make sure the
556 * status register is showing correct flow control bits: 'more data'
557 * until the last byte and then 'no more data' once the last byte is
558 * read.
559 */
560 bytes_to_go = payload_size - 1 - HEADER_SIZE;
561 fifo_buffer.rx_buffer = rsp_body + HEADER_SIZE;
562 fifo_transfer(bytes_to_go, fifo_buffer, fifo_receive);
563
564 /* Verify that there is still data to read. */
565 read_tpm_sts(&status);
566 if ((status & expected_status_bits) != expected_status_bits) {
567 printk(BIOS_ERR, "unexpected intermediate status %#x\n",
568 status);
569 return 0;
570 }
571
572 /* Read the last byte of the PDU. */
573 tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body + payload_size - 1, 1);
574
575 /* Terminate the dump, if enabled. */
576 if (debug_level_)
577 printk(BIOS_DEBUG, "\n");
578
579 /* Verify that 'data available' is not asseretd any more. */
580 read_tpm_sts(&status);
581 if ((status & expected_status_bits) != sts_valid) {
582 printk(BIOS_ERR, "unexpected final status %#x\n", status);
583 return 0;
584 }
585
586 /* Move the TPM back to idle state. */
587 write_tpm_sts(command_ready);
588
589 return payload_size;
590}