blob: b38132a8f379087f1e041b74b76b02e6c6477c48 [file] [log] [blame]
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001/* This was originally for the e7500, modified for e7501
2 * The primary differences are that 7501 apparently can
3 * support single channel RAM (i haven't tested),
4 * CAS1.5 is no longer supported, The ECC scrubber
5 * now supports a mode to zero RAM and init ECC in one step
6 * and the undocumented registers at 0x80 require new
7 * (undocumented) values determined by guesswork and
8 * comparison w/ OEM BIOS values.
9 * Steven James 02/06/2003
10 */
11
12/* converted to C 6/2004 yhlu */
13
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +030014
15#include <stdint.h>
16#include <device/pci_def.h>
17#include <arch/io.h>
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +030018#include <arch/cpu.h>
Alexandru Gagniucaf4bd592014-01-12 15:42:58 -060019#include <lib.h>
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +030020#include <stdlib.h>
21#include <console/console.h>
22
Kyösti Mälkki97c064f2012-04-18 20:33:35 +030023#include <cpu/x86/mtrr.h>
24#include <cpu/x86/cache.h>
25#include <cpu/x86/msr.h>
Stefan Reinauerb15975b2011-10-21 12:57:59 -070026#include <assert.h>
27#include <spd.h>
28#include <sdram_mode.h>
Kyösti Mälkkidcb688e2013-09-04 01:11:16 +030029#include <cbmem.h>
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +030030
31#include "raminit.h"
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +020032#include "e7505.h"
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +030033#include "debug.h"
Stefan Reinauerb15975b2011-10-21 12:57:59 -070034
35/*-----------------------------------------------------------------------------
36Definitions:
37-----------------------------------------------------------------------------*/
38
39// Uncomment this to enable run-time checking of DIMM parameters
40// for dual-channel operation
41// Unfortunately the code seems to chew up several K of space.
42//#define VALIDATE_DIMM_COMPATIBILITY
43
Martin Roth33232602017-06-24 14:48:50 -060044#if IS_ENABLED(CONFIG_DEBUG_RAM_SETUP)
Stefan Reinauer65b72ab2015-01-05 12:59:54 -080045#define RAM_DEBUG_MESSAGE(x) printk(BIOS_DEBUG, x)
46#define RAM_DEBUG_HEX32(x) printk(BIOS_DEBUG, "%08x", x)
47#define RAM_DEBUG_HEX8(x) printk(BIOS_DEBUG, "%02x", x)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +030048#define DUMPNORTH() dump_pci_device(MCHDEV)
Stefan Reinauerb15975b2011-10-21 12:57:59 -070049#else
50#define RAM_DEBUG_MESSAGE(x)
51#define RAM_DEBUG_HEX32(x)
52#define RAM_DEBUG_HEX8(x)
53#define DUMPNORTH()
54#endif
55
56#define E7501_SDRAM_MODE (SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4)
57#define SPD_ERROR "Error reading SPD info\n"
58
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +030059#define MCHDEV PCI_DEV(0,0,0)
60#define RASDEV PCI_DEV(0,0,1)
61#define D060DEV PCI_DEV(0,6,0)
62
Stefan Reinauerb15975b2011-10-21 12:57:59 -070063// NOTE: This used to be 0x100000.
64// That doesn't work on systems where A20M# is asserted, because
65// attempts to access 0x1000NN end up accessing 0x0000NN.
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -080066#define RCOMP_MMIO ((u8 *)0x200000)
Stefan Reinauerb15975b2011-10-21 12:57:59 -070067
68struct dimm_size {
69 unsigned long side1;
70 unsigned long side2;
71};
72
73static const uint32_t refresh_frequency[] = {
74 /* Relative frequency (array value) of each E7501 Refresh Mode Select
75 * (RMS) value (array index)
76 * 0 == least frequent refresh (longest interval between refreshes)
77 * [0] disabled -> 0
78 * [1] 15.6 usec -> 2
79 * [2] 7.8 usec -> 3
80 * [3] 64 usec -> 1
81 * [4] reserved -> 0
82 * [5] reserved -> 0
83 * [6] reserved -> 0
84 * [7] 64 clocks -> 4
85 */
86 0, 2, 3, 1, 0, 0, 0, 4
87};
88
89static const uint32_t refresh_rate_map[] = {
90 /* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode
91 * Select values (array value)
92 * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
93 * The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and
94 * 64 clock (481 ns) (7) refresh.
95 * [0] == 15.625 us -> 15.6 us
96 * [1] == 3.9 us -> 481 ns
97 * [2] == 7.8 us -> 7.8 us
98 * [3] == 31.3 us -> 15.6 us
99 * [4] == 62.5 us -> 15.6 us
100 * [5] == 125 us -> 64 us
101 */
102 1, 7, 2, 1, 1, 3
103};
104
105#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)
106
Edward O'Callaghan08280cb2014-05-25 06:33:29 +1000107#ifdef VALIDATE_DIMM_COMPATIBILITY
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700108// SPD parameters that must match for dual-channel operation
109static const uint8_t dual_channel_parameters[] = {
110 SPD_MEMORY_TYPE,
111 SPD_MODULE_VOLTAGE,
112 SPD_NUM_COLUMNS,
113 SPD_NUM_ROWS,
114 SPD_NUM_DIMM_BANKS,
115 SPD_PRIMARY_SDRAM_WIDTH,
116 SPD_NUM_BANKS_PER_SDRAM
117};
Edward O'Callaghan08280cb2014-05-25 06:33:29 +1000118#endif /* VALIDATE_DIMM_COMPATIBILITY */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700119
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300120 /* Comments here are remains of e7501 or even 855PM.
121 * They might be partially (in)correct for e7505.
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700122 */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700123
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300124 /* (DRAM Read Timing Control, if similar to 855PM?)
125 * 0x80 - 0x81 documented differently for e7505
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700126 * This register has something to do with CAS latencies,
Martin Roth128c1042016-11-18 09:29:03 -0700127 * possibly this is the real chipset control.
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700128 * At 0x00 CAS latency 1.5 works.
129 * At 0x06 CAS latency 2.5 works.
130 * At 0x01 CAS latency 2.0 works.
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300131 *
132 * This is still undocumented in e7501, but with different values
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700133 * CAS 2.0 values taken from Intel BIOS settings, others are a guess
134 * and may be terribly wrong. Old values preserved as comments until I
135 * figure this out for sure.
136 * e7501 docs claim that CAS1.5 is unsupported, so it may or may not
137 * work at all.
138 * Steven James 02/06/2003
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300139 *
140 * NOTE: values now configured in configure_e7501_cas_latency() based
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700141 * on SPD info and total number of DIMMs (per Intel)
142 */
143
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300144 /* FDHC - Fixed DRAM Hole Control ???
145 * 0x58 undocumented for e7505, memory hole in southbridge configuration?
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700146 * [7:7] Hole_Enable
147 * 0 == No memory Hole
148 * 1 == Memory Hole from 15MB to 16MB
149 * [6:0] Reserved
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700150 */
151
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700152 /* Another Intel undocumented register
153 * 0x88 - 0x8B
154 * [31:31] Purpose unknown
155 * [26:26] Master DLL Reset?
156 * 0 == Normal operation?
157 * 1 == Reset?
158 * [07:07] Periodic memory recalibration?
159 * 0 == Disabled?
160 * 1 == Enabled?
161 * [04:04] Receive FIFO RE-Sync?
162 * 0 == Normal operation?
163 * 1 == Reset?
164 */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700165
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300166/* DDR RECOMP tables */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700167// Slew table for 2x drive?
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300168static const uint32_t slew_2x[] = {
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700169 0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
170 0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
171};
172
173// Pull Up / Pull Down offset table, if analogous to IXP2800?
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300174static const uint32_t pull_updown_offset_table[] = {
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700175 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
176 0x88888888, 0x88888888, 0x88888888, 0x88888888,
177};
178
179/*-----------------------------------------------------------------------------
180Delay functions:
181-----------------------------------------------------------------------------*/
182
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300183/* Estimate that SLOW_DOWN_IO takes about 1 us */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700184#define SLOW_DOWN_IO inb(0x80)
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300185static void local_udelay(int i)
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700186{
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300187 while (i--) {
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700188 SLOW_DOWN_IO;
189 }
190}
191
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300192/* delay for 200us */
193#define DO_DELAY local_udelay(200)
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700194#define EXTRA_DELAY DO_DELAY
195
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200196/*-----------------------------------------------------------------------------
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300197Handle (undocumented) control bits MCHTST and PCI_DEV(0,6,0)
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200198-----------------------------------------------------------------------------*/
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300199typedef enum {
200 MCHTST_CMD_0,
201 D060_ENABLE,
202 D060_DISABLE,
203 RCOMP_BAR_ENABLE,
204 RCOMP_BAR_DISABLE,
205} mchtst_cc;
206
207typedef enum {
208 D060_CMD_0,
209 D060_CMD_1,
210} d060_cc;
211
212typedef enum {
213 RCOMP_HOLD,
214 RCOMP_RELEASE,
215 RCOMP_SMR_00,
216 RCOMP_SMR_01,
217} rcomp_smr_cc;
218
219/**
220 * MCHTST - 0xF4 - 0xF7 -- Based on similarity to 855PM
221 *
222 * [31:31] Purpose unknown
223 * [30:30] Purpose unknown
224 * [29:23] Unknown - not used?
225 * [22:22] System Memory MMR Enable
226 * 0 == Disable: mem space and BAR at 0x14 are not accessible
227 * 1 == Enable: mem space and BAR at 0x14 are accessible
228 * [21:20] Purpose unknown
229 * [19:02] Unknown - not used?
230 * [01:01] D6EN (Device #6 enable)
231 * 0 == Disable
232 * 1 == Enable
233 * [00:00] Unknown - not used?
234 */
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300235static void mchtest_control(mchtst_cc cmd)
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300236{
237 uint32_t dword = pci_read_config32(MCHDEV, MCHTST);
238 switch (cmd) {
239 case MCHTST_CMD_0:
240 dword &= ~(3 << 30);
241 break;
242 case RCOMP_BAR_ENABLE:
243 dword |= (1 << 22);
244 break;
245 case RCOMP_BAR_DISABLE:
246 dword &= ~(1 << 22);
247 break;
248 case D060_ENABLE:
249 dword |= (1 << 1);
250 break;
251 case D060_DISABLE:
252 dword &= ~(1 << 1);
253 break;
254 };
255 pci_write_config32(MCHDEV, MCHTST, dword);
256}
257
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200258
259/**
260 *
261 */
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300262static void d060_control(d060_cc cmd)
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700263{
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300264 mchtest_control(D060_ENABLE);
265 uint32_t dword = pci_read_config32(D060DEV, 0xf0);
266 switch (cmd) {
267 case D060_CMD_0:
268 dword |= (1 << 2);
269 break;
270 case D060_CMD_1:
271 dword |= (3 << 27);
272 break;
273 }
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300274 pci_write_config32(D060DEV, 0xf0, dword);
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300275 mchtest_control(D060_DISABLE);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200276}
277
278/**
279 *
280 */
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300281static void rcomp_smr_control(rcomp_smr_cc cmd)
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200282{
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300283 uint32_t dword = read32(RCOMP_MMIO + SMRCTL);
284 switch (cmd) {
285 case RCOMP_HOLD:
286 dword |= (1 << 9);
287 break;
288 case RCOMP_RELEASE:
289 dword &= ~((1 << 9) | (3 << 0));
290 dword |= (1 << 10) | (1 << 0);
291 break;
292 case RCOMP_SMR_00:
293 dword &= ~(1 << 8);
294 break;
295 case RCOMP_SMR_01:
296 dword |= (1 << 10) | (1 << 8);
297 break;
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200298 }
Kyösti Mälkki26c7b862012-04-12 22:46:23 +0300299 write32(RCOMP_MMIO + SMRCTL, dword);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700300}
301
302/*-----------------------------------------------------------------------------
303Serial presence detect (SPD) functions:
304-----------------------------------------------------------------------------*/
305
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200306static void die_on_spd_error(int spd_return_value)
307{
308 if (spd_return_value < 0)
309 die("Error reading SPD info\n");
310}
311
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700312/**
313 * Calculate the page size for each physical bank of the DIMM:
314 * log2(page size) = (# columns) + log2(data width)
315 *
316 * NOTE: Page size is the total number of data bits in a row.
317 *
318 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
319 * @return log2(page size) for each side of the DIMM.
320 */
321static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address)
322{
323 uint16_t module_data_width;
324 int value;
325 struct dimm_size pgsz;
326
327 pgsz.side1 = 0;
328 pgsz.side2 = 0;
329
330 // Side 1
331 value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
332 if (value < 0)
333 goto hw_err;
334 pgsz.side1 = value & 0xf; // # columns in bank 1
335
336 /* Get the module data width and convert it to a power of two */
337 value =
338 spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
339 if (value < 0)
340 goto hw_err;
341 module_data_width = (value & 0xff) << 8;
342
343 value =
344 spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
345 if (value < 0)
346 goto hw_err;
347 module_data_width |= (value & 0xff);
348
349 pgsz.side1 += log2(module_data_width);
350
351 /* side two */
352 value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
353 if (value < 0)
354 goto hw_err;
355 if (value > 2)
356 die("Bad SPD value\n");
357 if (value == 2) {
358
359 pgsz.side2 = pgsz.side1; // Assume symmetric banks until we know differently
360 value =
361 spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
362 if (value < 0)
363 goto hw_err;
364 if ((value & 0xf0) != 0) {
365 // Asymmetric banks
366 pgsz.side2 -= value & 0xf; /* Subtract out columns on side 1 */
367 pgsz.side2 += (value >> 4) & 0xf; /* Add in columns on side 2 */
368 }
369 }
370
371 return pgsz;
372
373 hw_err:
374 die(SPD_ERROR);
375 return pgsz; // Never reached
376}
377
378/**
379 * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
380 *
381 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
382 * @return Width in bits of each DIMM side's DRAMs.
383 */
384static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address)
385{
386 int value;
387 struct dimm_size width;
388
389 width.side1 = 0;
390 width.side2 = 0;
391
392 value =
393 spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
394 die_on_spd_error(value);
395
396 width.side1 = value & 0x7f; // Mask off bank 2 flag
397
398 if (value & 0x80) {
399 width.side2 = width.side1 << 1; // Bank 2 exists and is double-width
400 } else {
401 // If bank 2 exists, it's the same width as bank 1
402 value =
403 spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
404 die_on_spd_error(value);
405
406#ifdef ROMCC_IF_BUG_FIXED
407 if (value == 2)
408 width.side2 = width.side1;
409#else
410 switch (value) {
411 case 2:
412 width.side2 = width.side1;
413 break;
414
415 default:
416 break;
417 }
418#endif
419 }
420
421 return width;
422}
423
424/**
425 * Calculate the log base 2 size in bits of both DIMM sides.
426 *
427 * log2(# bits) = (# columns) + log2(data width) +
428 * (# rows) + log2(banks per SDRAM)
429 *
430 * Note that it might be easier to use SPD byte 31 here, it has the DIMM size
431 * as a multiple of 4MB. The way we do it now we can size both sides of an
432 * asymmetric DIMM.
433 *
434 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
435 * @return log2(number of bits) for each side of the DIMM.
436 */
437static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address)
438{
439 int value;
440
441 // Start with log2(page size)
442 struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address);
443
444 if (sz.side1 > 0) {
445
446 value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS);
447 die_on_spd_error(value);
448
449 sz.side1 += value & 0xf;
450
451 if (sz.side2 > 0) {
452
453 // Double-sided DIMM
454 if (value & 0xF0)
455 sz.side2 += value >> 4; // Asymmetric
456 else
457 sz.side2 += value; // Symmetric
458 }
459
460 value =
461 spd_read_byte(dimm_socket_address,
462 SPD_NUM_BANKS_PER_SDRAM);
463 die_on_spd_error(value);
464
465 value = log2(value);
466 sz.side1 += value;
467 if (sz.side2 > 0)
468 sz.side2 += value;
469 }
470
471 return sz;
472}
473
474#ifdef VALIDATE_DIMM_COMPATIBILITY
475
476/**
477 * Determine whether two DIMMs have the same value for an SPD parameter.
478 *
479 * @param spd_byte_number The SPD byte number to compare in both DIMMs.
480 * @param dimm0_address SMBus address of the 1st DIMM socket to interrogate.
481 * @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate.
482 * @return 1 if both DIMM sockets report the same value for the specified
483 * SPD parameter, 0 if the values differed or an error occurred.
484 */
485static uint8_t are_spd_values_equal(uint8_t spd_byte_number,
486 uint16_t dimm0_address,
487 uint16_t dimm1_address)
488{
489 uint8_t bEqual = 0;
490 int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number);
491 int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number);
492
493 if ((dimm0_value >= 0) && (dimm1_value >= 0)
494 && (dimm0_value == dimm1_value))
495 bEqual = 1;
496
497 return bEqual;
498}
499#endif
500
501/**
502 * Scan for compatible DIMMs.
503 *
504 * The code in this module only supports dual-channel operation, so we test
505 * that compatible DIMMs are paired.
506 *
507 * @param ctrl PCI addresses of memory controller functions, and SMBus
508 * addresses of DIMM slots on the mainboard.
509 * @return A bitmask indicating which of the possible sockets for each channel
510 * was found to contain a compatible DIMM.
511 * Bit 0 corresponds to the closest socket for channel 0
512 * Bit 1 to the next socket for channel 0
513 * ...
514 * Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0
515 * Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1
516 * ...
517 * Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1
518 */
519static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl)
520{
521 int i;
522 uint8_t dimm_mask = 0;
523
524 // Have to increase size of dimm_mask if this assertion is violated
525 ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4);
526
527 // Find DIMMs we can support on channel 0.
528 // Then see if the corresponding channel 1 DIMM has the same parameters,
529 // since we only support dual-channel.
530
531 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
532
533 uint16_t channel0_dimm = ctrl->channel0[i];
534 uint16_t channel1_dimm = ctrl->channel1[i];
535 uint8_t bDualChannel = 1;
536#ifdef VALIDATE_DIMM_COMPATIBILITY
537 struct dimm_size page_size;
538 struct dimm_size sdram_width;
539#endif
540 int spd_value;
541
542 if (channel0_dimm == 0)
543 continue; // No such socket on this mainboard
544
545 if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) !=
546 SPD_MEMORY_TYPE_SDRAM_DDR)
547 continue;
548
549#ifdef VALIDATE_DIMM_COMPATIBILITY
550 if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) !=
551 SPD_VOLTAGE_SSTL2)
552 continue; // Unsupported voltage
553
554 // E7501 does not support unregistered DIMMs
555 spd_value =
556 spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES);
557 if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0))
558 continue;
559
560 // Must support burst = 4 for dual-channel operation on E7501
561 // NOTE: for single-channel, burst = 8 is required
562 spd_value =
563 spd_read_byte(channel0_dimm,
564 SPD_SUPPORTED_BURST_LENGTHS);
565 if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
566 continue;
567
568 page_size = sdram_spd_get_page_size(channel0_dimm);
569 sdram_width = sdram_spd_get_width(channel0_dimm);
570
571 // Validate DIMM page size
572 // The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel
573 // NOTE: 4 KB = 32 Kb = 2^15
574 // 32 KB = 262 Kb = 2^18
575
576 if ((page_size.side1 < 15) || (page_size.side1 > 18))
577 continue;
578
579 // If DIMM is double-sided, verify side2 page size
580 if (page_size.side2 != 0) {
581 if ((page_size.side2 < 15)
582 || (page_size.side2 > 18))
583 continue;
584 }
585 // Validate SDRAM width
586 // The E7501 only supports x4 and x8 devices
587
588 if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8))
589 continue;
590
591 // If DIMM is double-sided, verify side2 width
592 if (sdram_width.side2 != 0) {
593 if ((sdram_width.side2 != 4)
594 && (sdram_width.side2 != 8))
595 continue;
596 }
597#endif
598 // Channel 0 DIMM looks compatible.
599 // Now see if it is paired with the proper DIMM on channel 1.
600
601 ASSERT(channel1_dimm != 0); // No such socket on this mainboard??
602
603 // NOTE: unpopulated DIMMs cause read to fail
604 spd_value =
605 spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES);
606 if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {
607
Stefan Reinauer65b72ab2015-01-05 12:59:54 -0800608 printk(BIOS_DEBUG, "Skipping un-matched DIMMs - only dual-channel operation supported\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700609 continue;
610 }
611#ifdef VALIDATE_DIMM_COMPATIBILITY
612 spd_value =
613 spd_read_byte(channel1_dimm,
614 SPD_SUPPORTED_BURST_LENGTHS);
615 if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
616 continue;
617
618 int j;
619 for (j = 0; j < sizeof(dual_channel_parameters); ++j) {
620 if (!are_spd_values_equal
621 (dual_channel_parameters[j], channel0_dimm,
622 channel1_dimm)) {
623
624 bDualChannel = 0;
625 break;
626 }
627 }
Edward O'Callaghan08280cb2014-05-25 06:33:29 +1000628#endif /* VALIDATE_DIMM_COMPATIBILITY */
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700629
630 // Code around ROMCC bug in optimization of "if" statements
631#ifdef ROMCC_IF_BUG_FIXED
632 if (bDualChannel) {
633 // Made it through all the checks, this DIMM pair is usable
634 dimm_mask |= ((1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i)));
635 } else
Stefan Reinauer65b72ab2015-01-05 12:59:54 -0800636 printk(BIOS_DEBUG, "Skipping un-matched DIMMs - only dual-channel operation supported\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700637#else
638 switch (bDualChannel) {
639 case 0:
Stefan Reinauer65b72ab2015-01-05 12:59:54 -0800640 printk(BIOS_DEBUG, "Skipping un-matched DIMMs - only dual-channel operation supported\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700641 break;
642
643 default:
644 // Made it through all the checks, this DIMM pair is usable
645 dimm_mask |= (1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i));
646 break;
647 }
648#endif
649 }
650
651 return dimm_mask;
652}
653
654/*-----------------------------------------------------------------------------
655SDRAM configuration functions:
656-----------------------------------------------------------------------------*/
657
658/**
659 * Send the specified command to all DIMMs.
660 *
661 * @param command Specifies the command to be sent to the DIMMs.
662 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
663 * register value in JEDEC format.
664 */
665static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
666{
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200667 uint8_t dimm_start_64M_multiple;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -0800668 uintptr_t dimm_start_address;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700669 uint32_t dram_controller_mode;
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200670 uint8_t i;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700671
672 // Configure the RAM command
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300673 dram_controller_mode = pci_read_config32(MCHDEV, DRC);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700674 dram_controller_mode &= 0xFFFFFF8F;
675 dram_controller_mode |= command;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300676 pci_write_config32(MCHDEV, DRC, dram_controller_mode);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700677
678 // RAM_COMMAND_NORMAL is an exception.
679 // It affects only the memory controller and does not need to be "sent" to the DIMMs.
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300680 if (command == RAM_COMMAND_NORMAL) {
681 EXTRA_DELAY;
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200682 return;
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300683 }
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700684
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200685 // NOTE: for mode select commands, some of the location address bits are part of the command
686 // Map JEDEC mode bits to E7505
687 if (command == RAM_COMMAND_MRS) {
688 // Host address lines [25:18] map to DIMM address lines [7:0]
689 // Host address lines [17:16] map to DIMM address lines [9:8]
690 // Host address lines [15:4] map to DIMM address lines [11:0]
691 dimm_start_address = (jedec_mode_bits & 0x00ff) << 18;
692 dimm_start_address |= (jedec_mode_bits & 0x0300) << 8;
693 dimm_start_address |= (jedec_mode_bits & 0x0fff) << 4;
694 } else if (command == RAM_COMMAND_EMRS) {
695 // Host address lines [15:4] map to DIMM address lines [11:0]
696 dimm_start_address = (jedec_mode_bits << 4);
697 } else {
698 ASSERT(jedec_mode_bits == 0);
699 dimm_start_address = 0;
700 }
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700701
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200702 // Send the command to all DIMMs by accessing a memory location within each
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700703
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200704 dimm_start_64M_multiple = 0;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700705
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300706 /* FIXME: Only address the number of rows present in the system?
707 * Seems like rows 4-7 overlap with 0-3.
708 */
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200709 for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) {
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700710
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300711 uint8_t dimm_end_64M_multiple = pci_read_config8(MCHDEV, DRB_ROW_0 + i);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700712
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200713 if (dimm_end_64M_multiple > dimm_start_64M_multiple) {
714 dimm_start_address &= 0x3ffffff;
715 dimm_start_address |= dimm_start_64M_multiple << 26;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -0800716 read32((void *)dimm_start_address);
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +0300717 // Set the start of the next DIMM
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +0200718 dimm_start_64M_multiple = dimm_end_64M_multiple;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700719 }
720 }
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +0300721 EXTRA_DELAY;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700722}
723
724/**
725 * Set the mode register of all DIMMs.
726 *
727 * The proper CAS# latency setting is added to the mode bits specified
728 * by the caller.
729 *
730 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
731 * register value in JEDEC format.
732 */
733static void set_ram_mode(uint16_t jedec_mode_bits)
734{
735 ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK));
736
737 uint32_t dram_cas_latency =
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300738 pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700739
740 switch (dram_cas_latency) {
741 case DRT_CAS_2_5:
742 jedec_mode_bits |= SDRAM_CAS_2_5;
743 break;
744
745 case DRT_CAS_2_0:
746 jedec_mode_bits |= SDRAM_CAS_2_0;
747 break;
748
749 default:
750 BUG();
751 break;
752 }
753
754 do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits);
755}
756
757/*-----------------------------------------------------------------------------
Martin Roth128c1042016-11-18 09:29:03 -0700758DIMM-independent configuration functions:
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700759-----------------------------------------------------------------------------*/
760
761/**
762 * Configure the E7501's DRAM Row Boundary (DRB) registers for the memory
763 * present in the specified DIMM.
764 *
765 * @param dimm_log2_num_bits Specifies log2(number of bits) for each side of
766 * the DIMM.
767 * @param total_dram_64M_multiple Total DRAM in the system (as a multiple of
768 * 64 MB) for DIMMs < dimm_index.
769 * @param dimm_index Which DIMM pair is being processed
770 * (0..MAX_DIMM_SOCKETS_PER_CHANNEL).
771 * @return New multiple of 64 MB total DRAM in the system.
772 */
773static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index)
774{
775 int i;
776
777 ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL);
778
779 // DIMM sides must be at least 32 MB
780 ASSERT(dimm_log2_num_bits.side1 >= 28);
781 ASSERT((dimm_log2_num_bits.side2 == 0)
782 || (dimm_log2_num_bits.side2 >= 28));
783
784 // In dual-channel mode, we are called only once for each pair of DIMMs.
785 // Each time we process twice the capacity of a single DIMM.
786
787 // Convert single DIMM capacity to paired DIMM capacity
788 // (multiply by two ==> add 1 to log2)
789 dimm_log2_num_bits.side1++;
790 if (dimm_log2_num_bits.side2 > 0)
791 dimm_log2_num_bits.side2++;
792
793 // Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB)
794 // to the total capacity of the system
795 // NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29
796
797 total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29));
798
799 // Configure the boundary address for the row on side 1
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300800 pci_write_config8(MCHDEV, DRB_ROW_0 + (dimm_index << 1),
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700801 total_dram_64M_multiple);
802
803 // If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair
804 // (as a multiple of 64 MB) to the total capacity of the system
805 if (dimm_log2_num_bits.side2 >= 29)
806 total_dram_64M_multiple +=
807 (1 << (dimm_log2_num_bits.side2 - 29));
808
809 // Configure the boundary address for the row (if any) on side 2
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300810 pci_write_config8(MCHDEV, DRB_ROW_1 + (dimm_index << 1),
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700811 total_dram_64M_multiple);
812
813 // Update boundaries for rows subsequent to these.
814 // These settings will be overridden by a subsequent call if a populated physical slot exists
815
816 for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300817 pci_write_config8(MCHDEV, DRB_ROW_0 + (i << 1),
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700818 total_dram_64M_multiple);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300819 pci_write_config8(MCHDEV, DRB_ROW_1 + (i << 1),
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700820 total_dram_64M_multiple);
821 }
822
823 return total_dram_64M_multiple;
824}
825
826/**
827 * Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM).
828 *
829 * If necessary, set up a remap window so we don't waste DRAM that ordinarily
830 * would lie behind addresses reserved for memory-mapped I/O.
831 *
832 * @param ctrl PCI addresses of memory controller functions, and SMBus
833 * addresses of DIMM slots on the mainboard.
834 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
835 */
836static void configure_e7501_ram_addresses(const struct mem_controller
837 *ctrl, uint8_t dimm_mask)
838{
839 int i;
840 uint8_t total_dram_64M_multiple = 0;
841
842 // Configure the E7501's DRAM row boundaries
843 // Start by zeroing out the temporary initial configuration
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300844 pci_write_config32(MCHDEV, DRB_ROW_0, 0);
845 pci_write_config32(MCHDEV, DRB_ROW_4, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700846
847 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
848
849 uint16_t dimm_socket_address = ctrl->channel0[i];
850 struct dimm_size sz;
851
852 if (!(dimm_mask & (1 << i)))
853 continue; // This DIMM not present
854
855 sz = spd_get_dimm_size(dimm_socket_address);
856
857 RAM_DEBUG_MESSAGE("dimm size =");
858 RAM_DEBUG_HEX32((u32)sz.side1);
859 RAM_DEBUG_MESSAGE(" ");
860 RAM_DEBUG_HEX32((u32)sz.side2);
861 RAM_DEBUG_MESSAGE("\n");
862
863 if (sz.side1 == 0)
864 die("Bad SPD value\n");
865
866 total_dram_64M_multiple =
867 configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i);
868 }
869
870 // Configure the Top Of Low Memory (TOLM) in the E7501
871 // This address must be a multiple of 128 MB that is less than 4 GB.
872 // NOTE: 16-bit wide TOLM register stores only the highest 5 bits of a 32-bit address
873 // in the highest 5 bits.
874
875 // We set TOLM to the smaller of 0xC0000000 (3 GB) or the total DRAM in the system.
876 // This reserves addresses from 0xC0000000 - 0xFFFFFFFF for non-DRAM purposes
877 // such as flash and memory-mapped I/O.
878
879 // If there is more than 3 GB of DRAM, we define a remap window which
880 // makes the DRAM "behind" the reserved region available above the top of physical
881 // memory.
882
883 // NOTE: 0xC0000000 / (64 MB) == 0x30
884
885 if (total_dram_64M_multiple <= 0x30) {
886
887 // <= 3 GB total RAM
888
889 /* I should really adjust all of this in C after I have resources
890 * to all of the pci devices.
891 */
892
893 // Round up to 128MB granularity
894 // SJM: Is "missing" 64 MB of memory a potential issue? Should this round down?
895
896 uint8_t total_dram_128M_multiple =
897 (total_dram_64M_multiple + 1) >> 1;
898
899 // Convert to high 16 bits of address
900 uint16_t top_of_low_memory =
901 total_dram_128M_multiple << 11;
902
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300903 pci_write_config16(MCHDEV, TOLM,
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700904 top_of_low_memory);
905
906 } else {
907
908 // > 3 GB total RAM
909
910 // Set defaults for > 4 GB DRAM, i.e. remap a 1 GB (= 0x10 * 64 MB) range of memory
911 uint16_t remap_base = total_dram_64M_multiple; // A[25:0] == 0
912 uint16_t remap_limit = total_dram_64M_multiple + 0x10 - 1; // A[25:0] == 0xF
913
914 // Put TOLM at 3 GB
915
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300916 pci_write_config16(MCHDEV, TOLM, 0xc000);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700917
918 // Define a remap window to make the RAM that would appear from 3 GB - 4 GB
919 // visible just beyond 4 GB or the end of physical memory, whichever is larger
920 // NOTE: 16-bit wide REMAP registers store only the highest 10 bits of a 36-bit address,
921 // (i.e. a multiple of 64 MB) in the lowest 10 bits.
922 // NOTE: 0x100000000 / (64 MB) == 0x40
923
924 if (total_dram_64M_multiple < 0x40) {
925 remap_base = 0x40; // 0x100000000
926 remap_limit =
927 0x40 + (total_dram_64M_multiple - 0x30) - 1;
928 }
929
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300930 pci_write_config16(MCHDEV, REMAPBASE,
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700931 remap_base);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +0300932 pci_write_config16(MCHDEV, REMAPLIMIT,
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700933 remap_limit);
934 }
935}
936
937/**
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300938 * Execute ECC full-speed scrub once and leave scrubber disabled.
939 *
940 * NOTE: All cache and stack is lost during ECC scrub loop.
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700941 */
Stefan Reinauer1e0ddf62012-11-02 17:26:33 +0100942static inline void __attribute__((always_inline))
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300943 initialize_ecc(unsigned long ret_addr, unsigned long ret_addr2)
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700944{
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300945 uint16_t scrubbed = pci_read_config16(MCHDEV, MCHCFGNS) & 0x08;
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700946
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300947 if (!scrubbed) {
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700948 RAM_DEBUG_MESSAGE("Initializing ECC state...\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700949
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300950 /* ECC scrub flushes cache-lines and stack, need to
951 * store return address from romstage.c:main().
952 */
953 asm volatile(
954 "movd %0, %%xmm0;"
955 "movd (%0), %%xmm1;"
956 "movd %1, %%xmm2;"
957 "movd (%1), %%xmm3;"
958 :: "r" (ret_addr), "r" (ret_addr2) :
959 );
960
961 /* NOTE: All cache is lost during this loop.
962 * Make sure PCI access does not use stack.
963 */
964
965 pci_write_config16(MCHDEV, MCHCFGNS, 0x01);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700966 do {
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300967 scrubbed = pci_read_config16(MCHDEV, MCHCFGNS);
968 } while (! (scrubbed & 0x08));
969 pci_write_config16(MCHDEV, MCHCFGNS, (scrubbed & ~0x07) | 0x04);
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700970
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300971 /* Some problem remains with XIP cache from ROM, so for
972 * now, I disable XIP and also invalidate cache (again)
973 * before the remaining small portion of romstage.
974 *
975 * Adding NOPs here has unexpected results, making
976 * the first do_printk()/vtxprintf() after ECC scrub
977 * fail midway. Sometimes vtxprintf() dumps strings
978 * completely but with every 4th (fourth) character as "/".
979 *
980 * An inlined dump to console of the same string,
981 * before vtxprintf() call, is successful. So the
982 * source string should be completely in cache already.
983 *
984 * I need to review this again with CPU microcode
985 * update applied pre-CAR.
986 */
987
988 /* Disable and invalidate all cache. */
Alexandru Gagniuc86091f92015-09-30 20:23:09 -0700989 msr_t xip_mtrr = rdmsr(MTRR_PHYS_MASK(1));
990 xip_mtrr.lo &= ~MTRR_PHYS_MASK_VALID;
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300991 invd();
Alexandru Gagniuc86091f92015-09-30 20:23:09 -0700992 wrmsr(MTRR_PHYS_MASK(1), xip_mtrr);
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300993 invd();
994
Stefan Reinauerb15975b2011-10-21 12:57:59 -0700995 RAM_DEBUG_MESSAGE("ECC state initialized.\n");
996
Kyösti Mälkki97c064f2012-04-18 20:33:35 +0300997 /* Recover IP for return from main. */
998 asm volatile(
999 "movd %%xmm0, %%edi;"
1000 "movd %%xmm1, (%%edi);"
1001 "movd %%xmm2, %%edi;"
1002 "movd %%xmm3, (%%edi);"
1003 ::: "edi"
1004 );
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001005
Martin Roth33232602017-06-24 14:48:50 -06001006#if IS_ENABLED(CONFIG_DEBUG_RAM_SETUP)
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001007 unsigned int a1, a2;
1008 asm volatile("movd %%xmm2, %%eax;" : "=a" (a1) ::);
1009 asm volatile("movd %%xmm3, %%eax;" : "=a" (a2) ::);
Martin Roth0cd338e2016-07-29 14:07:30 -06001010 printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001011 asm volatile("movd %%xmm0, %%eax;" : "=a" (a1) ::);
1012 asm volatile("movd %%xmm1, %%eax;" : "=a" (a2) ::);
Martin Roth0cd338e2016-07-29 14:07:30 -06001013 printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001014#endif
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001015 }
1016
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001017 /* Clear the ECC error bits. */
1018 pci_write_config8(RASDEV, DRAM_FERR, 0x03);
1019 pci_write_config8(RASDEV, DRAM_NERR, 0x03);
1020
1021 /* Clear DRAM Interface error bits. */
1022 pci_write_config32(RASDEV, FERR_GLOBAL, 1 << 18);
1023 pci_write_config32(RASDEV, NERR_GLOBAL, 1 << 18);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001024}
1025
1026/**
1027 * Program the DRAM Timing register (DRT) of the E7501 (except for CAS#
1028 * latency, which is assumed to have been programmed already), based on the
1029 * parameters of the various installed DIMMs.
1030 *
1031 * @param ctrl PCI addresses of memory controller functions, and SMBus
1032 * addresses of DIMM slots on the mainboard.
1033 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
1034 */
1035static void configure_e7501_dram_timing(const struct mem_controller *ctrl,
1036 uint8_t dimm_mask)
1037{
1038 int i;
1039 uint32_t dram_timing;
1040 int value;
1041 uint8_t slowest_row_precharge = 0;
1042 uint8_t slowest_ras_cas_delay = 0;
1043 uint8_t slowest_active_to_precharge_delay = 0;
1044 uint32_t current_cas_latency =
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001045 pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001046
1047 // CAS# latency must be programmed beforehand
1048 ASSERT((current_cas_latency == DRT_CAS_2_0)
1049 || (current_cas_latency == DRT_CAS_2_5));
1050
1051 // Each timing parameter is determined by the slowest DIMM
1052
1053 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1054 uint16_t dimm_socket_address;
1055
1056 if (!(dimm_mask & (1 << i)))
1057 continue; // This DIMM not present
1058
1059 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1060 dimm_socket_address = ctrl->channel0[i];
1061 else
1062 dimm_socket_address =
1063 ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
1064
1065 value =
1066 spd_read_byte(dimm_socket_address,
1067 SPD_MIN_ROW_PRECHARGE_TIME);
1068 if (value < 0)
1069 goto hw_err;
1070 if (value > slowest_row_precharge)
1071 slowest_row_precharge = value;
1072
1073 value =
1074 spd_read_byte(dimm_socket_address,
1075 SPD_MIN_RAS_TO_CAS_DELAY);
1076 if (value < 0)
1077 goto hw_err;
1078 if (value > slowest_ras_cas_delay)
1079 slowest_ras_cas_delay = value;
1080
1081 value =
1082 spd_read_byte(dimm_socket_address,
1083 SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
1084 if (value < 0)
1085 goto hw_err;
1086 if (value > slowest_active_to_precharge_delay)
1087 slowest_active_to_precharge_delay = value;
1088 }
1089
1090 // NOTE for timing parameters:
1091 // At 133 MHz, 1 clock == 7.52 ns
1092
1093 /* Read the initial state */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001094 dram_timing = pci_read_config32(MCHDEV, DRT);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001095
1096 /* Trp */
1097
1098 // E7501 supports only 2 or 3 clocks for tRP
1099 if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
1100 die("unsupported DIMM tRP"); // > 22.5 ns: 4 or more clocks
1101 else if (slowest_row_precharge > (15 << 2))
1102 dram_timing &= ~(1 << 0); // > 15.0 ns: 3 clocks
1103 else
1104 dram_timing |= (1 << 0); // <= 15.0 ns: 2 clocks
1105
1106 /* Trcd */
1107
1108 // E7501 supports only 2 or 3 clocks for tRCD
1109 // Use the same value for both read & write
1110 dram_timing &= ~((1 << 3) | (3 << 1));
1111 if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
1112 die("unsupported DIMM tRCD"); // > 22.5 ns: 4 or more clocks
1113 else if (slowest_ras_cas_delay > (15 << 2))
1114 dram_timing |= (2 << 1); // > 15.0 ns: 3 clocks
1115 else
1116 dram_timing |= ((1 << 3) | (3 << 1)); // <= 15.0 ns: 2 clocks
1117
1118 /* Tras */
1119
1120 // E7501 supports only 5, 6, or 7 clocks for tRAS
1121 // 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns
1122 dram_timing &= ~(3 << 9);
1123
1124 if (slowest_active_to_precharge_delay > 52)
1125 die("unsupported DIMM tRAS"); // > 52 ns: 8 or more clocks
1126 else if (slowest_active_to_precharge_delay > 45)
1127 dram_timing |= (0 << 9); // 46-52 ns: 7 clocks
1128 else if (slowest_active_to_precharge_delay > 37)
1129 dram_timing |= (1 << 9); // 38-45 ns: 6 clocks
1130 else
1131 dram_timing |= (2 << 9); // < 38 ns: 5 clocks
1132
1133 /* Trd */
1134
Elyes HAOUAS0f92f632014-07-27 19:37:31 +02001135 /* Set to a 7 clock read delay. This is for 133MHz
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001136 * with a CAS latency of 2.5 if 2.0 a 6 clock
1137 * delay is good */
1138
1139 dram_timing &= ~(7 << 24); // 7 clocks
1140 if (current_cas_latency == DRT_CAS_2_0)
1141 dram_timing |= (1 << 24); // 6 clocks
1142
1143 /*
1144 * Back to Back Read-Write Turn Around
1145 */
1146 /* Set to a 5 clock back to back read to write turn around.
1147 * 4 is a good delay if the CAS latency is 2.0 */
1148
1149 dram_timing &= ~(1 << 28); // 5 clocks
1150 if (current_cas_latency == DRT_CAS_2_0)
1151 dram_timing |= (1 << 28); // 4 clocks
1152
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001153 pci_write_config32(MCHDEV, DRT, dram_timing);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001154
1155 return;
1156
1157 hw_err:
1158 die(SPD_ERROR);
1159}
1160
1161/**
1162 * Determine the shortest CAS# latency that the E7501 and all DIMMs have in
1163 * common, and program the E7501 to use it.
1164 *
1165 * @param ctrl PCI addresses of memory controller functions, and SMBus
1166 * addresses of DIMM slots on the mainboard.
1167 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1168 */
1169static void configure_e7501_cas_latency(const struct mem_controller *ctrl,
1170 uint8_t dimm_mask)
1171{
1172 int i;
1173 int value;
1174 uint32_t dram_timing;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001175 uint16_t dram_read_timing;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001176 uint32_t dword;
1177
1178 // CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
1179 // NOTE: E7501 supports only 2.0 and 2.5
1180 uint32_t system_compatible_cas_latencies =
1181 SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
1182 uint32_t current_cas_latency;
1183 uint32_t dimm_compatible_cas_latencies;
1184
1185 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1186
1187 uint16_t dimm_socket_address;
1188
1189 if (!(dimm_mask & (1 << i)))
1190 continue; // This DIMM not usable
1191
1192 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1193 dimm_socket_address = ctrl->channel0[i];
1194 else
1195 dimm_socket_address =
1196 ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
1197
1198 value =
1199 spd_read_byte(dimm_socket_address,
1200 SPD_ACCEPTABLE_CAS_LATENCIES);
1201 if (value < 0)
1202 goto hw_err;
1203
1204 dimm_compatible_cas_latencies = value & 0x7f; // Start with all supported by DIMM
1205 current_cas_latency = 1 << log2(dimm_compatible_cas_latencies); // Max supported by DIMM
1206
1207 // Can we support the highest CAS# latency?
1208
1209 value =
1210 spd_read_byte(dimm_socket_address,
1211 SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
1212 if (value < 0)
1213 goto hw_err;
1214
1215 // NOTE: At 133 MHz, 1 clock == 7.52 ns
1216 if (value > 0x75) {
1217 // Our bus is too fast for this CAS# latency
1218 // Remove it from the bitmask of those supported by the DIMM that are compatible
1219 dimm_compatible_cas_latencies &= ~current_cas_latency;
1220 }
1221 // Can we support the next-highest CAS# latency (max - 0.5)?
1222
1223 current_cas_latency >>= 1;
1224 if (current_cas_latency != 0) {
1225 value =
1226 spd_read_byte(dimm_socket_address,
1227 SPD_SDRAM_CYCLE_TIME_2ND);
1228 if (value < 0)
1229 goto hw_err;
1230 if (value > 0x75)
1231 dimm_compatible_cas_latencies &=
1232 ~current_cas_latency;
1233 }
1234 // Can we support the next-highest CAS# latency (max - 1.0)?
1235 current_cas_latency >>= 1;
1236 if (current_cas_latency != 0) {
1237 value =
1238 spd_read_byte(dimm_socket_address,
1239 SPD_SDRAM_CYCLE_TIME_3RD);
1240 if (value < 0)
1241 goto hw_err;
1242 if (value > 0x75)
1243 dimm_compatible_cas_latencies &=
1244 ~current_cas_latency;
1245 }
1246 // Restrict the system to CAS# latencies compatible with this DIMM
1247 system_compatible_cas_latencies &=
1248 dimm_compatible_cas_latencies;
1249
1250 /* go to the next DIMM */
1251 }
1252
1253 /* After all of the arduous calculation setup with the fastest
1254 * cas latency I can use.
1255 */
1256
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001257 dram_timing = pci_read_config32(MCHDEV, DRT);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001258 dram_timing &= ~(DRT_CAS_MASK);
1259
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001260 dram_read_timing =
1261 pci_read_config16(MCHDEV, DRDCTL);
1262 dram_read_timing &= 0xF000;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001263
1264 if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
1265 dram_timing |= DRT_CAS_2_0;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001266 dram_read_timing |= 0x0222;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001267 } else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {
1268
1269 uint32_t dram_row_attributes =
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001270 pci_read_config32(MCHDEV, DRA);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001271
1272 dram_timing |= DRT_CAS_2_5;
1273
1274 // At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly
1275 // different value if all DIMM slots are populated
1276
1277 if ((dram_row_attributes & 0xff)
1278 && (dram_row_attributes & 0xff00)
1279 && (dram_row_attributes & 0xff0000)
1280 && (dram_row_attributes & 0xff000000)) {
1281
1282 // All slots populated
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001283 dram_read_timing |= 0x0882;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001284 } else {
1285 // Some unpopulated slots
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001286 dram_read_timing |= 0x0662;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001287 }
1288 } else
1289 die("No CAS# latencies compatible with all DIMMs!!\n");
1290
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001291 pci_write_config32(MCHDEV, DRT, dram_timing);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001292
1293 /* set master DLL reset */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001294 dword = pci_read_config32(MCHDEV, 0x88);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001295 dword |= (1 << 26);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001296 pci_write_config32(MCHDEV, 0x88, dword);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001297 /* patch try register 88 is undocumented tnz */
1298 dword &= 0x0ca17fff;
1299 dword |= 0xd14a5000;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001300 pci_write_config32(MCHDEV, 0x88, dword);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001301
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001302 pci_write_config16(MCHDEV, DRDCTL,
1303 dram_read_timing);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001304
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001305 /* clear master DLL reset */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001306 dword = pci_read_config32(MCHDEV, 0x88);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001307 dword &= ~(1 << 26);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001308 pci_write_config32(MCHDEV, 0x88, dword);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001309
1310 return;
1311
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001312hw_err:
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001313 die(SPD_ERROR);
1314}
1315
1316/**
1317 * Configure the refresh interval so that we refresh no more often than
1318 * required by the "most needy" DIMM. Also disable ECC if any of the DIMMs
1319 * don't support it.
1320 *
1321 * @param ctrl PCI addresses of memory controller functions, and SMBus
1322 * addresses of DIMM slots on the mainboard.
1323 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1324 */
1325static void configure_e7501_dram_controller_mode(const struct
1326 mem_controller *ctrl,
1327 uint8_t dimm_mask)
1328{
1329 int i;
1330
1331 // Initial settings
1332 uint32_t controller_mode =
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001333 pci_read_config32(MCHDEV, DRC);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001334 uint32_t system_refresh_mode = (controller_mode >> 8) & 7;
1335
1336 // Code below assumes that most aggressive settings are in
1337 // force when we are called, either via E7501 reset defaults
1338 // or by sdram_set_registers():
1339 // - ECC enabled
1340 // - No refresh
1341
1342 ASSERT((controller_mode & (3 << 20)) == (2 << 20)); // ECC
1343 ASSERT(!(controller_mode & (7 << 8))); // Refresh
1344
1345 /* Walk through _all_ dimms and find the least-common denominator for:
1346 * - ECC support
1347 * - refresh rates
1348 */
1349
1350 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1351
1352 uint32_t dimm_refresh_mode;
1353 int value;
1354 uint16_t dimm_socket_address;
1355
1356 if (!(dimm_mask & (1 << i))) {
1357 continue; // This DIMM not usable
1358 }
1359
1360 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1361 dimm_socket_address = ctrl->channel0[i];
1362 else
1363 dimm_socket_address =
1364 ctrl->channel1[i -
1365 MAX_DIMM_SOCKETS_PER_CHANNEL];
1366
1367 // Disable ECC mode if any one of the DIMMs does not support ECC
1368 // SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported.
1369
1370 value =
1371 spd_read_byte(dimm_socket_address,
1372 SPD_DIMM_CONFIG_TYPE);
1373 die_on_spd_error(value);
1374 if (value != ERROR_SCHEME_ECC) {
1375 controller_mode &= ~(3 << 20);
1376 }
1377
1378 value = spd_read_byte(dimm_socket_address, SPD_REFRESH);
1379 die_on_spd_error(value);
1380 value &= 0x7f; // Mask off self-refresh bit
1381 if (value > MAX_SPD_REFRESH_RATE) {
Stefan Reinauer65b72ab2015-01-05 12:59:54 -08001382 printk(BIOS_ERR, "unsupported refresh rate\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001383 continue;
1384 }
1385 // Get the appropriate E7501 refresh mode for this DIMM
1386 dimm_refresh_mode = refresh_rate_map[value];
1387 if (dimm_refresh_mode > 7) {
Stefan Reinauer65b72ab2015-01-05 12:59:54 -08001388 printk(BIOS_ERR, "unsupported refresh rate\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001389 continue;
1390 }
1391 // If this DIMM requires more frequent refresh than others,
1392 // update the system setting
1393 if (refresh_frequency[dimm_refresh_mode] >
1394 refresh_frequency[system_refresh_mode])
1395 system_refresh_mode = dimm_refresh_mode;
1396
1397#ifdef SUSPICIOUS_LOOKING_CODE
1398// SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller
1399// than the clock period of the memory controller. Also, no other northbridge
1400// looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME.
1401
1402 // Switch to 2 clocks for address/command if required by any one of the DIMMs
1403 // NOTE: At 133 MHz, 1 clock == 7.52 ns
1404 value =
1405 spd_read_byte(dimm_socket_address,
1406 SPD_CMD_SIGNAL_INPUT_HOLD_TIME);
1407 die_on_spd_error(value);
1408 if (value >= 0xa0) { /* At 133MHz this constant should be 0x75 */
Martin Roth128c1042016-11-18 09:29:03 -07001409 controller_mode &= ~(1 << 16); /* Use two clock cycles instead of one */
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001410 }
1411#endif
1412
1413 /* go to the next DIMM */
1414 }
1415
1416 controller_mode |= (system_refresh_mode << 8);
1417
1418 // Configure the E7501
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001419 pci_write_config32(MCHDEV, DRC, controller_mode);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001420}
1421
1422/**
1423 * Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM
1424 * parameters read via SPD. This tells the controller the width of the SDRAM
1425 * chips on each DIMM side (x4 or x8) and the page size of each DIMM side
1426 * (4, 8, 16, or 32 KB).
1427 *
1428 * @param ctrl PCI addresses of memory controller functions, and SMBus
1429 * addresses of DIMM slots on the mainboard.
1430 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1431 */
1432static void configure_e7501_row_attributes(const struct mem_controller
1433 *ctrl, uint8_t dimm_mask)
1434{
1435 int i;
1436 uint32_t row_attributes = 0;
1437
1438 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1439
1440 uint16_t dimm_socket_address = ctrl->channel0[i];
1441 struct dimm_size page_size;
1442 struct dimm_size sdram_width;
1443
1444 if (!(dimm_mask & (1 << i)))
1445 continue; // This DIMM not usable
1446
1447 // Get the relevant parameters via SPD
1448 page_size = sdram_spd_get_page_size(dimm_socket_address);
1449 sdram_width = sdram_spd_get_width(dimm_socket_address);
1450
1451 // Update the DRAM Row Attributes.
1452 // Page size is encoded as log2(page size in bits) - log2(8 Kb)
1453 // NOTE: 8 Kb = 2^13
1454 row_attributes |= (page_size.side1 - 13) << (i << 3); // Side 1 of each DIMM is an EVEN row
1455
1456 if (sdram_width.side2 > 0)
1457 row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4); // Side 2 is ODD
1458
1459 // Set x4 flags if appropriate
1460 if (sdram_width.side1 == 4) {
1461 row_attributes |= 0x08 << (i << 3);
1462 }
1463
1464 if (sdram_width.side2 == 4) {
1465 row_attributes |= 0x08 << ((i << 3) + 4);
1466 }
1467
1468 /* go to the next DIMM */
1469 }
1470
1471 /* Write the new row attributes register */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001472 pci_write_config32(MCHDEV, DRA, row_attributes);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001473}
1474
1475/*
1476 * Enable clock signals for populated DIMM sockets and disable them for
1477 * unpopulated sockets (to reduce EMI).
1478 *
1479 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
1480 */
1481static void enable_e7501_clocks(uint8_t dimm_mask)
1482{
1483 int i;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001484 uint8_t clock_disable = pci_read_config8(MCHDEV, CKDIS);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001485
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001486 pci_write_config8(MCHDEV, 0x8e, 0xb0);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001487
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001488 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1489
1490 uint8_t socket_mask = 1 << i;
1491
1492 if (dimm_mask & socket_mask)
1493 clock_disable &= ~socket_mask; // DIMM present, enable clock
1494 else
1495 clock_disable |= socket_mask; // DIMM absent, disable clock
1496 }
1497
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001498 pci_write_config8(MCHDEV, CKDIS, clock_disable);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001499}
1500
Martin Roth128c1042016-11-18 09:29:03 -07001501/* DIMM-dependent configuration functions */
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001502
1503/**
1504 * DDR Receive FIFO RE-Sync (?)
1505 */
1506static void RAM_RESET_DDR_PTR(void)
1507{
1508 uint8_t byte;
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001509 byte = pci_read_config8(MCHDEV, 0x88);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001510 byte |= (1 << 4);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001511 pci_write_config8(MCHDEV, 0x88, byte);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001512
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001513 byte = pci_read_config8(MCHDEV, 0x88);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001514 byte &= ~(1 << 4);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001515 pci_write_config8(MCHDEV, 0x88, byte);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001516}
1517
1518/**
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001519 * Copy 64 bytes from one location to another.
1520 *
1521 * @param src_addr TODO
1522 * @param dst_addr TODO
1523 */
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001524static void write_8dwords(const uint32_t *src_addr, u8 *dst_addr)
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001525{
1526 int i;
1527 for (i = 0; i < 8; i++) {
1528 write32(dst_addr, *src_addr);
1529 src_addr++;
1530 dst_addr += sizeof(uint32_t);
1531 }
1532}
1533
1534/**
1535 * Set the E7501's (undocumented) RCOMP registers.
1536 *
1537 * Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual,
1538 * RCOMP registers appear to affect drive strength, pullup/pulldown offset,
1539 * and slew rate of various signal groups.
1540 *
1541 * Comments below are conjecture based on apparent similarity between the
1542 * E7501 and these two chips.
1543 */
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001544static void rcomp_copy_registers(void)
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001545{
1546 uint32_t dword;
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001547 uint8_t strength_control;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001548
1549 RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n");
1550
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001551 /* Begin to write the RCOMP registers */
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001552 write8(RCOMP_MMIO + 0x2c, 0x0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001553
1554 // Set CMD and DQ/DQS strength to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001555 strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0x88;
1556 strength_control |= 0x40;
1557 write8(RCOMP_MMIO + DQCMDSTR, strength_control);
1558 write_8dwords(slew_2x, RCOMP_MMIO + 0x80);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001559 write16(RCOMP_MMIO + 0x42, 0);
1560
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001561 // Set CMD and DQ/DQS strength to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001562 strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0xF8;
1563 strength_control |= 0x04;
1564 write8(RCOMP_MMIO + DQCMDSTR, strength_control);
1565 write_8dwords(slew_2x, RCOMP_MMIO + 0x60);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001566 write16(RCOMP_MMIO + 0x40, 0);
1567
1568 // Set RCVEnOut# strength to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001569 strength_control = read8(RCOMP_MMIO + RCVENSTR) & 0xF8;
1570 strength_control |= 0x04;
1571 write8(RCOMP_MMIO + RCVENSTR, strength_control);
1572 write_8dwords(slew_2x, RCOMP_MMIO + 0x1c0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001573 write16(RCOMP_MMIO + 0x50, 0);
1574
1575 // Set CS# strength for x4 SDRAM to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001576 strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x88;
1577 strength_control |= 0x04;
1578 write8(RCOMP_MMIO + CSBSTR, strength_control);
1579 write_8dwords(slew_2x, RCOMP_MMIO + 0x140);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001580 write16(RCOMP_MMIO + 0x48, 0);
1581
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001582 // Set CS# strength for x4 SDRAM to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001583 strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x8F;
1584 strength_control |= 0x40;
1585 write8(RCOMP_MMIO + CSBSTR, strength_control);
1586 write_8dwords(slew_2x, RCOMP_MMIO + 0x160);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001587 write16(RCOMP_MMIO + 0x4a, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001588
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001589 // Set CKE strength for x4 SDRAM to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001590 strength_control = read8(RCOMP_MMIO + CKESTR) & 0x88;
1591 strength_control |= 0x04;
1592 write8(RCOMP_MMIO + CKESTR, strength_control);
1593 write_8dwords(slew_2x, RCOMP_MMIO + 0xa0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001594 write16(RCOMP_MMIO + 0x44, 0);
1595
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001596 // Set CKE strength for x4 SDRAM to 2x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001597 strength_control = read8(RCOMP_MMIO + CKESTR) & 0x8F;
1598 strength_control |= 0x40;
1599 write8(RCOMP_MMIO + CKESTR, strength_control);
1600 write_8dwords(slew_2x, RCOMP_MMIO + 0xc0);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001601 write16(RCOMP_MMIO + 0x46, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001602
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001603 // Set CK strength for x4 SDRAM to 1x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001604 strength_control = read8(RCOMP_MMIO + CKSTR) & 0x88;
1605 strength_control |= 0x01;
1606 write8(RCOMP_MMIO + CKSTR, strength_control);
1607 write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x180);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001608 write16(RCOMP_MMIO + 0x4c, 0);
1609
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001610 // Set CK strength for x4 SDRAM to 1x (?)
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001611 strength_control = read8(RCOMP_MMIO + CKSTR) & 0x8F;
1612 strength_control |= 0x10;
1613 write8(RCOMP_MMIO + CKSTR, strength_control);
1614 write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x1a0);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001615 write16(RCOMP_MMIO + 0x4e, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001616
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001617 dword = read32(RCOMP_MMIO + 0x400);
1618 dword &= 0x7f7fffff;
1619 write32(RCOMP_MMIO + 0x400, dword);
1620
1621 dword = read32(RCOMP_MMIO + 0x408);
1622 dword &= 0x7f7fffff;
1623 write32(RCOMP_MMIO + 0x408, dword);
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001624}
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001625
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001626static void ram_set_rcomp_regs(void)
1627{
1628 /* Set the RCOMP MMIO base address */
1629 mchtest_control(RCOMP_BAR_ENABLE);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001630 pci_write_config32(MCHDEV, SMRBASE, (uintptr_t)RCOMP_MMIO);
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001631
1632 /* Block RCOMP updates while we configure the registers */
1633 rcomp_smr_control(RCOMP_HOLD);
1634 rcomp_copy_registers();
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001635 d060_control(D060_CMD_0);
1636 mchtest_control(MCHTST_CMD_0);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001637
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001638 uint8_t revision = pci_read_config8(MCHDEV, 0x08);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001639 if (revision >= 3) {
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001640 rcomp_smr_control(RCOMP_SMR_00);
1641 rcomp_smr_control(RCOMP_SMR_01);
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001642 }
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001643 rcomp_smr_control(RCOMP_RELEASE);
1644
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001645 /* Wait 40 usec */
1646 SLOW_DOWN_IO;
1647
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001648 /* Clear the RCOMP MMIO base address */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001649 pci_write_config32(MCHDEV, SMRBASE, 0);
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001650 mchtest_control(RCOMP_BAR_DISABLE);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001651}
1652
1653/*-----------------------------------------------------------------------------
1654Public interface:
1655-----------------------------------------------------------------------------*/
1656
1657/**
1658 * Go through the JEDEC initialization sequence for all DIMMs, then enable
1659 * refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up
1660 * and running.
1661 *
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001662 * @param ctrl PCI addresses of memory controller functions, and SMBus
1663 * addresses of DIMM slots on the mainboard.
1664 */
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001665static void sdram_enable(const struct mem_controller *ctrl)
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001666{
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001667 uint8_t dimm_mask = pci_read_config16(MCHDEV, SKPD);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001668 uint32_t dram_controller_mode;
1669
1670 if (dimm_mask == 0)
1671 return;
1672
1673 /* 1 & 2 Power up and start clocks */
1674 RAM_DEBUG_MESSAGE("Ram Enable 1\n");
1675 RAM_DEBUG_MESSAGE("Ram Enable 2\n");
1676
1677 /* A 200us delay is needed */
1678 DO_DELAY; EXTRA_DELAY;
1679
1680 /* 3. Apply NOP */
1681 RAM_DEBUG_MESSAGE("Ram Enable 3\n");
1682 do_ram_command(RAM_COMMAND_NOP, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001683
1684 /* 4 Precharge all */
1685 RAM_DEBUG_MESSAGE("Ram Enable 4\n");
1686 do_ram_command(RAM_COMMAND_PRECHARGE, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001687 /* wait until the all banks idle state... */
1688
1689 /* 5. Issue EMRS to enable DLL */
1690 RAM_DEBUG_MESSAGE("Ram Enable 5\n");
1691 do_ram_command(RAM_COMMAND_EMRS,
1692 SDRAM_EXTMODE_DLL_ENABLE |
1693 SDRAM_EXTMODE_DRIVE_NORMAL);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001694
1695 /* 6. Reset DLL */
1696 RAM_DEBUG_MESSAGE("Ram Enable 6\n");
1697 set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET);
1698 EXTRA_DELAY;
1699 /* Ensure a 200us delay between the DLL reset in step 6 and the final
1700 * mode register set in step 9.
1701 * Infineon needs this before any other command is sent to the ram.
1702 */
1703 DO_DELAY; EXTRA_DELAY;
1704
1705 /* 7 Precharge all */
1706 RAM_DEBUG_MESSAGE("Ram Enable 7\n");
1707 do_ram_command(RAM_COMMAND_PRECHARGE, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001708
1709 /* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001710 /* And for good luck 6 more CBRs */
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001711 RAM_DEBUG_MESSAGE("Ram Enable 8\n");
1712 int i;
Elyes HAOUAS93095522016-09-17 21:05:10 +02001713 for (i = 0; i < 8; i++)
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001714 do_ram_command(RAM_COMMAND_CBR, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001715
1716 /* 9 mode register set */
1717 RAM_DEBUG_MESSAGE("Ram Enable 9\n");
1718 set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001719
1720 /* 10 DDR Receive FIFO RE-Sync */
1721 RAM_DEBUG_MESSAGE("Ram Enable 10\n");
1722 RAM_RESET_DDR_PTR();
1723 EXTRA_DELAY;
1724
1725 /* 11 normal operation */
1726 RAM_DEBUG_MESSAGE("Ram Enable 11\n");
1727 do_ram_command(RAM_COMMAND_NORMAL, 0);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001728
1729 // Reconfigure the row boundaries and Top of Low Memory
1730 // to match the true size of the DIMMs
1731 configure_e7501_ram_addresses(ctrl, dimm_mask);
1732
1733 /* Finally enable refresh */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001734 dram_controller_mode = pci_read_config32(MCHDEV, DRC);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001735 dram_controller_mode |= (1 << 29);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001736 pci_write_config32(MCHDEV, DRC, dram_controller_mode);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001737 EXTRA_DELAY;
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001738}
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001739
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001740/**
1741 * @param ctrl PCI addresses of memory controller functions, and SMBus
1742 * addresses of DIMM slots on the mainboard.
1743 */
1744static void sdram_post_ecc(const struct mem_controller *ctrl)
1745{
1746 /* Fast CS# Enable. */
1747 uint32_t dram_controller_mode = pci_read_config32(MCHDEV, DRC);
1748 dram_controller_mode = pci_read_config32(MCHDEV, DRC);
1749 dram_controller_mode |= (1 << 17);
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001750 pci_write_config32(MCHDEV, DRC, dram_controller_mode);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001751}
1752
1753/**
1754 * Configure SDRAM controller parameters that depend on characteristics of the
1755 * DIMMs installed in the system. These characteristics are read from the
1756 * DIMMs via the standard Serial Presence Detect (SPD) interface.
1757 *
1758 * @param ctrl PCI addresses of memory controller functions, and SMBus
1759 * addresses of DIMM slots on the mainboard.
1760 */
1761static void sdram_set_spd_registers(const struct mem_controller *ctrl)
1762{
1763 uint8_t dimm_mask;
1764
1765 RAM_DEBUG_MESSAGE("Reading SPD data...\n");
1766
1767 dimm_mask = spd_get_supported_dimms(ctrl);
1768
1769 if (dimm_mask == 0) {
Stefan Reinauer65b72ab2015-01-05 12:59:54 -08001770 printk(BIOS_DEBUG, "No usable memory for this controller\n");
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001771 } else {
1772 enable_e7501_clocks(dimm_mask);
1773
1774 RAM_DEBUG_MESSAGE("setting based on SPD data...\n");
1775
1776 configure_e7501_row_attributes(ctrl, dimm_mask);
1777 configure_e7501_dram_controller_mode(ctrl, dimm_mask);
1778 configure_e7501_cas_latency(ctrl, dimm_mask);
1779 RAM_RESET_DDR_PTR();
1780
1781 configure_e7501_dram_timing(ctrl, dimm_mask);
1782 DO_DELAY;
1783 RAM_DEBUG_MESSAGE("done\n");
1784 }
1785
1786 /* NOTE: configure_e7501_ram_addresses() is NOT called here.
1787 * We want to keep the default 64 MB/row mapping until sdram_enable() is called,
1788 * even though the default mapping is almost certainly incorrect.
1789 * The default mapping makes it easy to initialize all of the DIMMs
1790 * even if the total system memory is > 4 GB.
1791 *
1792 * Save the dimm_mask for when sdram_enable is called, so it can call
1793 * configure_e7501_ram_addresses() without having to regenerate the bitmask
1794 * of usable DIMMs.
1795 */
Kyösti Mälkki5bd271b2012-04-10 16:11:53 +03001796 pci_write_config16(MCHDEV, SKPD, dimm_mask);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001797}
1798
1799/**
1800 * Do basic RAM setup that does NOT depend on serial presence detect
1801 * information (i.e. independent of DIMM specifics).
1802 *
1803 * @param ctrl PCI addresses of memory controller functions, and SMBus
1804 * addresses of DIMM slots on the mainboard.
1805 */
1806static void sdram_set_registers(const struct mem_controller *ctrl)
1807{
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001808 uint32_t dword;
1809 uint16_t word;
1810 uint8_t byte;
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001811
1812 ram_set_rcomp_regs();
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001813
1814 /* Enable 0:0.1, 0:2.1 */
1815 word = pci_read_config16(MCHDEV, DVNP);
1816 word &= ~0x05;
1817 pci_write_config16(MCHDEV, DVNP, word);
1818
1819 /* Disable high-memory remap (power-on defaults, really) */
1820 pci_write_config16(MCHDEV, REMAPBASE, 0x03ff);
1821 pci_write_config16(MCHDEV, REMAPLIMIT, 0x0);
1822
1823 /* Disable legacy MMIO (0xC0000-0xEFFFF is DRAM) */
1824 int i;
1825 pci_write_config8(MCHDEV, PAM_0, 0x30);
Elyes HAOUAS93095522016-09-17 21:05:10 +02001826 for (i = 1; i <= 6; i++)
Kyösti Mälkki77e4f7d2012-04-18 19:47:56 +03001827 pci_write_config8(MCHDEV, PAM_0 + i, 0x33);
1828
1829 /* Conservatively say each row has 64MB of ram, we will fix this up later
1830 * Initial TOLM 8 rows 64MB each (1<<3 * 1<<26) >> 16 = 1<<13
1831 *
1832 * FIXME: Hard-coded limit to first four rows to prevent overlap!
1833 */
1834 pci_write_config32(MCHDEV, DRB_ROW_0, 0x04030201);
1835 pci_write_config32(MCHDEV, DRB_ROW_4, 0x04040404);
1836 //pci_write_config32(MCHDEV, DRB_ROW_4, 0x08070605);
1837 pci_write_config16(MCHDEV, TOLM, (1<<13));
1838
1839 /* DIMM clocks off */
1840 pci_write_config8(MCHDEV, CKDIS, 0xff);
1841
1842 /* reset row attributes */
1843 pci_write_config32(MCHDEV, DRA, 0x0);
1844
1845 // The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and
1846 // Back-to-Back Write-Read Turnaround. All others are configured based on SPD.
1847 dword = pci_read_config32(MCHDEV, DRT);
1848 dword &= 0xC7F8FFFF;
1849 dword |= (0x28<<24)|(0x03<<16);
1850 pci_write_config32(MCHDEV, DRT, dword);
1851
1852 dword = pci_read_config32(MCHDEV, DRC);
1853 dword &= 0xffcef8f7;
1854 dword |= 0x00210008;
1855 pci_write_config32(MCHDEV, DRC, dword);
1856
1857 /* Undocumented */
1858 pci_write_config8(MCHDEV, 0x88, 0x80);
1859
1860 /* Undocumented. Set much later in vendor BIOS. */
1861 byte = pci_read_config8(MCHDEV, 0xd9);
1862 byte &= ~0x60;
1863 pci_write_config8(MCHDEV, 0xd9, byte);
1864
1865#ifdef SUSPICIOUS_LOOKING_CODE
1866 /* This will access D2:F0:0x50, is this correct??
1867 * Vendor BIOS reads Device ID before this is set.
1868 * Undocumented in the p64h2 PCI-X bridge datasheet.
1869 */
1870 byte = pci_read_config8(PCI_DEV(0,2,0), 0x50);
1871 byte &= 0xcf;
1872 byte |= 0x30
1873 pci_write_config8(PCI_DEV(0,2,0), 0x50, byte);
1874#endif
Kyösti Mälkki26c7b862012-04-12 22:46:23 +03001875
1876 uint8_t revision = pci_read_config8(MCHDEV, 0x08);
1877 if (revision >= 3)
1878 d060_control(D060_CMD_1);
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001879}
Kyösti Mälkki0a0d5e82011-10-31 14:18:33 +02001880
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001881/**
1882 *
1883 *
1884 */
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001885void e7505_mch_init(const struct mem_controller *memctrl)
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001886{
1887 RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n");
1888 DUMPNORTH();
1889
1890 sdram_set_registers(memctrl);
1891 sdram_set_spd_registers(memctrl);
1892 sdram_enable(memctrl);
1893}
1894
Kyösti Mälkki70d92b92017-04-19 19:57:01 +03001895uintptr_t restore_top_of_low_cacheable(void)
Kyösti Mälkki41dd3db2012-07-03 11:36:44 +03001896{
1897 u32 tolm = (pci_read_config16(MCHDEV, TOLM) & ~0x7ff) << 16;
Kyösti Mälkki70d92b92017-04-19 19:57:01 +03001898 return tolm;
Kyösti Mälkki41dd3db2012-07-03 11:36:44 +03001899}
1900
Kyösti Mälkki97c064f2012-04-18 20:33:35 +03001901/**
1902 * Scrub and reset error counts for ECC dimms.
1903 *
1904 * NOTE: this will invalidate cache and disable XIP cache for the
1905 * short remaining part of romstage.
1906 */
1907void e7505_mch_scrub_ecc(unsigned long ret_addr)
1908{
1909 unsigned long ret_addr2 = (unsigned long)((unsigned long*)&ret_addr-1);
1910 if ((pci_read_config32(MCHDEV, DRC)>>20 & 3) == 2)
1911 initialize_ecc(ret_addr, ret_addr2);
1912}
1913
1914void e7505_mch_done(const struct mem_controller *memctrl)
1915{
1916 sdram_post_ecc(memctrl);
1917
1918 RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n");
1919 DUMPNORTH();
1920}
1921
Kyösti Mälkki93b4ed92012-04-18 21:13:33 +03001922int e7505_mch_is_ready(void)
Kyösti Mälkki5c1ff922012-04-10 19:55:19 +03001923{
1924 uint32_t dword = pci_read_config32(MCHDEV, DRC);
1925 return !!(dword & DRC_DONE);
1926}