blob: f42bef2db00e56d78e62cd1d9a8924433663d277 [file] [log] [blame]
Stefan Reinauerb15975b2011-10-21 12:57:59 -07001/* This was originally for the e7500, modified for e7501
2 * The primary differences are that 7501 apparently can
3 * support single channel RAM (i haven't tested),
4 * CAS1.5 is no longer supported, The ECC scrubber
5 * now supports a mode to zero RAM and init ECC in one step
6 * and the undocumented registers at 0x80 require new
7 * (undocumented) values determined by guesswork and
8 * comparison w/ OEM BIOS values.
9 * Steven James 02/06/2003
10 */
11
12/* converted to C 6/2004 yhlu */
13
14#include <assert.h>
15#include <spd.h>
16#include <sdram_mode.h>
17#include <stdlib.h>
18#include "e7501.h"
19
20/*-----------------------------------------------------------------------------
21Definitions:
22-----------------------------------------------------------------------------*/
23
24// Uncomment this to enable run-time checking of DIMM parameters
25// for dual-channel operation
26// Unfortunately the code seems to chew up several K of space.
27//#define VALIDATE_DIMM_COMPATIBILITY
28
29#if CONFIG_DEBUG_RAM_SETUP
30#define RAM_DEBUG_MESSAGE(x) print_debug(x)
31#define RAM_DEBUG_HEX32(x) print_debug_hex32(x)
32#define RAM_DEBUG_HEX8(x) print_debug_hex8(x)
33#define DUMPNORTH() dump_pci_device(PCI_DEV(0, 0, 0))
34#else
35#define RAM_DEBUG_MESSAGE(x)
36#define RAM_DEBUG_HEX32(x)
37#define RAM_DEBUG_HEX8(x)
38#define DUMPNORTH()
39#endif
40
41#define E7501_SDRAM_MODE (SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4)
42#define SPD_ERROR "Error reading SPD info\n"
43
44// NOTE: This used to be 0x100000.
45// That doesn't work on systems where A20M# is asserted, because
46// attempts to access 0x1000NN end up accessing 0x0000NN.
47#define RCOMP_MMIO 0x200000
48
49struct dimm_size {
50 unsigned long side1;
51 unsigned long side2;
52};
53
54static const uint32_t refresh_frequency[] = {
55 /* Relative frequency (array value) of each E7501 Refresh Mode Select
56 * (RMS) value (array index)
57 * 0 == least frequent refresh (longest interval between refreshes)
58 * [0] disabled -> 0
59 * [1] 15.6 usec -> 2
60 * [2] 7.8 usec -> 3
61 * [3] 64 usec -> 1
62 * [4] reserved -> 0
63 * [5] reserved -> 0
64 * [6] reserved -> 0
65 * [7] 64 clocks -> 4
66 */
67 0, 2, 3, 1, 0, 0, 0, 4
68};
69
70static const uint32_t refresh_rate_map[] = {
71 /* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode
72 * Select values (array value)
73 * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
74 * The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and
75 * 64 clock (481 ns) (7) refresh.
76 * [0] == 15.625 us -> 15.6 us
77 * [1] == 3.9 us -> 481 ns
78 * [2] == 7.8 us -> 7.8 us
79 * [3] == 31.3 us -> 15.6 us
80 * [4] == 62.5 us -> 15.6 us
81 * [5] == 125 us -> 64 us
82 */
83 1, 7, 2, 1, 1, 3
84};
85
86#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)
87
88// SPD parameters that must match for dual-channel operation
89static const uint8_t dual_channel_parameters[] = {
90 SPD_MEMORY_TYPE,
91 SPD_MODULE_VOLTAGE,
92 SPD_NUM_COLUMNS,
93 SPD_NUM_ROWS,
94 SPD_NUM_DIMM_BANKS,
95 SPD_PRIMARY_SDRAM_WIDTH,
96 SPD_NUM_BANKS_PER_SDRAM
97};
98
99 /*
100 * Table: constant_register_values
101 */
102static const long constant_register_values[] = {
103 /* SVID - Subsystem Vendor Identification Register
104 * 0x2c - 0x2d
105 * [15:00] Subsytem Vendor ID (Indicates system board vendor)
106 */
107 /* SID - Subsystem Identification Register
108 * 0x2e - 0x2f
109 * [15:00] Subsystem ID
110 */
111 // Not everyone wants to be Super Micro Computer, Inc.
112 // The mainboard should set this if desired.
113 // 0x2c, 0, (0x15d9 << 0) | (0x3580 << 16),
114
115 /* Undocumented
116 * (DRAM Read Timing Control, if similar to 855PM?)
117 * 0x80 - 0x81
118 * This register has something to do with CAS latencies,
119 * possibily this is the real chipset control.
120 * At 0x00 CAS latency 1.5 works.
121 * At 0x06 CAS latency 2.5 works.
122 * At 0x01 CAS latency 2.0 works.
123 */
124 /* This is still undocumented in e7501, but with different values
125 * CAS 2.0 values taken from Intel BIOS settings, others are a guess
126 * and may be terribly wrong. Old values preserved as comments until I
127 * figure this out for sure.
128 * e7501 docs claim that CAS1.5 is unsupported, so it may or may not
129 * work at all.
130 * Steven James 02/06/2003
131 */
132 /* NOTE: values now configured in configure_e7501_cas_latency() based
133 * on SPD info and total number of DIMMs (per Intel)
134 */
135
136 /* FDHC - Fixed DRAM Hole Control
137 * 0x58
138 * [7:7] Hole_Enable
139 * 0 == No memory Hole
140 * 1 == Memory Hole from 15MB to 16MB
141 * [6:0] Reserved
142 *
143 * PAM - Programmable Attribute Map
144 * 0x59 [1:0] Reserved
145 * 0x59 [5:4] 0xF0000 - 0xFFFFF
146 * 0x5A [1:0] 0xC0000 - 0xC3FFF
147 * 0x5A [5:4] 0xC4000 - 0xC7FFF
148 * 0x5B [1:0] 0xC8000 - 0xCBFFF
149 * 0x5B [5:4] 0xCC000 - 0xCFFFF
150 * 0x5C [1:0] 0xD0000 - 0xD3FFF
151 * 0x5C [5:4] 0xD4000 - 0xD7FFF
152 * 0x5D [1:0] 0xD8000 - 0xDBFFF
153 * 0x5D [5:4] 0xDC000 - 0xDFFFF
154 * 0x5E [1:0] 0xE0000 - 0xE3FFF
155 * 0x5E [5:4] 0xE4000 - 0xE7FFF
156 * 0x5F [1:0] 0xE8000 - 0xEBFFF
157 * 0x5F [5:4] 0xEC000 - 0xEFFFF
158 * 00 == DRAM Disabled (All Access go to memory mapped I/O space)
159 * 01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
160 * 10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
161 * 11 == Normal (All Access go to DRAM)
162 */
163
164 // Map all legacy ranges to DRAM
165 0x58, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),
166 0x5C, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),
167
168 /* DRB - DRAM Row Boundary Registers
169 * 0x60 - 0x6F
170 * An array of 8 byte registers, which hold the ending
171 * memory address assigned to each pair of DIMMS, in 64MB
172 * granularity.
173 */
174 // Conservatively say each row has 64MB of ram, we will fix this up later
175 // NOTE: These defaults allow us to prime all of the DIMMs on the board
176 // without jumping through 36-bit adddressing hoops, even if the
177 // total memory is > 4 GB. Changing these values may break do_ram_command()!
178 0x60, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
179 0x64, 0x00000000, (0x05 << 0) | (0x06 << 8) | (0x07 << 16) | (0x08 << 24),
180
181 /* DRA - DRAM Row Attribute Register
182 * 0x70 Row 0,1
183 * 0x71 Row 2,3
184 * 0x72 Row 4,5
185 * 0x73 Row 6,7
186 * [7:7] Device width for Odd numbered rows
187 * 0 == 8 bits wide x8
188 * 1 == 4 bits wide x4
189 * [6:4] Row Attributes for Odd numbered rows
190 * 010 == 8KB (for dual-channel)
191 * 011 == 16KB (for dual-channel)
192 * 100 == 32KB (for dual-channel)
193 * 101 == 64KB (for dual-channel)
194 * Others == Reserved
195 * [3:3] Device width for Even numbered rows
196 * 0 == 8 bits wide x8
197 * 1 == 4 bits wide x4
198 * [2:0] Row Attributes for Even numbered rows
199 * 010 == 8KB (for dual-channel)
200 * 011 == 16KB (for dual-channel)
201 * 100 == 32KB (for dual-channel)
202 * 101 == 64KB (This page size appears broken)
203 * Others == Reserved
204 */
205 // NOTE: overridden by configure_e7501_row_attributes(), later
206 0x70, 0x00000000, 0,
207
208 /* DRT - DRAM Timing Register
209 * 0x78
210 * [31:30] Reserved
211 * [29:29] Back to Back Write-Read Turn Around
212 * 0 == 3 clocks between WR-RD commands
213 * 1 == 2 clocks between WR-RD commands
214 * [28:28] Back to Back Read-Write Turn Around
215 * 0 == 5 clocks between RD-WR commands
216 * 1 == 4 clocks between RD-WR commands
217 * [27:27] Back to Back Read Turn Around
218 * 0 == 4 clocks between RD commands
219 * 1 == 3 clocks between RD commands
220 * [26:24] Read Delay (tRD)
221 * 000 == 7 clocks
222 * 001 == 6 clocks
223 * 010 == 5 clocks
224 * Others == Reserved
225 * [23:19] Reserved
226 * [18:16] DRAM idle timer
227 * 000 == infinite
228 * 011 == 16 dram clocks
229 * 001 == 0 clocks
230 * [15:11] Reserved
231 * [10:09] Active to Precharge (tRAS)
232 * 00 == 7 clocks
233 * 01 == 6 clocks
234 * 10 == 5 clocks
235 * 11 == Reserved
236 * [08:06] Reserved
237 * [05:04] Cas Latency (tCL)
238 * 00 == 2.5 Clocks
239 * 01 == 2.0 Clocks
240 * 10 == Reserved (was 1.5 Clocks for E7500)
241 * 11 == Reserved
242 * [03:03] Write Ras# to Cas# Delay (tRCD)
243 * 0 == 3 DRAM Clocks
244 * 1 == 2 DRAM Clocks
245 * [02:01] Read RAS# to CAS# Delay (tRCD)
246 * 00 == reserved
247 * 01 == reserved
248 * 10 == 3 DRAM Clocks
249 * 11 == 2 DRAM Clocks
250 * [00:00] DRAM RAS# to Precharge (tRP)
251 * 0 == 3 DRAM Clocks
252 * 1 == 2 DRAM Clocks
253 */
254
255 // Some earlier settings:
256 /* Most aggressive settings possible */
257// 0x78, 0xc0fff8c4, (1<<29)|(1<<28)|(1<<27)|(2<<24)|(2<<9)|CAS_LATENCY|(1<<3)|(1<<1)|(1<<0),
258// 0x78, 0xc0f8f8c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|CAS_LATENCY|(1<<3)|(3<<1)|(1<<0),
259// 0x78, 0xc0f8f9c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|CAS_LATENCY|(1<<3)|(3<<1)|(1<<0),
260
261 // The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and
262 // Back-to-Back Write-Read Turnaround. All others are configured based on SPD.
263 0x78, 0xD7F8FFFF, (1 << 29) | (1 << 27) | (1 << 16),
264
265 /* FIXME why was I attempting to set a reserved bit? */
266 /* 0x0100040f */
267
268 /* DRC - DRAM Contoller Mode Register
269 * 0x7c
270 * [31:30] Reserved
271 * [29:29] Initialization Complete
272 * 0 == Not Complete
273 * 1 == Complete
274 * [28:23] Reserved
275 * [22:22] Channels
276 * 0 == Single channel
277 * 1 == Dual Channel
278 * [21:20] DRAM Data Integrity Mode
279 * 00 == Disabled, no ECC
280 * 01 == Reserved
281 * 10 == Error checking, using chip-kill, with correction
282 * 11 == Reserved
283 * [19:18] DRB Granularity (Read-Only)
284 * 00 == 32 MB quantities (single channel mode)
285 * 01 == 64 MB quantities (dual-channel mode)
286 * 10 == Reserved
287 * 11 == Reserved
288 * [17:17] (Intel Undocumented) should always be set to 1 (SJM: comment inconsistent with current setting, below)
289 * [16:16] Command Per Clock - Address/Control Assertion Rule (CPC)
290 * 0 == 2n Rule
291 * 1 == 1n rule
292 * [15:11] Reserved
293 * [10:08] Refresh mode select
294 * 000 == Refresh disabled
295 * 001 == Refresh interval 15.6 usec
296 * 010 == Refresh interval 7.8 usec
297 * 011 == Refresh interval 64 usec
298 * 111 == Refresh every 64 clocks (fast refresh)
299 * [07:07] Reserved
300 * [06:04] Mode Select (SMS)
301 * 000 == Reserved (was Self Refresh Mode in E7500)
302 * 001 == NOP Command
303 * 010 == All Banks Precharge
304 * 011 == Mode Register Set
305 * 100 == Extended Mode Register Set
306 * 101 == Reserved
307 * 110 == CBR Refresh
308 * 111 == Normal Operation
309 * [03:00] Reserved
310 */
311// .long 0x7c, 0xffcefcff, (1<<22)|(2 << 20)|(1 << 16)| (0 << 8),
312// .long 0x7c, 0xff8cfcff, (1<<22)|(2 << 20)|(1 << 17)|(1 << 16)| (0 << 8),
313// .long 0x7c, 0xff80fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 17)|(1 << 16)| (0 << 8),
314
315 // Default to dual-channel mode, ECC, 1-clock address/cmd hold
316 // NOTE: configure_e7501_dram_controller_mode() configures further
317 0x7c, 0xff8ef8ff, (1 << 22) | (2 << 20) | (1 << 16) | (0 << 8),
318
319 /* Another Intel undocumented register
320 * 0x88 - 0x8B
321 * [31:31] Purpose unknown
322 * [26:26] Master DLL Reset?
323 * 0 == Normal operation?
324 * 1 == Reset?
325 * [07:07] Periodic memory recalibration?
326 * 0 == Disabled?
327 * 1 == Enabled?
328 * [04:04] Receive FIFO RE-Sync?
329 * 0 == Normal operation?
330 * 1 == Reset?
331 */
332 // NOTE: Some factory BIOSs don't do this.
333 // Doesn't seem to matter either way.
334 0x88, 0xffffff00, 0x80,
335
336 /* CLOCK_DIS - CK/CK# Disable Register
337 * 0x8C
338 * [7:7] DDR Frequency
339 * 0 == 100 MHz (200 MHz data rate)
340 * 1 == 133 MHz (266 MHz data rate)
341 * [6:4] Reserved
342 * [3:3] CK3
343 * 0 == Enable
344 * 1 == Disable
345 * [2:2] CK2
346 * 0 == Enable
347 * 1 == Disable
348 * [1:1] CK1
349 * 0 == Enable
350 * 1 == Disable
351 * [0:0] CK0
352 * 0 == Enable
353 * 1 == Disable
354 */
355 // NOTE: Disable all clocks initially; turn ones we need back on
356 // in enable_e7501_clocks()
357 0x8C, 0xfffffff0, 0xf,
358
359 /* TOLM - Top of Low Memory Register
360 * 0xC4 - 0xC5
361 * [15:11] Top of low memory (TOLM)
362 * The address below 4GB that should be treated as RAM,
363 * on a 128MB granularity.
364 * [10:00] Reserved
365 */
366 /* REMAPBASE - Remap Base Address Regsiter
367 * 0xC6 - 0xC7
368 * [15:10] Reserved
369 * [09:00] Remap Base Address [35:26] 64M aligned
370 * Bits [25:0] are assumed to be 0.
371 */
372
373 // NOTE: TOLM overridden by configure_e7501_ram_addresses()
374 0xc4, 0xfc0007ff, (0x2000 << 0) | (0x3ff << 16),
375
376 /* REMAPLIMIT - Remap Limit Address Register
377 * 0xC8 - 0xC9
378 * [15:10] Reserved
379 * [09:00] Remap Limit Address [35:26] 64M aligned
380 * When remaplimit < remapbase the remap window is disabled.
381 */
382 0xc8, 0xfffffc00, 0,
383
384 /* DVNP - Device Not Present Register
385 * 0xE0 - 0xE1
386 * [15:05] Reserved
387 * [04:04] Device 4 Function 1 Present
388 * 0 == Present
389 * 1 == Absent
390 * [03:03] Device 3 Function 1 Present
391 * 0 == Present
392 * 1 == Absent
393 * [02:02] Device 2 Function 1 Present
394 * 0 == Present
395 * 1 == Absent
396 * [01:01] Reserved
397 * [00:00] Device 0 Function 1 Present
398 * 0 == Present
399 * 1 == Absent
400 */
401
402 // Enable D0:D1, disable D2:F1, D3:F1, D4:F1
403 0xe0, 0xffffffe2, (1 << 4) | (1 << 3) | (1 << 2) | (0 << 0),
404
405 // Undocumented
406 0xd8, 0xffff9fff, 0x00000000,
407
408 // Undocumented - this is pure conjecture based on similarity to 855PM
409 /* MCHTST - MCH Test Register
410 * 0xF4 - 0xF7
411 * [31:31] Purpose unknown
412 * [30:30] Purpose unknown
413 * [29:23] Unknown - not used?
414 * [22:22] System Memory MMR Enable
415 * 0 == Disable: mem space and BAR at 0x14 are not accessible
416 * 1 == Enable: mem space and BAR at 0x14 are accessible
417 * [21:20] Purpose unknown
418 * [19:02] Unknown - not used?
419 * [01:01] D6EN (Device #6 enable)
420 * 0 == Disable
421 * 1 == Enable
422 * [00:00] Unknown - not used?
423 */
424
425 0xf4, 0x3f8ffffd, 0x40300002,
426
427#ifdef SUSPICIOUS_LOOKING_CODE
428 // SJM: Undocumented.
429 // This will access D2:F0:0x50, is this correct??
430 0x1050, 0xffffffcf, 0x00000030,
431#endif
432};
433
434 /* DDR RECOMP tables */
435
436// Slew table for 1x drive?
437static const uint32_t maybe_1x_slew_table[] = {
438 0x44332211, 0xc9776655, 0xffffffff, 0xffffffff,
439 0x22111111, 0x55444332, 0xfffca876, 0xffffffff,
440};
441
442// Slew table for 2x drive?
443static const uint32_t maybe_2x_slew_table[] = {
444 0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
445 0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
446};
447
448// Pull Up / Pull Down offset table, if analogous to IXP2800?
449static const uint32_t maybe_pull_updown_offset_table[] = {
450 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
451 0x88888888, 0x88888888, 0x88888888, 0x88888888,
452};
453
454/*-----------------------------------------------------------------------------
455Delay functions:
456-----------------------------------------------------------------------------*/
457
458#define SLOW_DOWN_IO inb(0x80)
459//#define SLOW_DOWN_IO udelay(40);
460
461 /* Estimate that SLOW_DOWN_IO takes about 50&76us */
462 /* delay for 200us */
463
464#if 1
465static void do_delay(void)
466{
467 int i;
468 for (i = 0; i < 16; i++) {
469 SLOW_DOWN_IO;
470 }
471}
472
473#define DO_DELAY do_delay()
474#else
475#define DO_DELAY \
476 udelay(200)
477#endif
478
479#define EXTRA_DELAY DO_DELAY
480
481static void die_on_spd_error(int spd_return_value)
482{
483 if (spd_return_value < 0)
484 die("Error reading SPD info\n");
485}
486
487/*-----------------------------------------------------------------------------
488Serial presence detect (SPD) functions:
489-----------------------------------------------------------------------------*/
490
491/**
492 * Calculate the page size for each physical bank of the DIMM:
493 * log2(page size) = (# columns) + log2(data width)
494 *
495 * NOTE: Page size is the total number of data bits in a row.
496 *
497 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
498 * @return log2(page size) for each side of the DIMM.
499 */
500static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address)
501{
502 uint16_t module_data_width;
503 int value;
504 struct dimm_size pgsz;
505
506 pgsz.side1 = 0;
507 pgsz.side2 = 0;
508
509 // Side 1
510 value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
511 if (value < 0)
512 goto hw_err;
513 pgsz.side1 = value & 0xf; // # columns in bank 1
514
515 /* Get the module data width and convert it to a power of two */
516 value =
517 spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
518 if (value < 0)
519 goto hw_err;
520 module_data_width = (value & 0xff) << 8;
521
522 value =
523 spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
524 if (value < 0)
525 goto hw_err;
526 module_data_width |= (value & 0xff);
527
528 pgsz.side1 += log2(module_data_width);
529
530 /* side two */
531 value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
532 if (value < 0)
533 goto hw_err;
534 if (value > 2)
535 die("Bad SPD value\n");
536 if (value == 2) {
537
538 pgsz.side2 = pgsz.side1; // Assume symmetric banks until we know differently
539 value =
540 spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
541 if (value < 0)
542 goto hw_err;
543 if ((value & 0xf0) != 0) {
544 // Asymmetric banks
545 pgsz.side2 -= value & 0xf; /* Subtract out columns on side 1 */
546 pgsz.side2 += (value >> 4) & 0xf; /* Add in columns on side 2 */
547 }
548 }
549
550 return pgsz;
551
552 hw_err:
553 die(SPD_ERROR);
554 return pgsz; // Never reached
555}
556
557/**
558 * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
559 *
560 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
561 * @return Width in bits of each DIMM side's DRAMs.
562 */
563static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address)
564{
565 int value;
566 struct dimm_size width;
567
568 width.side1 = 0;
569 width.side2 = 0;
570
571 value =
572 spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
573 die_on_spd_error(value);
574
575 width.side1 = value & 0x7f; // Mask off bank 2 flag
576
577 if (value & 0x80) {
578 width.side2 = width.side1 << 1; // Bank 2 exists and is double-width
579 } else {
580 // If bank 2 exists, it's the same width as bank 1
581 value =
582 spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
583 die_on_spd_error(value);
584
585#ifdef ROMCC_IF_BUG_FIXED
586 if (value == 2)
587 width.side2 = width.side1;
588#else
589 switch (value) {
590 case 2:
591 width.side2 = width.side1;
592 break;
593
594 default:
595 break;
596 }
597#endif
598 }
599
600 return width;
601}
602
603/**
604 * Calculate the log base 2 size in bits of both DIMM sides.
605 *
606 * log2(# bits) = (# columns) + log2(data width) +
607 * (# rows) + log2(banks per SDRAM)
608 *
609 * Note that it might be easier to use SPD byte 31 here, it has the DIMM size
610 * as a multiple of 4MB. The way we do it now we can size both sides of an
611 * asymmetric DIMM.
612 *
613 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
614 * @return log2(number of bits) for each side of the DIMM.
615 */
616static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address)
617{
618 int value;
619
620 // Start with log2(page size)
621 struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address);
622
623 if (sz.side1 > 0) {
624
625 value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS);
626 die_on_spd_error(value);
627
628 sz.side1 += value & 0xf;
629
630 if (sz.side2 > 0) {
631
632 // Double-sided DIMM
633 if (value & 0xF0)
634 sz.side2 += value >> 4; // Asymmetric
635 else
636 sz.side2 += value; // Symmetric
637 }
638
639 value =
640 spd_read_byte(dimm_socket_address,
641 SPD_NUM_BANKS_PER_SDRAM);
642 die_on_spd_error(value);
643
644 value = log2(value);
645 sz.side1 += value;
646 if (sz.side2 > 0)
647 sz.side2 += value;
648 }
649
650 return sz;
651}
652
653#ifdef VALIDATE_DIMM_COMPATIBILITY
654
655/**
656 * Determine whether two DIMMs have the same value for an SPD parameter.
657 *
658 * @param spd_byte_number The SPD byte number to compare in both DIMMs.
659 * @param dimm0_address SMBus address of the 1st DIMM socket to interrogate.
660 * @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate.
661 * @return 1 if both DIMM sockets report the same value for the specified
662 * SPD parameter, 0 if the values differed or an error occurred.
663 */
664static uint8_t are_spd_values_equal(uint8_t spd_byte_number,
665 uint16_t dimm0_address,
666 uint16_t dimm1_address)
667{
668 uint8_t bEqual = 0;
669 int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number);
670 int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number);
671
672 if ((dimm0_value >= 0) && (dimm1_value >= 0)
673 && (dimm0_value == dimm1_value))
674 bEqual = 1;
675
676 return bEqual;
677}
678#endif
679
680/**
681 * Scan for compatible DIMMs.
682 *
683 * The code in this module only supports dual-channel operation, so we test
684 * that compatible DIMMs are paired.
685 *
686 * @param ctrl PCI addresses of memory controller functions, and SMBus
687 * addresses of DIMM slots on the mainboard.
688 * @return A bitmask indicating which of the possible sockets for each channel
689 * was found to contain a compatible DIMM.
690 * Bit 0 corresponds to the closest socket for channel 0
691 * Bit 1 to the next socket for channel 0
692 * ...
693 * Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0
694 * Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1
695 * ...
696 * Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1
697 */
698static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl)
699{
700 int i;
701 uint8_t dimm_mask = 0;
702
703 // Have to increase size of dimm_mask if this assertion is violated
704 ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4);
705
706 // Find DIMMs we can support on channel 0.
707 // Then see if the corresponding channel 1 DIMM has the same parameters,
708 // since we only support dual-channel.
709
710 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
711
712 uint16_t channel0_dimm = ctrl->channel0[i];
713 uint16_t channel1_dimm = ctrl->channel1[i];
714 uint8_t bDualChannel = 1;
715#ifdef VALIDATE_DIMM_COMPATIBILITY
716 struct dimm_size page_size;
717 struct dimm_size sdram_width;
718#endif
719 int spd_value;
720
721 if (channel0_dimm == 0)
722 continue; // No such socket on this mainboard
723
724 if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) !=
725 SPD_MEMORY_TYPE_SDRAM_DDR)
726 continue;
727
728#ifdef VALIDATE_DIMM_COMPATIBILITY
729 if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) !=
730 SPD_VOLTAGE_SSTL2)
731 continue; // Unsupported voltage
732
733 // E7501 does not support unregistered DIMMs
734 spd_value =
735 spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES);
736 if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0))
737 continue;
738
739 // Must support burst = 4 for dual-channel operation on E7501
740 // NOTE: for single-channel, burst = 8 is required
741 spd_value =
742 spd_read_byte(channel0_dimm,
743 SPD_SUPPORTED_BURST_LENGTHS);
744 if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
745 continue;
746
747 page_size = sdram_spd_get_page_size(channel0_dimm);
748 sdram_width = sdram_spd_get_width(channel0_dimm);
749
750 // Validate DIMM page size
751 // The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel
752 // NOTE: 4 KB = 32 Kb = 2^15
753 // 32 KB = 262 Kb = 2^18
754
755 if ((page_size.side1 < 15) || (page_size.side1 > 18))
756 continue;
757
758 // If DIMM is double-sided, verify side2 page size
759 if (page_size.side2 != 0) {
760 if ((page_size.side2 < 15)
761 || (page_size.side2 > 18))
762 continue;
763 }
764 // Validate SDRAM width
765 // The E7501 only supports x4 and x8 devices
766
767 if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8))
768 continue;
769
770 // If DIMM is double-sided, verify side2 width
771 if (sdram_width.side2 != 0) {
772 if ((sdram_width.side2 != 4)
773 && (sdram_width.side2 != 8))
774 continue;
775 }
776#endif
777 // Channel 0 DIMM looks compatible.
778 // Now see if it is paired with the proper DIMM on channel 1.
779
780 ASSERT(channel1_dimm != 0); // No such socket on this mainboard??
781
782 // NOTE: unpopulated DIMMs cause read to fail
783 spd_value =
784 spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES);
785 if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {
786
787 print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
788 continue;
789 }
790#ifdef VALIDATE_DIMM_COMPATIBILITY
791 spd_value =
792 spd_read_byte(channel1_dimm,
793 SPD_SUPPORTED_BURST_LENGTHS);
794 if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
795 continue;
796
797 int j;
798 for (j = 0; j < sizeof(dual_channel_parameters); ++j) {
799 if (!are_spd_values_equal
800 (dual_channel_parameters[j], channel0_dimm,
801 channel1_dimm)) {
802
803 bDualChannel = 0;
804 break;
805 }
806 }
807#endif
808
809 // Code around ROMCC bug in optimization of "if" statements
810#ifdef ROMCC_IF_BUG_FIXED
811 if (bDualChannel) {
812 // Made it through all the checks, this DIMM pair is usable
813 dimm_mask |= ((1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i)));
814 } else
815 print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
816#else
817 switch (bDualChannel) {
818 case 0:
819 print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
820 break;
821
822 default:
823 // Made it through all the checks, this DIMM pair is usable
824 dimm_mask |= (1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i));
825 break;
826 }
827#endif
828 }
829
830 return dimm_mask;
831}
832
833/*-----------------------------------------------------------------------------
834SDRAM configuration functions:
835-----------------------------------------------------------------------------*/
836
837/**
838 * Send the specified command to all DIMMs.
839 *
840 * @param command Specifies the command to be sent to the DIMMs.
841 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
842 * register value in JEDEC format.
843 */
844static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
845{
846 int i;
847 uint32_t dram_controller_mode;
848 uint8_t dimm_start_64M_multiple = 0;
849 uint16_t e7501_mode_bits = jedec_mode_bits;
850
851 // Configure the RAM command
852 dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
853 dram_controller_mode &= 0xFFFFFF8F;
854 dram_controller_mode |= command;
855 pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
856
857 // RAM_COMMAND_NORMAL is an exception.
858 // It affects only the memory controller and does not need to be "sent" to the DIMMs.
859
860 if (command != RAM_COMMAND_NORMAL) {
861
862 // Send the command to all DIMMs by accessing a memory location within each
863 // NOTE: for mode select commands, some of the location address bits
864 // are part of the command
865
866 // Map JEDEC mode bits to E7501
867 if (command == RAM_COMMAND_MRS) {
868 // Host address lines [15:5] map to DIMM address lines [12:11, 9:1]
869 // The E7501 hard-sets DIMM address lines 10 & 0 to zero
870
871 ASSERT(!(jedec_mode_bits & 0x0401));
872
873 e7501_mode_bits = ((jedec_mode_bits & 0x1800) << (15 - 12)) | // JEDEC bits 11-12 move to bits 14-15
874 ((jedec_mode_bits & 0x03FE) << (13 - 9)); // JEDEC bits 1-9 move to bits 5-13
875
876 } else if (command == RAM_COMMAND_EMRS) {
877 // Host address lines [15:3] map to DIMM address lines [12:0]
878 e7501_mode_bits = jedec_mode_bits <<= 3;
879 } else
880 ASSERT(jedec_mode_bits == 0);
881
882 dimm_start_64M_multiple = 0;
883
884 for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) {
885
886 uint8_t dimm_end_64M_multiple =
887 pci_read_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + i);
888 if (dimm_end_64M_multiple > dimm_start_64M_multiple) {
889
890 // This code assumes DRAM row boundaries are all set below 4 GB
891 // NOTE: 0x40 * 64 MB == 4 GB
892 ASSERT(dimm_start_64M_multiple < 0x40);
893
894 // NOTE: 2^26 == 64 MB
895
896 uint32_t dimm_start_address =
897 dimm_start_64M_multiple << 26;
898
899 RAM_DEBUG_MESSAGE(" Sending RAM command to 0x");
900 RAM_DEBUG_HEX32(dimm_start_address + e7501_mode_bits);
901 RAM_DEBUG_MESSAGE("\n");
902
903 read32(dimm_start_address + e7501_mode_bits);
904
905 // Set the start of the next DIMM
906 dimm_start_64M_multiple =
907 dimm_end_64M_multiple;
908 }
909 }
910 }
911}
912
913/**
914 * Set the mode register of all DIMMs.
915 *
916 * The proper CAS# latency setting is added to the mode bits specified
917 * by the caller.
918 *
919 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
920 * register value in JEDEC format.
921 */
922static void set_ram_mode(uint16_t jedec_mode_bits)
923{
924 ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK));
925
926 uint32_t dram_cas_latency =
927 pci_read_config32(PCI_DEV(0, 0, 0), DRT) & DRT_CAS_MASK;
928
929 switch (dram_cas_latency) {
930 case DRT_CAS_2_5:
931 jedec_mode_bits |= SDRAM_CAS_2_5;
932 break;
933
934 case DRT_CAS_2_0:
935 jedec_mode_bits |= SDRAM_CAS_2_0;
936 break;
937
938 default:
939 BUG();
940 break;
941 }
942
943 do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits);
944}
945
946/*-----------------------------------------------------------------------------
947DIMM-independant configuration functions:
948-----------------------------------------------------------------------------*/
949
950/**
951 * Configure the E7501's DRAM Row Boundary (DRB) registers for the memory
952 * present in the specified DIMM.
953 *
954 * @param dimm_log2_num_bits Specifies log2(number of bits) for each side of
955 * the DIMM.
956 * @param total_dram_64M_multiple Total DRAM in the system (as a multiple of
957 * 64 MB) for DIMMs < dimm_index.
958 * @param dimm_index Which DIMM pair is being processed
959 * (0..MAX_DIMM_SOCKETS_PER_CHANNEL).
960 * @return New multiple of 64 MB total DRAM in the system.
961 */
962static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index)
963{
964 int i;
965
966 ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL);
967
968 // DIMM sides must be at least 32 MB
969 ASSERT(dimm_log2_num_bits.side1 >= 28);
970 ASSERT((dimm_log2_num_bits.side2 == 0)
971 || (dimm_log2_num_bits.side2 >= 28));
972
973 // In dual-channel mode, we are called only once for each pair of DIMMs.
974 // Each time we process twice the capacity of a single DIMM.
975
976 // Convert single DIMM capacity to paired DIMM capacity
977 // (multiply by two ==> add 1 to log2)
978 dimm_log2_num_bits.side1++;
979 if (dimm_log2_num_bits.side2 > 0)
980 dimm_log2_num_bits.side2++;
981
982 // Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB)
983 // to the total capacity of the system
984 // NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29
985
986 total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29));
987
988 // Configure the boundary address for the row on side 1
989 pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + (dimm_index << 1),
990 total_dram_64M_multiple);
991
992 // If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair
993 // (as a multiple of 64 MB) to the total capacity of the system
994 if (dimm_log2_num_bits.side2 >= 29)
995 total_dram_64M_multiple +=
996 (1 << (dimm_log2_num_bits.side2 - 29));
997
998 // Configure the boundary address for the row (if any) on side 2
999 pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_1 + (dimm_index << 1),
1000 total_dram_64M_multiple);
1001
1002 // Update boundaries for rows subsequent to these.
1003 // These settings will be overridden by a subsequent call if a populated physical slot exists
1004
1005 for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1006 pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + (i << 1),
1007 total_dram_64M_multiple);
1008 pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_1 + (i << 1),
1009 total_dram_64M_multiple);
1010 }
1011
1012 return total_dram_64M_multiple;
1013}
1014
1015/**
1016 * Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM).
1017 *
1018 * If necessary, set up a remap window so we don't waste DRAM that ordinarily
1019 * would lie behind addresses reserved for memory-mapped I/O.
1020 *
1021 * @param ctrl PCI addresses of memory controller functions, and SMBus
1022 * addresses of DIMM slots on the mainboard.
1023 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
1024 */
1025static void configure_e7501_ram_addresses(const struct mem_controller
1026 *ctrl, uint8_t dimm_mask)
1027{
1028 int i;
1029 uint8_t total_dram_64M_multiple = 0;
1030
1031 // Configure the E7501's DRAM row boundaries
1032 // Start by zeroing out the temporary initial configuration
1033 pci_write_config32(PCI_DEV(0, 0, 0), DRB_ROW_0, 0);
1034 pci_write_config32(PCI_DEV(0, 0, 0), DRB_ROW_4, 0);
1035
1036 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1037
1038 uint16_t dimm_socket_address = ctrl->channel0[i];
1039 struct dimm_size sz;
1040
1041 if (!(dimm_mask & (1 << i)))
1042 continue; // This DIMM not present
1043
1044 sz = spd_get_dimm_size(dimm_socket_address);
1045
1046 RAM_DEBUG_MESSAGE("dimm size =");
1047 RAM_DEBUG_HEX32((u32)sz.side1);
1048 RAM_DEBUG_MESSAGE(" ");
1049 RAM_DEBUG_HEX32((u32)sz.side2);
1050 RAM_DEBUG_MESSAGE("\n");
1051
1052 if (sz.side1 == 0)
1053 die("Bad SPD value\n");
1054
1055 total_dram_64M_multiple =
1056 configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i);
1057 }
1058
1059 // Configure the Top Of Low Memory (TOLM) in the E7501
1060 // This address must be a multiple of 128 MB that is less than 4 GB.
1061 // NOTE: 16-bit wide TOLM register stores only the highest 5 bits of a 32-bit address
1062 // in the highest 5 bits.
1063
1064 // We set TOLM to the smaller of 0xC0000000 (3 GB) or the total DRAM in the system.
1065 // This reserves addresses from 0xC0000000 - 0xFFFFFFFF for non-DRAM purposes
1066 // such as flash and memory-mapped I/O.
1067
1068 // If there is more than 3 GB of DRAM, we define a remap window which
1069 // makes the DRAM "behind" the reserved region available above the top of physical
1070 // memory.
1071
1072 // NOTE: 0xC0000000 / (64 MB) == 0x30
1073
1074 if (total_dram_64M_multiple <= 0x30) {
1075
1076 // <= 3 GB total RAM
1077
1078 /* I should really adjust all of this in C after I have resources
1079 * to all of the pci devices.
1080 */
1081
1082 // Round up to 128MB granularity
1083 // SJM: Is "missing" 64 MB of memory a potential issue? Should this round down?
1084
1085 uint8_t total_dram_128M_multiple =
1086 (total_dram_64M_multiple + 1) >> 1;
1087
1088 // Convert to high 16 bits of address
1089 uint16_t top_of_low_memory =
1090 total_dram_128M_multiple << 11;
1091
1092 pci_write_config16(PCI_DEV(0, 0, 0), TOLM,
1093 top_of_low_memory);
1094
1095 } else {
1096
1097 // > 3 GB total RAM
1098
1099 // Set defaults for > 4 GB DRAM, i.e. remap a 1 GB (= 0x10 * 64 MB) range of memory
1100 uint16_t remap_base = total_dram_64M_multiple; // A[25:0] == 0
1101 uint16_t remap_limit = total_dram_64M_multiple + 0x10 - 1; // A[25:0] == 0xF
1102
1103 // Put TOLM at 3 GB
1104
1105 pci_write_config16(PCI_DEV(0, 0, 0), TOLM, 0xc000);
1106
1107 // Define a remap window to make the RAM that would appear from 3 GB - 4 GB
1108 // visible just beyond 4 GB or the end of physical memory, whichever is larger
1109 // NOTE: 16-bit wide REMAP registers store only the highest 10 bits of a 36-bit address,
1110 // (i.e. a multiple of 64 MB) in the lowest 10 bits.
1111 // NOTE: 0x100000000 / (64 MB) == 0x40
1112
1113 if (total_dram_64M_multiple < 0x40) {
1114 remap_base = 0x40; // 0x100000000
1115 remap_limit =
1116 0x40 + (total_dram_64M_multiple - 0x30) - 1;
1117 }
1118
1119 pci_write_config16(PCI_DEV(0, 0, 0), REMAPBASE,
1120 remap_base);
1121 pci_write_config16(PCI_DEV(0, 0, 0), REMAPLIMIT,
1122 remap_limit);
1123 }
1124}
1125
1126/**
1127 * If we're configured to use ECC, initialize the SDRAM and clear the E7501's
1128 * ECC error flags.
1129 */
1130static void initialize_ecc(void)
1131{
1132 uint32_t dram_controller_mode;
1133
1134 /* Test to see if ECC support is enabled */
1135 dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
1136 dram_controller_mode >>= 20;
1137 dram_controller_mode &= 3;
1138 if (dram_controller_mode == 2) {
1139
1140 uint8_t byte;
1141
1142 RAM_DEBUG_MESSAGE("Initializing ECC state...\n");
1143 /* Initialize ECC bits , use ECC zero mode (new to 7501) */
1144 pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 0x06);
1145 pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 0x07);
1146
1147 // Wait for scrub cycle to complete
1148 do {
1149 byte =
1150 pci_read_config8(PCI_DEV(0, 0, 0), MCHCFGNS);
1151 } while ((byte & 0x08) == 0);
1152
1153 pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, byte & 0xfc);
1154 RAM_DEBUG_MESSAGE("ECC state initialized.\n");
1155
1156 /* Clear the ECC error bits */
1157 pci_write_config8(PCI_DEV(0, 0, 1), DRAM_FERR, 0x03);
1158 pci_write_config8(PCI_DEV(0, 0, 1), DRAM_NERR, 0x03);
1159
1160 // Clear DRAM Interface error bits (write-one-clear)
1161 pci_write_config32(PCI_DEV(0, 0, 1), FERR_GLOBAL, 1 << 18);
1162 pci_write_config32(PCI_DEV(0, 0, 1), NERR_GLOBAL, 1 << 18);
1163
1164 // Start normal ECC scrub
1165 pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 5);
1166 }
1167
1168}
1169
1170/**
1171 * Program the DRAM Timing register (DRT) of the E7501 (except for CAS#
1172 * latency, which is assumed to have been programmed already), based on the
1173 * parameters of the various installed DIMMs.
1174 *
1175 * @param ctrl PCI addresses of memory controller functions, and SMBus
1176 * addresses of DIMM slots on the mainboard.
1177 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
1178 */
1179static void configure_e7501_dram_timing(const struct mem_controller *ctrl,
1180 uint8_t dimm_mask)
1181{
1182 int i;
1183 uint32_t dram_timing;
1184 int value;
1185 uint8_t slowest_row_precharge = 0;
1186 uint8_t slowest_ras_cas_delay = 0;
1187 uint8_t slowest_active_to_precharge_delay = 0;
1188 uint32_t current_cas_latency =
1189 pci_read_config32(PCI_DEV(0, 0, 0), DRT) & DRT_CAS_MASK;
1190
1191 // CAS# latency must be programmed beforehand
1192 ASSERT((current_cas_latency == DRT_CAS_2_0)
1193 || (current_cas_latency == DRT_CAS_2_5));
1194
1195 // Each timing parameter is determined by the slowest DIMM
1196
1197 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1198 uint16_t dimm_socket_address;
1199
1200 if (!(dimm_mask & (1 << i)))
1201 continue; // This DIMM not present
1202
1203 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1204 dimm_socket_address = ctrl->channel0[i];
1205 else
1206 dimm_socket_address =
1207 ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
1208
1209 value =
1210 spd_read_byte(dimm_socket_address,
1211 SPD_MIN_ROW_PRECHARGE_TIME);
1212 if (value < 0)
1213 goto hw_err;
1214 if (value > slowest_row_precharge)
1215 slowest_row_precharge = value;
1216
1217 value =
1218 spd_read_byte(dimm_socket_address,
1219 SPD_MIN_RAS_TO_CAS_DELAY);
1220 if (value < 0)
1221 goto hw_err;
1222 if (value > slowest_ras_cas_delay)
1223 slowest_ras_cas_delay = value;
1224
1225 value =
1226 spd_read_byte(dimm_socket_address,
1227 SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
1228 if (value < 0)
1229 goto hw_err;
1230 if (value > slowest_active_to_precharge_delay)
1231 slowest_active_to_precharge_delay = value;
1232 }
1233
1234 // NOTE for timing parameters:
1235 // At 133 MHz, 1 clock == 7.52 ns
1236
1237 /* Read the initial state */
1238 dram_timing = pci_read_config32(PCI_DEV(0, 0, 0), DRT);
1239
1240 /* Trp */
1241
1242 // E7501 supports only 2 or 3 clocks for tRP
1243 if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
1244 die("unsupported DIMM tRP"); // > 22.5 ns: 4 or more clocks
1245 else if (slowest_row_precharge > (15 << 2))
1246 dram_timing &= ~(1 << 0); // > 15.0 ns: 3 clocks
1247 else
1248 dram_timing |= (1 << 0); // <= 15.0 ns: 2 clocks
1249
1250 /* Trcd */
1251
1252 // E7501 supports only 2 or 3 clocks for tRCD
1253 // Use the same value for both read & write
1254 dram_timing &= ~((1 << 3) | (3 << 1));
1255 if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
1256 die("unsupported DIMM tRCD"); // > 22.5 ns: 4 or more clocks
1257 else if (slowest_ras_cas_delay > (15 << 2))
1258 dram_timing |= (2 << 1); // > 15.0 ns: 3 clocks
1259 else
1260 dram_timing |= ((1 << 3) | (3 << 1)); // <= 15.0 ns: 2 clocks
1261
1262 /* Tras */
1263
1264 // E7501 supports only 5, 6, or 7 clocks for tRAS
1265 // 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns
1266 dram_timing &= ~(3 << 9);
1267
1268 if (slowest_active_to_precharge_delay > 52)
1269 die("unsupported DIMM tRAS"); // > 52 ns: 8 or more clocks
1270 else if (slowest_active_to_precharge_delay > 45)
1271 dram_timing |= (0 << 9); // 46-52 ns: 7 clocks
1272 else if (slowest_active_to_precharge_delay > 37)
1273 dram_timing |= (1 << 9); // 38-45 ns: 6 clocks
1274 else
1275 dram_timing |= (2 << 9); // < 38 ns: 5 clocks
1276
1277 /* Trd */
1278
1279 /* Set to a 7 clock read delay. This is for 133Mhz
1280 * with a CAS latency of 2.5 if 2.0 a 6 clock
1281 * delay is good */
1282
1283 dram_timing &= ~(7 << 24); // 7 clocks
1284 if (current_cas_latency == DRT_CAS_2_0)
1285 dram_timing |= (1 << 24); // 6 clocks
1286
1287 /*
1288 * Back to Back Read-Write Turn Around
1289 */
1290 /* Set to a 5 clock back to back read to write turn around.
1291 * 4 is a good delay if the CAS latency is 2.0 */
1292
1293 dram_timing &= ~(1 << 28); // 5 clocks
1294 if (current_cas_latency == DRT_CAS_2_0)
1295 dram_timing |= (1 << 28); // 4 clocks
1296
1297 pci_write_config32(PCI_DEV(0, 0, 0), DRT, dram_timing);
1298
1299 return;
1300
1301 hw_err:
1302 die(SPD_ERROR);
1303}
1304
1305/**
1306 * Determine the shortest CAS# latency that the E7501 and all DIMMs have in
1307 * common, and program the E7501 to use it.
1308 *
1309 * @param ctrl PCI addresses of memory controller functions, and SMBus
1310 * addresses of DIMM slots on the mainboard.
1311 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1312 */
1313static void configure_e7501_cas_latency(const struct mem_controller *ctrl,
1314 uint8_t dimm_mask)
1315{
1316 int i;
1317 int value;
1318 uint32_t dram_timing;
1319 uint16_t maybe_dram_read_timing;
1320 uint32_t dword;
1321
1322 // CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
1323 // NOTE: E7501 supports only 2.0 and 2.5
1324 uint32_t system_compatible_cas_latencies =
1325 SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
1326 uint32_t current_cas_latency;
1327 uint32_t dimm_compatible_cas_latencies;
1328
1329 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1330
1331 uint16_t dimm_socket_address;
1332
1333 if (!(dimm_mask & (1 << i)))
1334 continue; // This DIMM not usable
1335
1336 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1337 dimm_socket_address = ctrl->channel0[i];
1338 else
1339 dimm_socket_address =
1340 ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
1341
1342 value =
1343 spd_read_byte(dimm_socket_address,
1344 SPD_ACCEPTABLE_CAS_LATENCIES);
1345 if (value < 0)
1346 goto hw_err;
1347
1348 dimm_compatible_cas_latencies = value & 0x7f; // Start with all supported by DIMM
1349 current_cas_latency = 1 << log2(dimm_compatible_cas_latencies); // Max supported by DIMM
1350
1351 // Can we support the highest CAS# latency?
1352
1353 value =
1354 spd_read_byte(dimm_socket_address,
1355 SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
1356 if (value < 0)
1357 goto hw_err;
1358
1359 // NOTE: At 133 MHz, 1 clock == 7.52 ns
1360 if (value > 0x75) {
1361 // Our bus is too fast for this CAS# latency
1362 // Remove it from the bitmask of those supported by the DIMM that are compatible
1363 dimm_compatible_cas_latencies &= ~current_cas_latency;
1364 }
1365 // Can we support the next-highest CAS# latency (max - 0.5)?
1366
1367 current_cas_latency >>= 1;
1368 if (current_cas_latency != 0) {
1369 value =
1370 spd_read_byte(dimm_socket_address,
1371 SPD_SDRAM_CYCLE_TIME_2ND);
1372 if (value < 0)
1373 goto hw_err;
1374 if (value > 0x75)
1375 dimm_compatible_cas_latencies &=
1376 ~current_cas_latency;
1377 }
1378 // Can we support the next-highest CAS# latency (max - 1.0)?
1379 current_cas_latency >>= 1;
1380 if (current_cas_latency != 0) {
1381 value =
1382 spd_read_byte(dimm_socket_address,
1383 SPD_SDRAM_CYCLE_TIME_3RD);
1384 if (value < 0)
1385 goto hw_err;
1386 if (value > 0x75)
1387 dimm_compatible_cas_latencies &=
1388 ~current_cas_latency;
1389 }
1390 // Restrict the system to CAS# latencies compatible with this DIMM
1391 system_compatible_cas_latencies &=
1392 dimm_compatible_cas_latencies;
1393
1394 /* go to the next DIMM */
1395 }
1396
1397 /* After all of the arduous calculation setup with the fastest
1398 * cas latency I can use.
1399 */
1400
1401 dram_timing = pci_read_config32(PCI_DEV(0, 0, 0), DRT);
1402 dram_timing &= ~(DRT_CAS_MASK);
1403
1404 maybe_dram_read_timing =
1405 pci_read_config16(PCI_DEV(0, 0, 0), MAYBE_DRDCTL);
1406 maybe_dram_read_timing &= 0xF00C;
1407
1408 if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
1409 dram_timing |= DRT_CAS_2_0;
1410 maybe_dram_read_timing |= 0xBB1;
1411 } else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {
1412
1413 uint32_t dram_row_attributes =
1414 pci_read_config32(PCI_DEV(0, 0, 0), DRA);
1415
1416 dram_timing |= DRT_CAS_2_5;
1417
1418 // At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly
1419 // different value if all DIMM slots are populated
1420
1421 if ((dram_row_attributes & 0xff)
1422 && (dram_row_attributes & 0xff00)
1423 && (dram_row_attributes & 0xff0000)
1424 && (dram_row_attributes & 0xff000000)) {
1425
1426 // All slots populated
1427 maybe_dram_read_timing |= 0x0882;
1428 } else {
1429 // Some unpopulated slots
1430 maybe_dram_read_timing |= 0x0662;
1431 }
1432 } else
1433 die("No CAS# latencies compatible with all DIMMs!!\n");
1434
1435 pci_write_config32(PCI_DEV(0, 0, 0), DRT, dram_timing);
1436
1437 /* set master DLL reset */
1438 dword = pci_read_config32(PCI_DEV(0, 0, 0), 0x88);
1439 dword |= (1 << 26);
1440 pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
1441
1442 dword &= 0x0c0007ff; /* patch try register 88 is undocumented tnz */
1443 dword |= 0xd2109800;
1444
1445 pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
1446
1447 pci_write_config16(PCI_DEV(0, 0, 0), MAYBE_DRDCTL,
1448 maybe_dram_read_timing);
1449
1450 dword = pci_read_config32(PCI_DEV(0, 0, 0), 0x88); /* reset master DLL reset */
1451 dword &= ~(1 << 26);
1452 pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
1453
1454 return;
1455
1456 hw_err:
1457 die(SPD_ERROR);
1458}
1459
1460/**
1461 * Configure the refresh interval so that we refresh no more often than
1462 * required by the "most needy" DIMM. Also disable ECC if any of the DIMMs
1463 * don't support it.
1464 *
1465 * @param ctrl PCI addresses of memory controller functions, and SMBus
1466 * addresses of DIMM slots on the mainboard.
1467 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1468 */
1469static void configure_e7501_dram_controller_mode(const struct
1470 mem_controller *ctrl,
1471 uint8_t dimm_mask)
1472{
1473 int i;
1474
1475 // Initial settings
1476 uint32_t controller_mode =
1477 pci_read_config32(PCI_DEV(0, 0, 0), DRC);
1478 uint32_t system_refresh_mode = (controller_mode >> 8) & 7;
1479
1480 // Code below assumes that most aggressive settings are in
1481 // force when we are called, either via E7501 reset defaults
1482 // or by sdram_set_registers():
1483 // - ECC enabled
1484 // - No refresh
1485
1486 ASSERT((controller_mode & (3 << 20)) == (2 << 20)); // ECC
1487 ASSERT(!(controller_mode & (7 << 8))); // Refresh
1488
1489 /* Walk through _all_ dimms and find the least-common denominator for:
1490 * - ECC support
1491 * - refresh rates
1492 */
1493
1494 for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
1495
1496 uint32_t dimm_refresh_mode;
1497 int value;
1498 uint16_t dimm_socket_address;
1499
1500 if (!(dimm_mask & (1 << i))) {
1501 continue; // This DIMM not usable
1502 }
1503
1504 if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
1505 dimm_socket_address = ctrl->channel0[i];
1506 else
1507 dimm_socket_address =
1508 ctrl->channel1[i -
1509 MAX_DIMM_SOCKETS_PER_CHANNEL];
1510
1511 // Disable ECC mode if any one of the DIMMs does not support ECC
1512 // SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported.
1513
1514 value =
1515 spd_read_byte(dimm_socket_address,
1516 SPD_DIMM_CONFIG_TYPE);
1517 die_on_spd_error(value);
1518 if (value != ERROR_SCHEME_ECC) {
1519 controller_mode &= ~(3 << 20);
1520 }
1521
1522 value = spd_read_byte(dimm_socket_address, SPD_REFRESH);
1523 die_on_spd_error(value);
1524 value &= 0x7f; // Mask off self-refresh bit
1525 if (value > MAX_SPD_REFRESH_RATE) {
1526 print_err("unsupported refresh rate\n");
1527 continue;
1528 }
1529 // Get the appropriate E7501 refresh mode for this DIMM
1530 dimm_refresh_mode = refresh_rate_map[value];
1531 if (dimm_refresh_mode > 7) {
1532 print_err("unsupported refresh rate\n");
1533 continue;
1534 }
1535 // If this DIMM requires more frequent refresh than others,
1536 // update the system setting
1537 if (refresh_frequency[dimm_refresh_mode] >
1538 refresh_frequency[system_refresh_mode])
1539 system_refresh_mode = dimm_refresh_mode;
1540
1541#ifdef SUSPICIOUS_LOOKING_CODE
1542// SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller
1543// than the clock period of the memory controller. Also, no other northbridge
1544// looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME.
1545
1546 // Switch to 2 clocks for address/command if required by any one of the DIMMs
1547 // NOTE: At 133 MHz, 1 clock == 7.52 ns
1548 value =
1549 spd_read_byte(dimm_socket_address,
1550 SPD_CMD_SIGNAL_INPUT_HOLD_TIME);
1551 die_on_spd_error(value);
1552 if (value >= 0xa0) { /* At 133MHz this constant should be 0x75 */
1553 controller_mode &= ~(1 << 16); /* Use two clock cyles instead of one */
1554 }
1555#endif
1556
1557 /* go to the next DIMM */
1558 }
1559
1560 controller_mode |= (system_refresh_mode << 8);
1561
1562 // Configure the E7501
1563 pci_write_config32(PCI_DEV(0, 0, 0), DRC, controller_mode);
1564}
1565
1566/**
1567 * Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM
1568 * parameters read via SPD. This tells the controller the width of the SDRAM
1569 * chips on each DIMM side (x4 or x8) and the page size of each DIMM side
1570 * (4, 8, 16, or 32 KB).
1571 *
1572 * @param ctrl PCI addresses of memory controller functions, and SMBus
1573 * addresses of DIMM slots on the mainboard.
1574 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
1575 */
1576static void configure_e7501_row_attributes(const struct mem_controller
1577 *ctrl, uint8_t dimm_mask)
1578{
1579 int i;
1580 uint32_t row_attributes = 0;
1581
1582 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1583
1584 uint16_t dimm_socket_address = ctrl->channel0[i];
1585 struct dimm_size page_size;
1586 struct dimm_size sdram_width;
1587
1588 if (!(dimm_mask & (1 << i)))
1589 continue; // This DIMM not usable
1590
1591 // Get the relevant parameters via SPD
1592 page_size = sdram_spd_get_page_size(dimm_socket_address);
1593 sdram_width = sdram_spd_get_width(dimm_socket_address);
1594
1595 // Update the DRAM Row Attributes.
1596 // Page size is encoded as log2(page size in bits) - log2(8 Kb)
1597 // NOTE: 8 Kb = 2^13
1598 row_attributes |= (page_size.side1 - 13) << (i << 3); // Side 1 of each DIMM is an EVEN row
1599
1600 if (sdram_width.side2 > 0)
1601 row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4); // Side 2 is ODD
1602
1603 // Set x4 flags if appropriate
1604 if (sdram_width.side1 == 4) {
1605 row_attributes |= 0x08 << (i << 3);
1606 }
1607
1608 if (sdram_width.side2 == 4) {
1609 row_attributes |= 0x08 << ((i << 3) + 4);
1610 }
1611
1612 /* go to the next DIMM */
1613 }
1614
1615 /* Write the new row attributes register */
1616 pci_write_config32(PCI_DEV(0, 0, 0), DRA, row_attributes);
1617}
1618
1619/*
1620 * Enable clock signals for populated DIMM sockets and disable them for
1621 * unpopulated sockets (to reduce EMI).
1622 *
1623 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
1624 */
1625static void enable_e7501_clocks(uint8_t dimm_mask)
1626{
1627 int i;
1628 uint8_t clock_disable = pci_read_config8(PCI_DEV(0, 0, 0), CKDIS);
1629
1630 for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
1631
1632 uint8_t socket_mask = 1 << i;
1633
1634 if (dimm_mask & socket_mask)
1635 clock_disable &= ~socket_mask; // DIMM present, enable clock
1636 else
1637 clock_disable |= socket_mask; // DIMM absent, disable clock
1638 }
1639
1640 pci_write_config8(PCI_DEV(0, 0, 0), CKDIS, clock_disable);
1641}
1642
1643/* DIMM-dedependent configuration functions */
1644
1645/**
1646 * DDR Receive FIFO RE-Sync (?)
1647 */
1648static void RAM_RESET_DDR_PTR(void)
1649{
1650 uint8_t byte;
1651 byte = pci_read_config8(PCI_DEV(0, 0, 0), 0x88);
1652 byte |= (1 << 4);
1653 pci_write_config8(PCI_DEV(0, 0, 0), 0x88, byte);
1654
1655 byte = pci_read_config8(PCI_DEV(0, 0, 0), 0x88);
1656 byte &= ~(1 << 4);
1657 pci_write_config8(PCI_DEV(0, 0, 0), 0x88, byte);
1658}
1659
1660/**
1661 * Set E7501 registers that are either independent of DIMM specifics, or
1662 * establish default settings that will be overridden when we learn the
1663 * specifics.
1664 *
1665 * This sets PCI configuration registers to known good values based on the
1666 * table 'constant_register_values', which are a triple of configuration
1667 * register offset, mask, and bits to set.
1668 */
1669static void ram_set_d0f0_regs(void)
1670{
1671 int i;
1672 int num_values = ARRAY_SIZE(constant_register_values);
1673
1674 ASSERT((num_values % 3) == 0); // Bad table?
1675
1676 for (i = 0; i < num_values; i += 3) {
1677
1678 uint32_t register_offset = constant_register_values[i];
1679 uint32_t bits_to_mask = constant_register_values[i + 1];
1680 uint32_t bits_to_set = constant_register_values[i + 2];
1681 uint32_t register_value;
1682
1683 // It's theoretically possible to set values for something other than D0:F0,
1684 // but it's not typically done here
1685 ASSERT(!(register_offset & 0xFFFFFF00));
1686
1687 // bits_to_mask and bits_to_set should not reference the same bits
1688 // Again, not strictly an error, but flagged as a potential bug
1689 ASSERT((bits_to_mask & bits_to_set) == 0);
1690
1691 register_value =
1692 pci_read_config32(PCI_DEV(0, 0, 0), register_offset);
1693 register_value &= bits_to_mask;
1694 register_value |= bits_to_set;
1695
1696 pci_write_config32(PCI_DEV(0, 0, 0), register_offset,
1697 register_value);
1698 }
1699}
1700
1701/**
1702 * Copy 64 bytes from one location to another.
1703 *
1704 * @param src_addr TODO
1705 * @param dst_addr TODO
1706 */
1707static void write_8dwords(const uint32_t *src_addr, uint32_t dst_addr)
1708{
1709 int i;
1710 for (i = 0; i < 8; i++) {
1711 write32(dst_addr, *src_addr);
1712 src_addr++;
1713 dst_addr += sizeof(uint32_t);
1714 }
1715}
1716
1717/**
1718 * Set the E7501's (undocumented) RCOMP registers.
1719 *
1720 * Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual,
1721 * RCOMP registers appear to affect drive strength, pullup/pulldown offset,
1722 * and slew rate of various signal groups.
1723 *
1724 * Comments below are conjecture based on apparent similarity between the
1725 * E7501 and these two chips.
1726 */
1727static void ram_set_rcomp_regs(void)
1728{
1729 uint32_t dword;
1730 uint8_t maybe_strength_control;
1731
1732 RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n");
1733
1734 /*enable access to the rcomp bar */
1735 dword = pci_read_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST);
1736 dword |= (1 << 22);
1737 pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST, dword);
1738
1739 // Set the RCOMP MMIO base address
1740 pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_SMRBASE, RCOMP_MMIO);
1741
1742 // Block RCOMP updates while we configure the registers
1743 dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
1744 dword |= (1 << 9);
1745 write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
1746
1747 /* Begin to write the RCOMP registers */
1748
1749 // Set CMD and DQ/DQS strength to 2x (?)
1750 maybe_strength_control = read8(RCOMP_MMIO + MAYBE_DQCMDSTR) & 0x88;
1751 maybe_strength_control |= 0x44;
1752 write8(RCOMP_MMIO + MAYBE_DQCMDSTR, maybe_strength_control);
1753
1754 write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x80);
1755 write16(RCOMP_MMIO + 0x42, 0);
1756
1757 write_8dwords(maybe_1x_slew_table, RCOMP_MMIO + 0x60);
1758
1759 // NOTE: some factory BIOS set 0x9088 here. Seems to work either way.
1760 write16(RCOMP_MMIO + 0x40, 0);
1761
1762 // Set RCVEnOut# strength to 2x (?)
1763 maybe_strength_control = read8(RCOMP_MMIO + MAYBE_RCVENSTR) & 0xF8;
1764 maybe_strength_control |= 4;
1765 write8(RCOMP_MMIO + MAYBE_RCVENSTR, maybe_strength_control);
1766
1767 write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x1c0);
1768 write16(RCOMP_MMIO + 0x50, 0);
1769
1770 // Set CS# strength for x4 SDRAM to 2x (?)
1771 maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CSBSTR) & 0xF8;
1772 maybe_strength_control |= 4;
1773 write8(RCOMP_MMIO + MAYBE_CSBSTR, maybe_strength_control);
1774
1775 write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x140);
1776 write16(RCOMP_MMIO + 0x48, 0);
1777
1778 // Set CKE strength for x4 SDRAM to 2x (?)
1779 maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CKESTR) & 0xF8;
1780 maybe_strength_control |= 4;
1781 write8(RCOMP_MMIO + MAYBE_CKESTR, maybe_strength_control);
1782
1783 write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0xa0);
1784 write16(RCOMP_MMIO + 0x44, 0);
1785
1786 // Set CK strength for x4 SDRAM to 1x (?)
1787 maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CKSTR) & 0xF8;
1788 maybe_strength_control |= 1;
1789 write8(RCOMP_MMIO + MAYBE_CKSTR, maybe_strength_control);
1790
1791 write_8dwords(maybe_pull_updown_offset_table, RCOMP_MMIO + 0x180);
1792 write16(RCOMP_MMIO + 0x4c, 0);
1793
1794 write8(RCOMP_MMIO + 0x2c, 0xff);
1795
1796 // Set the digital filter length to 8 (?)
1797 dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
1798
1799 // NOTE: Some factory BIOS don't do this.
1800 // Doesn't seem to matter either way.
1801 dword &= ~2;
1802
1803 dword |= 1;
1804 write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
1805
1806 /* Wait 40 usec */
1807 SLOW_DOWN_IO;
1808
1809 /* unblock updates */
1810 dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
1811 dword &= ~(1 << 9);
1812 write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
1813
1814 // Force a RCOMP measurement cycle?
1815 dword |= (1 << 8);
1816 write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
1817 dword &= ~(1 << 8);
1818 write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
1819
1820 /* Wait 40 usec */
1821 SLOW_DOWN_IO;
1822
1823 /*disable access to the rcomp bar */
1824 dword = pci_read_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST);
1825 dword &= ~(1 << 22);
1826 pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST, dword);
1827
1828}
1829
1830/*-----------------------------------------------------------------------------
1831Public interface:
1832-----------------------------------------------------------------------------*/
1833
1834/**
1835 * Go through the JEDEC initialization sequence for all DIMMs, then enable
1836 * refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up
1837 * and running.
1838 *
1839 * @param controllers Not used.
1840 * @param ctrl PCI addresses of memory controller functions, and SMBus
1841 * addresses of DIMM slots on the mainboard.
1842 */
1843static void sdram_enable(int controllers,
1844 const struct mem_controller *ctrl)
1845{
1846 uint8_t dimm_mask = pci_read_config16(PCI_DEV(0, 0, 0), SKPD);
1847 uint32_t dram_controller_mode;
1848
1849 if (dimm_mask == 0)
1850 return;
1851
1852 /* 1 & 2 Power up and start clocks */
1853 RAM_DEBUG_MESSAGE("Ram Enable 1\n");
1854 RAM_DEBUG_MESSAGE("Ram Enable 2\n");
1855
1856 /* A 200us delay is needed */
1857 DO_DELAY; EXTRA_DELAY;
1858
1859 /* 3. Apply NOP */
1860 RAM_DEBUG_MESSAGE("Ram Enable 3\n");
1861 do_ram_command(RAM_COMMAND_NOP, 0);
1862 EXTRA_DELAY;
1863
1864 /* 4 Precharge all */
1865 RAM_DEBUG_MESSAGE("Ram Enable 4\n");
1866 do_ram_command(RAM_COMMAND_PRECHARGE, 0);
1867 EXTRA_DELAY;
1868 /* wait until the all banks idle state... */
1869
1870 /* 5. Issue EMRS to enable DLL */
1871 RAM_DEBUG_MESSAGE("Ram Enable 5\n");
1872 do_ram_command(RAM_COMMAND_EMRS,
1873 SDRAM_EXTMODE_DLL_ENABLE |
1874 SDRAM_EXTMODE_DRIVE_NORMAL);
1875 EXTRA_DELAY;
1876
1877 /* 6. Reset DLL */
1878 RAM_DEBUG_MESSAGE("Ram Enable 6\n");
1879 set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET);
1880 EXTRA_DELAY;
1881 /* Ensure a 200us delay between the DLL reset in step 6 and the final
1882 * mode register set in step 9.
1883 * Infineon needs this before any other command is sent to the ram.
1884 */
1885 DO_DELAY; EXTRA_DELAY;
1886
1887 /* 7 Precharge all */
1888 RAM_DEBUG_MESSAGE("Ram Enable 7\n");
1889 do_ram_command(RAM_COMMAND_PRECHARGE, 0);
1890 EXTRA_DELAY;
1891
1892 /* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
1893 RAM_DEBUG_MESSAGE("Ram Enable 8\n");
1894 do_ram_command(RAM_COMMAND_CBR, 0);
1895 EXTRA_DELAY;
1896 do_ram_command(RAM_COMMAND_CBR, 0);
1897 EXTRA_DELAY;
1898
1899 /* And for good luck 6 more CBRs */
1900 do_ram_command(RAM_COMMAND_CBR, 0);
1901 EXTRA_DELAY;
1902 do_ram_command(RAM_COMMAND_CBR, 0);
1903 EXTRA_DELAY;
1904 do_ram_command(RAM_COMMAND_CBR, 0);
1905 EXTRA_DELAY;
1906 do_ram_command(RAM_COMMAND_CBR, 0);
1907 EXTRA_DELAY;
1908 do_ram_command(RAM_COMMAND_CBR, 0);
1909 EXTRA_DELAY;
1910 do_ram_command(RAM_COMMAND_CBR, 0);
1911 EXTRA_DELAY;
1912
1913 /* 9 mode register set */
1914 RAM_DEBUG_MESSAGE("Ram Enable 9\n");
1915 set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL);
1916 EXTRA_DELAY;
1917
1918 /* 10 DDR Receive FIFO RE-Sync */
1919 RAM_DEBUG_MESSAGE("Ram Enable 10\n");
1920 RAM_RESET_DDR_PTR();
1921 EXTRA_DELAY;
1922
1923 /* 11 normal operation */
1924 RAM_DEBUG_MESSAGE("Ram Enable 11\n");
1925 do_ram_command(RAM_COMMAND_NORMAL, 0);
1926 EXTRA_DELAY;
1927
1928 // Reconfigure the row boundaries and Top of Low Memory
1929 // to match the true size of the DIMMs
1930 configure_e7501_ram_addresses(ctrl, dimm_mask);
1931
1932 /* Finally enable refresh */
1933 dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
1934 dram_controller_mode |= (1 << 29);
1935 pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
1936 EXTRA_DELAY;
1937 initialize_ecc();
1938
1939 dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC); /* FCS_EN */
1940 dram_controller_mode |= (1 << 17); // NOTE: undocumented reserved bit
1941 pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
1942
1943 RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n");
1944 DUMPNORTH();
1945}
1946
1947/**
1948 * Configure SDRAM controller parameters that depend on characteristics of the
1949 * DIMMs installed in the system. These characteristics are read from the
1950 * DIMMs via the standard Serial Presence Detect (SPD) interface.
1951 *
1952 * @param ctrl PCI addresses of memory controller functions, and SMBus
1953 * addresses of DIMM slots on the mainboard.
1954 */
1955static void sdram_set_spd_registers(const struct mem_controller *ctrl)
1956{
1957 uint8_t dimm_mask;
1958
1959 RAM_DEBUG_MESSAGE("Reading SPD data...\n");
1960
1961 dimm_mask = spd_get_supported_dimms(ctrl);
1962
1963 if (dimm_mask == 0) {
1964 print_debug("No usable memory for this controller\n");
1965 } else {
1966 enable_e7501_clocks(dimm_mask);
1967
1968 RAM_DEBUG_MESSAGE("setting based on SPD data...\n");
1969
1970 configure_e7501_row_attributes(ctrl, dimm_mask);
1971 configure_e7501_dram_controller_mode(ctrl, dimm_mask);
1972 configure_e7501_cas_latency(ctrl, dimm_mask);
1973 RAM_RESET_DDR_PTR();
1974
1975 configure_e7501_dram_timing(ctrl, dimm_mask);
1976 DO_DELAY;
1977 RAM_DEBUG_MESSAGE("done\n");
1978 }
1979
1980 /* NOTE: configure_e7501_ram_addresses() is NOT called here.
1981 * We want to keep the default 64 MB/row mapping until sdram_enable() is called,
1982 * even though the default mapping is almost certainly incorrect.
1983 * The default mapping makes it easy to initialize all of the DIMMs
1984 * even if the total system memory is > 4 GB.
1985 *
1986 * Save the dimm_mask for when sdram_enable is called, so it can call
1987 * configure_e7501_ram_addresses() without having to regenerate the bitmask
1988 * of usable DIMMs.
1989 */
1990 pci_write_config16(PCI_DEV(0, 0, 0), SKPD, dimm_mask);
1991}
1992
1993/**
1994 * Do basic RAM setup that does NOT depend on serial presence detect
1995 * information (i.e. independent of DIMM specifics).
1996 *
1997 * @param ctrl PCI addresses of memory controller functions, and SMBus
1998 * addresses of DIMM slots on the mainboard.
1999 */
2000static void sdram_set_registers(const struct mem_controller *ctrl)
2001{
2002 RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n");
2003 DUMPNORTH();
2004
2005 ram_set_rcomp_regs();
2006 ram_set_d0f0_regs();
2007}