blob: ba66230e23e07a166bed3b9891ea26feaed3f3a4 [file] [log] [blame]
huang linc14b54d2016-03-02 18:38:40 +08001/*
2 * This file is part of the coreboot project.
3 *
4 * Copyright 2016 Rockchip Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
huang linc14b54d2016-03-02 18:38:40 +080014 */
15
Lin Huanga1f82a32016-03-09 18:08:20 +080016#include <assert.h>
17#include <console/console.h>
18#include <delay.h>
19#include <soc/addressmap.h>
huang linc14b54d2016-03-02 18:38:40 +080020#include <soc/clock.h>
Lin Huangf5702e72016-03-19 22:45:19 +080021#include <soc/grf.h>
huang lin4f173742016-03-02 18:46:24 +080022#include <soc/i2c.h>
Lin Huanga1f82a32016-03-09 18:08:20 +080023#include <soc/soc.h>
24#include <stdint.h>
25#include <stdlib.h>
26#include <string.h>
27
28struct pll_div {
29 u32 refdiv;
30 u32 fbdiv;
31 u32 postdiv1;
32 u32 postdiv2;
33 u32 frac;
34};
35
36#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
37 .refdiv = _refdiv,\
38 .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
39 .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};\
40 _Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\
41 OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\
42 #hz "Hz cannot be hit with PLL "\
43 "divisors on line " STRINGIFY(__LINE__))
44
45static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
46static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
47static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
48
49static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
50static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
51
52static const struct pll_div *apll_l_cfgs[] = {
53 [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
54 [APLL_L_600_MHZ] = &apll_l_600_cfg,
55};
56
57enum {
58 /* PLL_CON0 */
59 PLL_FBDIV_MASK = 0xfff,
60 PLL_FBDIV_SHIFT = 0,
61
62 /* PLL_CON1 */
63 PLL_POSTDIV2_MASK = 0x7,
64 PLL_POSTDIV2_SHIFT = 12,
65 PLL_POSTDIV1_MASK = 0x7,
66 PLL_POSTDIV1_SHIFT = 8,
67 PLL_REFDIV_MASK = 0x3f,
68 PLL_REFDIV_SHIFT = 0,
69
70 /* PLL_CON2 */
71 PLL_LOCK_STATUS_MASK = 1,
72 PLL_LOCK_STATUS_SHIFT = 31,
73 PLL_FRACDIV_MASK = 0xffffff,
74 PLL_FRACDIV_SHIFT = 0,
75
76 /* PLL_CON3 */
77 PLL_MODE_MASK = 3,
78 PLL_MODE_SHIFT = 8,
79 PLL_MODE_SLOW = 0,
80 PLL_MODE_NORM,
81 PLL_MODE_DEEP,
82 PLL_DSMPD_MASK = 1,
83 PLL_DSMPD_SHIFT = 3,
84 PLL_INTEGER_MODE = 1,
85
86 /* PMUCRU_CLKSEL_CON0 */
87 PMU_PCLK_DIV_CON_MASK = 0x1f,
88 PMU_PCLK_DIV_CON_SHIFT = 0,
89
Shunqian Zheng347c83c2016-04-13 22:34:39 +080090 /* PMUCRU_CLKSEL_CON1 */
91 SPI3_PLL_SEL_MASK = 1,
92 SPI3_PLL_SEL_SHIFT = 7,
93 SPI3_PLL_SEL_24M = 0,
94 SPI3_PLL_SEL_PPLL = 1,
95 SPI3_DIV_CON_MASK = 0x7f,
96 SPI3_DIV_CON_SHIFT = 0x0,
97
huang lin4f173742016-03-02 18:46:24 +080098 /* PMUCRU_CLKSEL_CON2 */
99 I2C_DIV_CON_MASK = 0x7f,
100 I2C8_DIV_CON_SHIFT = 8,
101 I2C0_DIV_CON_SHIFT = 0,
102
103 /* PMUCRU_CLKSEL_CON3 */
104 I2C4_DIV_CON_SHIFT = 0,
105
Lin Huanga1f82a32016-03-09 18:08:20 +0800106 /* CLKSEL_CON0 */
107 ACLKM_CORE_L_DIV_CON_MASK = 0x1f,
108 ACLKM_CORE_L_DIV_CON_SHIFT = 8,
109 CLK_CORE_L_PLL_SEL_MASK = 3,
110 CLK_CORE_L_PLL_SEL_SHIFT = 6,
111 CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
112 CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
113 CLK_CORE_L_PLL_SEL_DPLL = 0x10,
114 CLK_CORE_L_PLL_SEL_GPLL = 0x11,
115 CLK_CORE_L_DIV_MASK = 0x1f,
116 CLK_CORE_L_DIV_SHIFT = 0,
117
118 /* CLKSEL_CON1 */
119 PCLK_DBG_L_DIV_MASK = 0x1f,
120 PCLK_DBG_L_DIV_SHIFT = 0x8,
121 ATCLK_CORE_L_DIV_MASK = 0x1f,
122 ATCLK_CORE_L_DIV_SHIFT = 0,
123
124 /* CLKSEL_CON14 */
125 PCLK_PERIHP_DIV_CON_MASK = 0x7,
126 PCLK_PERIHP_DIV_CON_SHIFT = 12,
127 HCLK_PERIHP_DIV_CON_MASK = 3,
128 HCLK_PERIHP_DIV_CON_SHIFT = 8,
129 ACLK_PERIHP_PLL_SEL_MASK = 1,
130 ACLK_PERIHP_PLL_SEL_SHIFT = 7,
131 ACLK_PERIHP_PLL_SEL_CPLL = 0,
132 ACLK_PERIHP_PLL_SEL_GPLL = 1,
133 ACLK_PERIHP_DIV_CON_MASK = 0x1f,
134 ACLK_PERIHP_DIV_CON_SHIFT = 0,
135
Lin Huang2f7ed8d2016-04-08 18:56:20 +0800136 /* CLKSEL_CON21 */
137 ACLK_EMMC_PLL_SEL_MASK = 0x1,
138 ACLK_EMMC_PLL_SEL_SHIFT = 7,
139 ACLK_EMMC_PLL_SEL_GPLL = 0x1,
140 ACLK_EMMC_DIV_CON_MASK = 0x1f,
141 ACLK_EMMC_DIV_CON_SHIFT = 0,
142
143 /* CLKSEL_CON22 */
144 CLK_EMMC_PLL_MASK = 0x7,
145 CLK_EMMC_PLL_SHIFT = 8,
146 CLK_EMMC_PLL_SEL_GPLL = 0x1,
147 CLK_EMMC_DIV_CON_MASK = 0x7f,
148 CLK_EMMC_DIV_CON_SHIFT = 0,
149
Lin Huanga1f82a32016-03-09 18:08:20 +0800150 /* CLKSEL_CON23 */
151 PCLK_PERILP0_DIV_CON_MASK = 0x7,
152 PCLK_PERILP0_DIV_CON_SHIFT = 12,
153 HCLK_PERILP0_DIV_CON_MASK = 3,
154 HCLK_PERILP0_DIV_CON_SHIFT = 8,
155 ACLK_PERILP0_PLL_SEL_MASK = 1,
156 ACLK_PERILP0_PLL_SEL_SHIFT = 7,
157 ACLK_PERILP0_PLL_SEL_CPLL = 0,
158 ACLK_PERILP0_PLL_SEL_GPLL = 1,
159 ACLK_PERILP0_DIV_CON_MASK = 0x1f,
160 ACLK_PERILP0_DIV_CON_SHIFT = 0,
161
162 /* CLKSEL_CON25 */
163 PCLK_PERILP1_DIV_CON_MASK = 0x7,
164 PCLK_PERILP1_DIV_CON_SHIFT = 8,
165 HCLK_PERILP1_PLL_SEL_MASK = 1,
166 HCLK_PERILP1_PLL_SEL_SHIFT = 7,
167 HCLK_PERILP1_PLL_SEL_CPLL = 0,
168 HCLK_PERILP1_PLL_SEL_GPLL = 1,
169 HCLK_PERILP1_DIV_CON_MASK = 0x1f,
170 HCLK_PERILP1_DIV_CON_SHIFT = 0,
Shunqian Zhengce60d5a2016-04-21 23:53:08 +0800171
Lin Huangbf48fbb2016-03-23 19:24:53 +0800172 /* CLKSEL_CON26 */
173 CLK_SARADC_DIV_CON_MASK = 0xff,
174 CLK_SARADC_DIV_CON_SHIFT = 8,
175
Shunqian Zhengf4181ce2016-05-06 16:50:48 +0800176 /* CLKSEL_CON27 */
177 CLK_TSADC_SEL_X24M = 0x0,
178 CLK_TSADC_SEL_MASK = 1,
179 CLK_TSADC_SEL_SHIFT = 15,
180 CLK_TSADC_DIV_CON_MASK = 0x3ff,
181 CLK_TSADC_DIV_CON_SHIFT = 0,
182
Shunqian Zhengc7f32a52016-05-04 15:54:37 +0800183 /* CLKSEL_CON47 & CLKSEL_CON48 */
184 ACLK_VOP_PLL_SEL_MASK = 0x3,
185 ACLK_VOP_PLL_SEL_SHIFT = 6,
186 ACLK_VOP_PLL_SEL_CPLL = 0x1,
187 ACLK_VOP_DIV_CON_MASK = 0x1f,
188 ACLK_VOP_DIV_CON_SHIFT = 0,
189
190 /* CLKSEL_CON49 & CLKSEL_CON50 */
191 DCLK_VOP_DCLK_SEL_MASK = 1,
192 DCLK_VOP_DCLK_SEL_SHIFT = 11,
193 DCLK_VOP_DCLK_SEL_DIVOUT = 0,
194 DCLK_VOP_PLL_SEL_MASK = 3,
195 DCLK_VOP_PLL_SEL_SHIFT = 8,
196 DCLK_VOP_PLL_SEL_VPLL = 0,
197 DCLK_VOP_DIV_CON_MASK = 0xff,
198 DCLK_VOP_DIV_CON_SHIFT = 0,
199
Shunqian Zheng347c83c2016-04-13 22:34:39 +0800200 /* CLKSEL_CON58 */
201 CLK_SPI_PLL_SEL_MASK = 1,
202 CLK_SPI_PLL_SEL_CPLL = 0,
203 CLK_SPI_PLL_SEL_GPLL = 1,
204 CLK_SPI_PLL_DIV_CON_MASK = 0x7f,
205 CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
206 CLK_SPI5_PLL_SEL_SHIFT = 15,
207
208 /* CLKSEL_CON59 */
209 CLK_SPI1_PLL_SEL_SHIFT = 15,
210 CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
211 CLK_SPI0_PLL_SEL_SHIFT = 7,
212 CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
213
214 /* CLKSEL_CON60 */
215 CLK_SPI4_PLL_SEL_SHIFT = 15,
216 CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
217 CLK_SPI2_PLL_SEL_SHIFT = 7,
218 CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
219
huang lin4f173742016-03-02 18:46:24 +0800220 /* CLKSEL_CON61 */
221 CLK_I2C_PLL_SEL_MASK = 1,
222 CLK_I2C_PLL_SEL_CPLL = 0,
223 CLK_I2C_PLL_SEL_GPLL = 1,
224 CLK_I2C5_PLL_SEL_SHIFT = 15,
225 CLK_I2C5_DIV_CON_SHIFT = 8,
226 CLK_I2C1_PLL_SEL_SHIFT = 7,
227 CLK_I2C1_DIV_CON_SHIFT = 0,
228
229 /* CLKSEL_CON62 */
230 CLK_I2C6_PLL_SEL_SHIFT = 15,
231 CLK_I2C6_DIV_CON_SHIFT = 8,
232 CLK_I2C2_PLL_SEL_SHIFT = 7,
233 CLK_I2C2_DIV_CON_SHIFT = 0,
234
235 /* CLKSEL_CON63 */
236 CLK_I2C7_PLL_SEL_SHIFT = 15,
237 CLK_I2C7_DIV_CON_SHIFT = 8,
238 CLK_I2C3_PLL_SEL_SHIFT = 7,
239 CLK_I2C3_DIV_CON_SHIFT = 0,
240
Shunqian Zhengce60d5a2016-04-21 23:53:08 +0800241 /* CRU_SOFTRST_CON4 */
242 RESETN_DDR0_REQ_MASK = 1,
243 RESETN_DDR0_REQ_SHIFT = 8,
244 RESETN_DDRPHY0_REQ_MASK = 1,
245 RESETN_DDRPHY0_REQ_SHIFT = 9,
246 RESETN_DDR1_REQ_MASK = 1,
247 RESETN_DDR1_REQ_SHIFT = 12,
248 RESETN_DDRPHY1_REQ_MASK = 1,
249 RESETN_DDRPHY1_REQ_SHIFT = 13,
Lin Huanga1f82a32016-03-09 18:08:20 +0800250};
251
252#define VCO_MAX_KHZ (3200 * (MHz / KHz))
253#define VCO_MIN_KHZ (800 * (MHz / KHz))
254#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
255#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
256
257/* the div restrictions of pll in integer mode,
258 * these are defined in * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
259 */
260#define PLL_DIV_MIN 16
261#define PLL_DIV_MAX 3200
262
263/* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
264 * Formulas also embedded within the Fractional PLL Verilog model:
265 * If DSMPD = 1 (DSM is disabled, "integer mode")
266 * FOUTVCO = FREF / REFDIV * FBDIV
267 * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
268 * Where:
269 * FOUTVCO = Fractional PLL non-divided output frequency
270 * FOUTPOSTDIV = Fractional PLL divided output frequency
271 * (output of second post divider)
272 * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
273 * REFDIV = Fractional PLL input reference clock divider
274 * FBDIV = Integer value programmed into feedback divide
275 *
276 */
277static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
278{
279 /* All 8 PLLs have same VCO and output frequency range restrictions. */
280 u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
281 u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
282
283 printk(BIOS_DEBUG, "PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
284 "postdiv2=%d, vco=%u khz, output=%u khz\n",
285 pll_con, div->fbdiv, div->refdiv, div->postdiv1,
286 div->postdiv2, vco_khz, output_khz);
287 assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
288 output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
289 div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
290
291 /* When power on or changing PLL setting,
292 * we must force PLL into slow mode to ensure output stable clock.
293 */
294 write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
295 PLL_MODE_SLOW << PLL_MODE_SHIFT));
296
297 /* use integer mode */
298 write32(&pll_con[3],
299 RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT,
300 PLL_INTEGER_MODE << PLL_DSMPD_SHIFT));
301
302 write32(&pll_con[0], RK_CLRSETBITS(PLL_FBDIV_MASK << PLL_FBDIV_SHIFT,
303 div->fbdiv << PLL_FBDIV_SHIFT));
304 write32(&pll_con[1],
305 RK_CLRSETBITS(PLL_POSTDIV2_MASK << PLL_POSTDIV2_SHIFT |
306 PLL_POSTDIV1_MASK << PLL_POSTDIV1_SHIFT |
307 PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
308 (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
309 (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
310 (div->refdiv << PLL_REFDIV_SHIFT)));
311
312 /* waiting for pll lock */
313 while (!(read32(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
314 udelay(1);
315
316 /* pll enter normal mode */
317 write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
318 PLL_MODE_NORM << PLL_MODE_SHIFT));
319}
320
Shunqian Zhengc7f32a52016-05-04 15:54:37 +0800321static int pll_para_config(u32 freq_hz, struct pll_div *div)
322{
323 u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
324 u32 postdiv1, postdiv2 = 1;
325 u32 fref_khz;
326 u32 diff_khz, best_diff_khz;
327 const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
328 const u32 max_postdiv1 = 7, max_postdiv2 = 7;
329 u32 vco_khz;
330 u32 freq_khz = freq_hz / KHz;
331
332 if (!freq_hz) {
333 printk(BIOS_ERR, "%s: the frequency can't be 0 Hz\n", __func__);
334 return -1;
335 }
336
337 postdiv1 = div_round_up(VCO_MIN_KHZ, freq_khz);
338 if (postdiv1 > max_postdiv1) {
339 postdiv2 = div_round_up(postdiv1, max_postdiv1);
340 postdiv1 = div_round_up(postdiv1, postdiv2);
341 }
342
343 vco_khz = freq_khz * postdiv1 * postdiv2;
344
345 if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
346 postdiv2 > max_postdiv2) {
347 printk(BIOS_ERR, "%s: Cannot find out a supported VCO"
348 " for Frequency (%uHz).\n", __func__, freq_hz);
349 return -1;
350 }
351
352 div->postdiv1 = postdiv1;
353 div->postdiv2 = postdiv2;
354
355 best_diff_khz = vco_khz;
356 for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
357 fref_khz = ref_khz / refdiv;
358
359 fbdiv = vco_khz / fref_khz;
360 if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
361 continue;
362 diff_khz = vco_khz - fbdiv * fref_khz;
363 if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
364 fbdiv++;
365 diff_khz = fref_khz - diff_khz;
366 }
367
368 if (diff_khz >= best_diff_khz)
369 continue;
370
371 best_diff_khz = diff_khz;
372 div->refdiv = refdiv;
373 div->fbdiv = fbdiv;
374 }
375
376 if (best_diff_khz > 4 * (MHz/KHz)) {
377 printk(BIOS_ERR, "%s: Failed to match output frequency %u, "
378 "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
379 best_diff_khz * KHz);
380 return -1;
381 }
382 return 0;
383}
384
Lin Huanga1f82a32016-03-09 18:08:20 +0800385void rkclk_init(void)
386{
387 u32 aclk_div;
388 u32 hclk_div;
389 u32 pclk_div;
390
391 /* some cru registers changed by bootrom, we'd better reset them to
392 * reset/default values described in TRM to avoid confusion in kernel.
393 * Please consider these threee lines as a fix of bootrom bug.
394 */
395 write32(&cru_ptr->clksel_con[12], 0xffff4101);
396 write32(&cru_ptr->clksel_con[19], 0xffff033f);
397 write32(&cru_ptr->clksel_con[56], 0x00030003);
398
399 /* configure pmu pll(ppll) */
400 rkclk_set_pll(&pmucru_ptr->ppll_con[0], &ppll_init_cfg);
401
402 /* configure pmu pclk */
403 pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
404 assert((pclk_div + 1) * PMU_PCLK_HZ == PPLL_HZ && pclk_div < 0x1f);
405 write32(&pmucru_ptr->pmucru_clksel[0],
406 RK_CLRSETBITS(PMU_PCLK_DIV_CON_MASK << PMU_PCLK_DIV_CON_SHIFT,
407 pclk_div << PMU_PCLK_DIV_CON_SHIFT));
408
409 /* configure gpll cpll */
410 rkclk_set_pll(&cru_ptr->gpll_con[0], &gpll_init_cfg);
411 rkclk_set_pll(&cru_ptr->cpll_con[0], &cpll_init_cfg);
412
413 /* configure perihp aclk, hclk, pclk */
414 aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
415 assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
416
417 hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
418 assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
419 PERIHP_ACLK_HZ && (hclk_div < 0x4));
420
421 pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
422 assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
423 PERIHP_ACLK_HZ && (pclk_div < 0x7));
424
425 write32(&cru_ptr->clksel_con[14],
426 RK_CLRSETBITS(PCLK_PERIHP_DIV_CON_MASK <<
427 PCLK_PERIHP_DIV_CON_SHIFT |
428 HCLK_PERIHP_DIV_CON_MASK <<
429 HCLK_PERIHP_DIV_CON_SHIFT |
430 ACLK_PERIHP_PLL_SEL_MASK <<
431 ACLK_PERIHP_PLL_SEL_SHIFT |
432 ACLK_PERIHP_DIV_CON_MASK <<
433 ACLK_PERIHP_DIV_CON_SHIFT,
434 pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
435 hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
436 ACLK_PERIHP_PLL_SEL_GPLL <<
437 ACLK_PERIHP_PLL_SEL_SHIFT |
438 aclk_div << ACLK_PERIHP_DIV_CON_SHIFT));
439
440 /* configure perilp0 aclk, hclk, pclk */
441 aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
442 assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
443
444 hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
445 assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
446 PERILP0_ACLK_HZ && (hclk_div < 0x4));
447
448 pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
449 assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
450 PERILP0_ACLK_HZ && (pclk_div < 0x7));
451
452 write32(&cru_ptr->clksel_con[23],
453 RK_CLRSETBITS(PCLK_PERILP0_DIV_CON_MASK <<
454 PCLK_PERILP0_DIV_CON_SHIFT |
455 HCLK_PERILP0_DIV_CON_MASK <<
456 HCLK_PERILP0_DIV_CON_SHIFT |
457 ACLK_PERILP0_PLL_SEL_MASK <<
458 ACLK_PERILP0_PLL_SEL_SHIFT |
459 ACLK_PERILP0_DIV_CON_MASK <<
460 ACLK_PERILP0_DIV_CON_SHIFT,
461 pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
462 hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
463 ACLK_PERILP0_PLL_SEL_GPLL <<
464 ACLK_PERILP0_PLL_SEL_SHIFT |
465 aclk_div << ACLK_PERILP0_DIV_CON_SHIFT));
466
467 /* perilp1 hclk select gpll as source */
468 hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
469 assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
470 GPLL_HZ && (hclk_div < 0x1f));
471
472 pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
473 assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
474 PERILP1_HCLK_HZ && (hclk_div < 0x7));
475
476 write32(&cru_ptr->clksel_con[25],
477 RK_CLRSETBITS(PCLK_PERILP1_DIV_CON_MASK <<
478 PCLK_PERILP1_DIV_CON_SHIFT |
479 HCLK_PERILP1_DIV_CON_MASK <<
480 HCLK_PERILP1_DIV_CON_SHIFT |
481 HCLK_PERILP1_PLL_SEL_MASK <<
482 HCLK_PERILP1_PLL_SEL_SHIFT,
483 pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
484 hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
485 HCLK_PERILP1_PLL_SEL_GPLL <<
486 HCLK_PERILP1_PLL_SEL_SHIFT));
487}
488
489void rkclk_configure_cpu(enum apll_l_frequencies apll_l_freq)
490{
491 u32 aclkm_div;
492 u32 pclk_dbg_div;
493 u32 atclk_div;
494
495 rkclk_set_pll(&cru_ptr->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
496
497 aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
498 assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
499 aclkm_div < 0x1f);
500
501 pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
502 assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
503 pclk_dbg_div < 0x1f);
504
505 atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
506 assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
507 atclk_div < 0x1f);
508
509 write32(&cru_ptr->clksel_con[0],
510 RK_CLRSETBITS(ACLKM_CORE_L_DIV_CON_MASK <<
511 ACLKM_CORE_L_DIV_CON_SHIFT |
512 CLK_CORE_L_PLL_SEL_MASK <<
513 CLK_CORE_L_PLL_SEL_SHIFT |
514 CLK_CORE_L_DIV_MASK << CLK_CORE_L_DIV_SHIFT,
515 aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
516 CLK_CORE_L_PLL_SEL_ALPLL <<
517 CLK_CORE_L_PLL_SEL_SHIFT |
518 0 << CLK_CORE_L_DIV_SHIFT));
519
520 write32(&cru_ptr->clksel_con[1],
521 RK_CLRSETBITS(PCLK_DBG_L_DIV_MASK << PCLK_DBG_L_DIV_SHIFT |
522 ATCLK_CORE_L_DIV_MASK << ATCLK_CORE_L_DIV_SHIFT,
523 pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
524 atclk_div << ATCLK_CORE_L_DIV_SHIFT));
525}
Lin Huangf5702e72016-03-19 22:45:19 +0800526
Shunqian Zhengce60d5a2016-04-21 23:53:08 +0800527void rkclk_configure_ddr(unsigned int hz)
528{
529 struct pll_div dpll_cfg;
530
531 /* IC ECO bug, need to set this register */
532 write32(&rk3399_pmusgrf->ddr_rgn_con[16], 0xc000c000);
533
534 /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
535 switch (hz) {
536 case 200*MHz:
537 dpll_cfg = (struct pll_div)
538 {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
539 break;
540 case 300*MHz:
541 dpll_cfg = (struct pll_div)
542 {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
543 break;
544 case 666*MHz:
545 dpll_cfg = (struct pll_div)
546 {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
547 break;
548 case 800*MHz:
549 dpll_cfg = (struct pll_div)
550 {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
551 break;
Shunqian Zheng0d9839b2016-05-11 15:18:17 +0800552 case 928*MHz:
553 dpll_cfg = (struct pll_div)
554 {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
555 break;
Shunqian Zhengce60d5a2016-04-21 23:53:08 +0800556 default:
557 die("Unsupported SDRAM frequency, add to clock.c!");
558 }
559 rkclk_set_pll(&cru_ptr->dpll_con[0], &dpll_cfg);
560}
561
Shunqian Zheng347c83c2016-04-13 22:34:39 +0800562#define SPI_CLK_REG_VALUE(bus, clk_div) \
563 RK_CLRSETBITS(CLK_SPI_PLL_SEL_MASK << \
564 CLK_SPI ##bus## _PLL_SEL_SHIFT | \
565 CLK_SPI_PLL_DIV_CON_MASK << \
566 CLK_SPI ##bus## _PLL_DIV_CON_SHIFT, \
567 CLK_SPI_PLL_SEL_GPLL << \
568 CLK_SPI ##bus## _PLL_SEL_SHIFT | \
569 (clk_div - 1) << \
570 CLK_SPI ##bus## _PLL_DIV_CON_SHIFT)
571
huang linc14b54d2016-03-02 18:38:40 +0800572void rkclk_configure_spi(unsigned int bus, unsigned int hz)
573{
Shunqian Zheng347c83c2016-04-13 22:34:39 +0800574 int src_clk_div;
575 int pll;
576
577 /* spi3 src clock from ppll, while spi0,1,2,4,5 src clock from gpll */
578 pll = (bus == 3) ? PPLL_HZ : GPLL_HZ;
579 src_clk_div = pll / hz;
580 assert((src_clk_div - 1 < 127) && (src_clk_div * hz == pll));
581
582 switch (bus) {
583 case 0:
584 write32(&cru_ptr->clksel_con[59],
585 SPI_CLK_REG_VALUE(0, src_clk_div));
586 break;
587 case 1:
588 write32(&cru_ptr->clksel_con[59],
589 SPI_CLK_REG_VALUE(1, src_clk_div));
590 break;
591 case 2:
592 write32(&cru_ptr->clksel_con[60],
593 SPI_CLK_REG_VALUE(2, src_clk_div));
594 break;
595 case 3:
596 write32(&pmucru_ptr->pmucru_clksel[1],
597 RK_CLRSETBITS(SPI3_PLL_SEL_MASK << SPI3_PLL_SEL_SHIFT |
598 SPI3_DIV_CON_MASK << SPI3_DIV_CON_SHIFT,
599 SPI3_PLL_SEL_PPLL << SPI3_PLL_SEL_SHIFT |
600 (src_clk_div - 1) << SPI3_DIV_CON_SHIFT));
601 break;
602 case 4:
603 write32(&cru_ptr->clksel_con[60],
604 SPI_CLK_REG_VALUE(4, src_clk_div));
605 break;
606 case 5:
607 write32(&cru_ptr->clksel_con[58],
608 SPI_CLK_REG_VALUE(5, src_clk_div));
609 break;
610 default:
611 printk(BIOS_ERR, "do not support this spi bus\n");
612 }
huang linc14b54d2016-03-02 18:38:40 +0800613}
huang lin4f173742016-03-02 18:46:24 +0800614
615#define I2C_CLK_REG_VALUE(bus, clk_div) \
616 RK_CLRSETBITS(I2C_DIV_CON_MASK << \
617 CLK_I2C ##bus## _DIV_CON_SHIFT | \
618 CLK_I2C_PLL_SEL_MASK << \
619 CLK_I2C ##bus## _PLL_SEL_SHIFT, \
620 (clk_div - 1) << \
621 CLK_I2C ##bus## _DIV_CON_SHIFT | \
622 CLK_I2C_PLL_SEL_GPLL << \
623 CLK_I2C ##bus## _PLL_SEL_SHIFT)
624#define PMU_I2C_CLK_REG_VALUE(bus, clk_div) \
625 RK_CLRSETBITS(I2C_DIV_CON_MASK << I2C ##bus## _DIV_CON_SHIFT, \
626 (clk_div - 1) << I2C ##bus## _DIV_CON_SHIFT)
627
628static void rkclk_configure_i2c(unsigned int bus, unsigned int hz)
629{
630 int src_clk_div;
631 int pll;
632
633 /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
634 pll = (bus == 0 || bus == 4 || bus == 8) ? PPLL_HZ : GPLL_HZ;
635 src_clk_div = pll / hz;
636 assert((src_clk_div - 1 < 127) && (src_clk_div * hz == pll));
637
638 switch (bus) {
639 case 0:
640 write32(&pmucru_ptr->pmucru_clksel[2],
641 PMU_I2C_CLK_REG_VALUE(0, src_clk_div));
642 break;
643 case 1:
644 write32(&cru_ptr->clksel_con[61],
645 I2C_CLK_REG_VALUE(1, src_clk_div));
646 break;
647 case 2:
648 write32(&cru_ptr->clksel_con[62],
649 I2C_CLK_REG_VALUE(2, src_clk_div));
650 break;
651 case 3:
652 write32(&cru_ptr->clksel_con[63],
653 I2C_CLK_REG_VALUE(3, src_clk_div));
654 break;
655 case 4:
656 write32(&pmucru_ptr->pmucru_clksel[3],
657 PMU_I2C_CLK_REG_VALUE(4, src_clk_div));
658 break;
659 case 5:
660 write32(&cru_ptr->clksel_con[61],
661 I2C_CLK_REG_VALUE(5, src_clk_div));
662 break;
663 case 6:
664 write32(&cru_ptr->clksel_con[62],
665 I2C_CLK_REG_VALUE(6, src_clk_div));
666 break;
667 case 7:
668 write32(&cru_ptr->clksel_con[63],
669 I2C_CLK_REG_VALUE(7, src_clk_div));
670 break;
671 case 8:
672 write32(&pmucru_ptr->pmucru_clksel[2],
673 PMU_I2C_CLK_REG_VALUE(8, src_clk_div));
674 break;
675 default:
676 printk(BIOS_ERR, "do not support this i2c bus\n");
677 }
678}
679
680uint32_t rkclk_i2c_clock_for_bus(unsigned bus)
681{
682 uint32_t freq = 198 * 1000 * 1000;
683
684 rkclk_configure_i2c(bus, freq);
685
686 return freq;
687}
Lin Huangbf48fbb2016-03-23 19:24:53 +0800688
689void rkclk_configure_saradc(unsigned int hz)
690{
691 int src_clk_div;
692
693 /* saradc src clk from 24MHz */
694 src_clk_div = 24 * MHz / hz;
695 assert((src_clk_div - 1 < 255) && (src_clk_div * hz == 24 * MHz));
696
697 write32(&cru_ptr->clksel_con[26],
698 RK_CLRSETBITS(CLK_SARADC_DIV_CON_MASK <<
699 CLK_SARADC_DIV_CON_SHIFT,
700 (src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT));
701}
Shunqian Zhengc7f32a52016-05-04 15:54:37 +0800702
703void rkclk_configure_vop_aclk(u32 vop_id, u32 aclk_hz)
704{
705 u32 div;
706 void *reg_addr = vop_id ? &cru_ptr->clksel_con[48] :
707 &cru_ptr->clksel_con[47];
708
709 /* vop aclk source clk: cpll */
710 div = CPLL_HZ / aclk_hz;
711 assert((div - 1 < 32) && (div * aclk_hz == CPLL_HZ));
712
713 write32(reg_addr, RK_CLRSETBITS(
714 ACLK_VOP_PLL_SEL_MASK << ACLK_VOP_PLL_SEL_SHIFT |
715 ACLK_VOP_DIV_CON_MASK << ACLK_VOP_DIV_CON_SHIFT,
716 ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
717 (div - 1) << ACLK_VOP_DIV_CON_SHIFT));
718}
719
720int rkclk_configure_vop_dclk(u32 vop_id, u32 dclk_hz)
721{
722 struct pll_div vpll_config = {0};
723 void *reg_addr = vop_id ? &cru_ptr->clksel_con[50] :
724 &cru_ptr->clksel_con[49];
725
726 /* vop dclk source from vpll, and equals to vpll(means div == 1) */
727 if (pll_para_config(dclk_hz, &vpll_config))
728 return -1;
729
730 rkclk_set_pll(&cru_ptr->vpll_con[0], &vpll_config);
731
732 write32(reg_addr, RK_CLRSETBITS(
733 DCLK_VOP_DCLK_SEL_MASK << DCLK_VOP_DCLK_SEL_SHIFT |
734 DCLK_VOP_PLL_SEL_MASK << DCLK_VOP_PLL_SEL_SHIFT |
735 DCLK_VOP_DIV_CON_MASK << DCLK_VOP_DIV_CON_SHIFT,
736 DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
737 DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
738 (1 - 1) << DCLK_VOP_DIV_CON_SHIFT));
739
740 return 0;
741}
Shunqian Zhengf4181ce2016-05-06 16:50:48 +0800742
743void rkclk_configure_tsadc(unsigned int hz)
744{
745 int src_clk_div;
746
747 /* use 24M as src clock */
748 src_clk_div = OSC_HZ / hz;
749 assert((src_clk_div - 1 < 1024) && (src_clk_div * hz == OSC_HZ));
750
751 write32(&cru_ptr->clksel_con[27], RK_CLRSETBITS(
752 CLK_TSADC_DIV_CON_MASK << CLK_TSADC_DIV_CON_SHIFT |
753 CLK_TSADC_SEL_MASK << CLK_TSADC_SEL_SHIFT,
754 src_clk_div << CLK_TSADC_DIV_CON_SHIFT |
755 CLK_TSADC_SEL_X24M << CLK_TSADC_SEL_SHIFT));
756}
Lin Huang2f7ed8d2016-04-08 18:56:20 +0800757
758void rkclk_configure_emmc(void)
759{
760 int src_clk_div;
761 int aclk_emmc = 198*MHz;
762 int clk_emmc = 198*MHz;
763
764 /* Select aclk_emmc source from GPLL */
765 src_clk_div = GPLL_HZ / aclk_emmc;
766 assert((src_clk_div - 1 < 31) && (src_clk_div * aclk_emmc == GPLL_HZ));
767
768 write32(&cru_ptr->clksel_con[21],
769 RK_CLRSETBITS(ACLK_EMMC_PLL_SEL_MASK <<
770 ACLK_EMMC_PLL_SEL_SHIFT |
771 ACLK_EMMC_DIV_CON_MASK << ACLK_EMMC_DIV_CON_SHIFT,
772 ACLK_EMMC_PLL_SEL_GPLL <<
773 ACLK_EMMC_PLL_SEL_SHIFT |
774 (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT));
775
776 /* Select clk_emmc source from GPLL too */
777 src_clk_div = GPLL_HZ / clk_emmc;
778 assert((src_clk_div - 1 < 127) && (src_clk_div * clk_emmc == GPLL_HZ));
779
780 write32(&cru_ptr->clksel_con[22],
781 RK_CLRSETBITS(CLK_EMMC_PLL_MASK << CLK_EMMC_PLL_SHIFT |
782 CLK_EMMC_DIV_CON_MASK << CLK_EMMC_DIV_CON_SHIFT,
783 CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
784 (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT));
785}