blob: 0a44220bd667611ebc0b233eb938b336121560c3 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
* Copyright (C) 2016 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <string.h>
#include <arch/io.h>
#include <cbmem.h>
#include <arch/cbfs.h>
#include <cbfs.h>
#include <northbridge/intel/sandybridge/chip.h>
#include <device/pci_def.h>
#include <delay.h>
#include <arch/cpu.h>
#include <cpu/x86/msr.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "sandybridge.h"
/* FIXME: no ECC support. */
/* FIXME: no support for 3-channel chipsets. */
/*
* Register description:
* Intel provides a command queue of depth four.
* Every command is configured by using multiple registers.
* On executing the command queue you have to provide the depth used.
*
* Known registers:
* Channel X = [0, 1]
* Command queue index Y = [0, 1, 2, 3]
*
* DEFAULT_MCHBAR + 0x4220 + 0x400 * X + 4 * Y: command io register
* Controls the DRAM command signals
* Bit 0: !RAS
* Bit 1: !CAS
* Bit 2: !WE
*
* DEFAULT_MCHBAR + 0x4200 + 0x400 * X + 4 * Y: addr bankslot io register
* Controls the address, bank address and slotrank signals
* Bit 0-15 : Address
* Bit 20-22: Bank Address
* Bit 24-25: slotrank
*
* DEFAULT_MCHBAR + 0x4230 + 0x400 * X + 4 * Y: idle register
* Controls the idle time after issuing this DRAM command
* Bit 16-32: number of clock-cylces to idle
*
* DEFAULT_MCHBAR + 0x4284 + 0x400 * channel: execute command queue
* Starts to execute all queued commands
* Bit 0 : start DRAM command execution
* Bit 16-20: (number of queued commands - 1) * 4
*/
static void sfence(void)
{
asm volatile ("sfence");
}
static void toggle_io_reset(void) {
/* toggle IO reset bit */
u32 r32 = read32(DEFAULT_MCHBAR + 0x5030);
write32(DEFAULT_MCHBAR + 0x5030, r32 | 0x20);
udelay(1);
write32(DEFAULT_MCHBAR + 0x5030, r32 & ~0x20);
udelay(1);
}
static u32 get_XOVER_CLK(u8 rankmap)
{
return rankmap << 24;
}
static u32 get_XOVER_CMD(u8 rankmap)
{
u32 reg;
// enable xover cmd
reg = 0x4000;
// enable xover ctl
if (rankmap & 0x3)
reg |= 0x20000;
if (rankmap & 0xc)
reg |= 0x4000000;
return reg;
}
/* CAS write latency. To be programmed in MR2.
* See DDR3 SPEC for MR2 documentation. */
u8 get_CWL(u32 tCK)
{
/* Get CWL based on tCK using the following rule: */
switch (tCK) {
case TCK_1333MHZ:
return 12;
case TCK_1200MHZ:
case TCK_1100MHZ:
return 11;
case TCK_1066MHZ:
case TCK_1000MHZ:
return 10;
case TCK_933MHZ:
case TCK_900MHZ:
return 9;
case TCK_800MHZ:
case TCK_700MHZ:
return 8;
case TCK_666MHZ:
return 7;
case TCK_533MHZ:
return 6;
default:
return 5;
}
}
void dram_find_common_params(ramctr_timing *ctrl)
{
size_t valid_dimms;
int channel, slot;
dimm_info *dimms = &ctrl->info;
ctrl->cas_supported = (1 << (MAX_CAS - MIN_CAS + 1)) - 1;
valid_dimms = 0;
FOR_ALL_CHANNELS for (slot = 0; slot < 2; slot++) {
const dimm_attr *dimm = &dimms->dimm[channel][slot];
if (dimm->dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
valid_dimms++;
/* Find all possible CAS combinations */
ctrl->cas_supported &= dimm->cas_supported;
/* Find the smallest common latencies supported by all DIMMs */
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
}
if (!ctrl->cas_supported)
die("Unsupported DIMM combination. "
"DIMMS do not support common CAS latency");
if (!valid_dimms)
die("No valid DIMMs found");
}
void dram_xover(ramctr_timing * ctrl)
{
u32 reg;
int channel;
FOR_ALL_CHANNELS {
// enable xover clk
reg = get_XOVER_CLK(ctrl->rankmap[channel]);
printram("XOVER CLK [%x] = %x\n", channel * 0x100 + 0xc14,
reg);
MCHBAR32(channel * 0x100 + 0xc14) = reg;
// enable xover ctl & xover cmd
reg = get_XOVER_CMD(ctrl->rankmap[channel]);
printram("XOVER CMD [%x] = %x\n", 0x100 * channel + 0x320c,
reg);
MCHBAR32(0x100 * channel + 0x320c) = reg;
}
}
static void dram_odt_stretch(ramctr_timing *ctrl, int channel)
{
struct cpuid_result cpures;
u32 reg, addr, cpu, stretch;
stretch = ctrl->ref_card_offset[channel];
/* ODT stretch: Delay ODT signal by stretch value.
* Useful for multi DIMM setups on the same channel. */
cpures = cpuid(1);
cpu = cpures.eax;
if (IS_SANDY_CPU(cpu) && IS_SANDY_CPU_C(cpu)) {
if (stretch == 2)
stretch = 3;
addr = 0x400 * channel + 0x401c;
reg = MCHBAR32(addr) & 0xffffc3ff;
reg |= (stretch << 12);
reg |= (stretch << 10);
MCHBAR32(addr) = reg;
printram("OTHP Workaround [%x] = %x\n", addr, reg);
} else {
// OTHP
addr = 0x400 * channel + 0x400c;
reg = MCHBAR32(addr) & 0xfff0ffff;
reg |= (stretch << 16);
reg |= (stretch << 18);
MCHBAR32(addr) = reg;
printram("OTHP [%x] = %x\n", addr, reg);
}
}
void dram_timing_regs(ramctr_timing *ctrl)
{
u32 reg, addr, val32;
int channel;
FOR_ALL_CHANNELS {
// DBP
reg = 0;
reg |= ctrl->tRCD;
reg |= (ctrl->tRP << 4);
reg |= (ctrl->CAS << 8);
reg |= (ctrl->CWL << 12);
reg |= (ctrl->tRAS << 16);
printram("DBP [%x] = %x\n", 0x400 * channel + 0x4000, reg);
MCHBAR32(0x400 * channel + 0x4000) = reg;
// RAP
reg = 0;
reg |= ctrl->tRRD;
reg |= (ctrl->tRTP << 4);
reg |= (ctrl->tCKE << 8);
reg |= (ctrl->tWTR << 12);
reg |= (ctrl->tFAW << 16);
reg |= (ctrl->tWR << 24);
reg |= (3 << 30);
printram("RAP [%x] = %x\n", 0x400 * channel + 0x4004, reg);
MCHBAR32(0x400 * channel + 0x4004) = reg;
// OTHP
addr = 0x400 * channel + 0x400c;
reg = 0;
reg |= ctrl->tXPDLL;
reg |= (ctrl->tXP << 5);
reg |= (ctrl->tAONPD << 8);
reg |= 0xa0000;
printram("OTHP [%x] = %x\n", addr, reg);
MCHBAR32(addr) = reg;
MCHBAR32(0x400 * channel + 0x4014) = 0;
MCHBAR32(addr) |= 0x00020000;
dram_odt_stretch(ctrl, channel);
// REFI
reg = 0;
val32 = ctrl->tREFI;
reg = (reg & ~0xffff) | val32;
val32 = ctrl->tRFC;
reg = (reg & ~0x1ff0000) | (val32 << 16);
val32 = (u32) (ctrl->tREFI * 9) / 1024;
reg = (reg & ~0xfe000000) | (val32 << 25);
printram("REFI [%x] = %x\n", 0x400 * channel + 0x4298,
reg);
MCHBAR32(0x400 * channel + 0x4298) = reg;
MCHBAR32(0x400 * channel + 0x4294) |= 0xff;
// SRFTP
reg = 0;
val32 = tDLLK;
reg = (reg & ~0xfff) | val32;
val32 = ctrl->tXSOffset;
reg = (reg & ~0xf000) | (val32 << 12);
val32 = tDLLK - ctrl->tXSOffset;
reg = (reg & ~0x3ff0000) | (val32 << 16);
val32 = ctrl->tMOD - 8;
reg = (reg & ~0xf0000000) | (val32 << 28);
printram("SRFTP [%x] = %x\n", 0x400 * channel + 0x42a4,
reg);
MCHBAR32(0x400 * channel + 0x42a4) = reg;
}
}
void dram_dimm_mapping(ramctr_timing *ctrl)
{
int channel;
dimm_info *info = &ctrl->info;
FOR_ALL_CHANNELS {
dimm_attr *dimmA, *dimmB;
u32 reg = 0;
if (info->dimm[channel][0].size_mb >=
info->dimm[channel][1].size_mb) {
dimmA = &info->dimm[channel][0];
dimmB = &info->dimm[channel][1];
reg |= 0 << 16;
} else {
dimmA = &info->dimm[channel][1];
dimmB = &info->dimm[channel][0];
reg |= 1 << 16;
}
if (dimmA && (dimmA->ranks > 0)) {
reg |= dimmA->size_mb / 256;
reg |= (dimmA->ranks - 1) << 17;
reg |= (dimmA->width / 8 - 1) << 19;
}
if (dimmB && (dimmB->ranks > 0)) {
reg |= (dimmB->size_mb / 256) << 8;
reg |= (dimmB->ranks - 1) << 18;
reg |= (dimmB->width / 8 - 1) << 20;
}
reg |= 1 << 21; /* rank interleave */
reg |= 1 << 22; /* enhanced interleave */
if ((dimmA && (dimmA->ranks > 0))
|| (dimmB && (dimmB->ranks > 0))) {
ctrl->mad_dimm[channel] = reg;
} else {
ctrl->mad_dimm[channel] = 0;
}
}
}
void dram_dimm_set_mapping(ramctr_timing * ctrl)
{
int channel;
FOR_ALL_CHANNELS {
MCHBAR32(0x5004 + channel * 4) = ctrl->mad_dimm[channel];
}
}
void dram_zones(ramctr_timing * ctrl, int training)
{
u32 reg, ch0size, ch1size;
u8 val;
reg = 0;
val = 0;
if (training) {
ch0size = ctrl->channel_size_mb[0] ? 256 : 0;
ch1size = ctrl->channel_size_mb[1] ? 256 : 0;
} else {
ch0size = ctrl->channel_size_mb[0];
ch1size = ctrl->channel_size_mb[1];
}
if (ch0size >= ch1size) {
reg = MCHBAR32(0x5014);
val = ch1size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0xff0000) | (2 * val) << 16;
MCHBAR32(0x5014) = reg;
MCHBAR32(0x5000) = 0x24;
} else {
reg = MCHBAR32(0x5014);
val = ch0size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0xff0000) | (2 * val) << 16;
MCHBAR32(0x5014) = reg;
MCHBAR32(0x5000) = 0x21;
}
}
#define HOST_BRIDGE PCI_DEVFN(0, 0)
#define DEFAULT_TCK TCK_800MHZ
unsigned int get_mem_min_tck(void)
{
u32 reg32;
u8 rev;
const struct device *dev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
dev = dev_find_slot(0, HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->max_mem_clock_mhz == 0) {
if (IS_ENABLED(CONFIG_NATIVE_RAMINIT_IGNORE_MAX_MEM_FUSES))
return TCK_1333MHZ;
rev = pci_read_config8(PCI_DEV(0, 0, 0), PCI_DEVICE_ID);
if ((rev & BASE_REV_MASK) == BASE_REV_SNB) {
/* read Capabilities A Register DMFC bits */
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_A);
reg32 &= 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
/* reserved: */
default:
break;
}
} else {
/* read Capabilities B Register DMFC bits */
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_B);
reg32 = (reg32 >> 4) & 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
case 4: return TCK_933MHZ;
case 3: return TCK_1066MHZ;
case 2: return TCK_1200MHZ;
case 1: return TCK_1333MHZ;
/* reserved: */
default:
break;
}
}
return DEFAULT_TCK;
} else {
if (cfg->max_mem_clock_mhz >= 1066)
return TCK_1066MHZ;
else if (cfg->max_mem_clock_mhz >= 933)
return TCK_933MHZ;
else if (cfg->max_mem_clock_mhz >= 800)
return TCK_800MHZ;
else if (cfg->max_mem_clock_mhz >= 666)
return TCK_666MHZ;
else if (cfg->max_mem_clock_mhz >= 533)
return TCK_533MHZ;
else
return TCK_400MHZ;
}
}
#define DEFAULT_PCI_MMIO_SIZE 2048
static unsigned int get_mmio_size(void)
{
const struct device *dev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
dev = dev_find_slot(0, HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->pci_mmio_size == 0)
return DEFAULT_PCI_MMIO_SIZE;
else
return cfg->pci_mmio_size;
}
void dram_memorymap(ramctr_timing * ctrl, int me_uma_size)
{
u32 reg, val, reclaim;
u32 tom, gfxstolen, gttsize;
size_t tsegsize, mmiosize, toludbase, touudbase, gfxstolenbase, gttbase,
tsegbase, mestolenbase;
size_t tsegbasedelta, remapbase, remaplimit;
uint16_t ggc;
mmiosize = get_mmio_size();
ggc = pci_read_config16(NORTHBRIDGE, GGC);
if (!(ggc & 2)) {
gfxstolen = ((ggc >> 3) & 0x1f) * 32;
gttsize = ((ggc >> 8) & 0x3);
} else {
gfxstolen = 0;
gttsize = 0;
}
tsegsize = CONFIG_SMM_TSEG_SIZE >> 20;
tom = ctrl->channel_size_mb[0] + ctrl->channel_size_mb[1];
mestolenbase = tom - me_uma_size;
toludbase = MIN(4096 - mmiosize + gfxstolen + gttsize + tsegsize,
tom - me_uma_size);
gfxstolenbase = toludbase - gfxstolen;
gttbase = gfxstolenbase - gttsize;
tsegbase = gttbase - tsegsize;
// Round tsegbase down to nearest address aligned to tsegsize
tsegbasedelta = tsegbase & (tsegsize - 1);
tsegbase &= ~(tsegsize - 1);
gttbase -= tsegbasedelta;
gfxstolenbase -= tsegbasedelta;
toludbase -= tsegbasedelta;
// Test if it is possible to reclaim a hole in the RAM addressing
if (tom - me_uma_size > toludbase) {
// Reclaim is possible
reclaim = 1;
remapbase = MAX(4096, tom - me_uma_size);
remaplimit =
remapbase + MIN(4096, tom - me_uma_size) - toludbase - 1;
touudbase = remaplimit + 1;
} else {
// Reclaim not possible
reclaim = 0;
touudbase = tom - me_uma_size;
}
// Update memory map in pci-e configuration space
printk(BIOS_DEBUG, "Update PCI-E configuration space:\n");
// TOM (top of memory)
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xa0);
val = tom & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa0, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa0, reg);
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xa4);
val = tom & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa4, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa4, reg);
// TOLUD (top of low used dram)
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xbc);
val = toludbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xbc, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xbc, reg);
// TOUUD LSB (top of upper usable dram)
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xa8);
val = touudbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa8, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa8, reg);
// TOUUD MSB
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xac);
val = touudbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xac, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xac, reg);
if (reclaim) {
// REMAP BASE
pci_write_config32(PCI_DEV(0, 0, 0), 0x90, remapbase << 20);
pci_write_config32(PCI_DEV(0, 0, 0), 0x94, remapbase >> 12);
// REMAP LIMIT
pci_write_config32(PCI_DEV(0, 0, 0), 0x98, remaplimit << 20);
pci_write_config32(PCI_DEV(0, 0, 0), 0x9c, remaplimit >> 12);
}
// TSEG
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xb8);
val = tsegbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb8, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xb8, reg);
// GFX stolen memory
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xb0);
val = gfxstolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb0, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xb0, reg);
// GTT stolen memory
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0xb4);
val = gttbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb4, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0xb4, reg);
if (me_uma_size) {
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0x7c);
val = (0x80000 - me_uma_size) & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x7c, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0x7c, reg);
// ME base
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0x70);
val = mestolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x70, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0x70, reg);
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0x74);
val = mestolenbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x74, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0x74, reg);
// ME mask
reg = pci_read_config32(PCI_DEV(0, 0, 0), 0x78);
val = (0x80000 - me_uma_size) & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
reg = (reg & ~0x400) | (1 << 10); // set lockbit on ME mem
reg = (reg & ~0x800) | (1 << 11); // set ME memory enable
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x78, reg);
pci_write_config32(PCI_DEV(0, 0, 0), 0x78, reg);
}
}
static void wait_428c(int channel)
{
while (1) {
if (read32(DEFAULT_MCHBAR + 0x428c + (channel << 10)) & 0x50)
return;
}
}
static void write_reset(ramctr_timing * ctrl)
{
int channel, slotrank;
/* choose a populated channel. */
channel = (ctrl->rankmap[0]) ? 0 : 1;
wait_428c(channel);
/* choose a populated rank. */
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x80c01);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x400001);
wait_428c(channel);
}
void dram_jedecreset(ramctr_timing * ctrl)
{
u32 reg, addr;
int channel;
while (!(MCHBAR32(0x5084) & 0x10000));
do {
reg = MCHBAR32(0x428c);
} while ((reg & 0x14) == 0);
// Set state of memory controller
reg = 0x112;
MCHBAR32(0x5030) = reg;
MCHBAR32(0x4ea0) = 0;
reg |= 2; //ddr reset
MCHBAR32(0x5030) = reg;
// Assert dimm reset signal
reg = MCHBAR32(0x5030);
reg &= ~0x2;
MCHBAR32(0x5030) = reg;
// Wait 200us
udelay(200);
// Deassert dimm reset signal
MCHBAR32(0x5030) |= 2;
// Wait 500us
udelay(500);
// Enable DCLK
MCHBAR32(0x5030) |= 4;
// XXX Wait 20ns
udelay(1);
FOR_ALL_CHANNELS {
// Set valid rank CKE
reg = 0;
reg = (reg & ~0xf) | ctrl->rankmap[channel];
addr = 0x400 * channel + 0x42a0;
MCHBAR32(addr) = reg;
// Wait 10ns for ranks to settle
//udelay(0.01);
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
MCHBAR32(addr) = reg;
// Write reset using a NOP
write_reset(ctrl);
}
}
static odtmap get_ODT(ramctr_timing *ctrl, u8 rank, int channel)
{
/* Get ODT based on rankmap: */
int dimms_per_ch = (ctrl->rankmap[channel] & 1)
+ ((ctrl->rankmap[channel] >> 2) & 1);
if (dimms_per_ch == 1) {
return (const odtmap){60, 60};
} else {
return (const odtmap){120, 30};
}
}
static void write_mrreg(ramctr_timing *ctrl, int channel, int slotrank,
int reg, u32 val)
{
wait_428c(channel);
if (ctrl->rank_mirror[channel][slotrank]) {
/* DDR3 Rank1 Address mirror
* swap the following pins:
* A3<->A4, A5<->A6, A7<->A8, BA0<->BA1 */
reg = ((reg >> 1) & 1) | ((reg << 1) & 2);
val = (val & ~0x1f8) | ((val >> 1) & 0xa8)
| ((val & 0xa8) << 1);
}
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x0f000);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
}
static u32 make_mr0(ramctr_timing * ctrl, u8 rank)
{
u16 mr0reg, mch_cas, mch_wr;
static const u8 mch_wr_t[12] = { 1, 2, 3, 4, 0, 5, 0, 6, 0, 7, 0, 0 };
/* DLL Reset - self clearing - set after CLK frequency has been changed */
mr0reg = 0x100;
// Convert CAS to MCH register friendly
if (ctrl->CAS < 12) {
mch_cas = (u16) ((ctrl->CAS - 4) << 1);
} else {
mch_cas = (u16) (ctrl->CAS - 12);
mch_cas = ((mch_cas << 1) | 0x1);
}
// Convert tWR to MCH register friendly
mch_wr = mch_wr_t[ctrl->tWR - 5];
mr0reg = (mr0reg & ~0x4) | ((mch_cas & 0x1) << 2);
mr0reg = (mr0reg & ~0x70) | ((mch_cas & 0xe) << 3);
mr0reg = (mr0reg & ~0xe00) | (mch_wr << 9);
// Precharge PD - Fast (desktop) 0x1 or slow (mobile) 0x0 - mostly power-saving feature
mr0reg = (mr0reg & ~0x1000) | (!ctrl->mobile << 12);
return mr0reg;
}
static void dram_mr0(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 0,
make_mr0(ctrl, rank));
}
static u32 encode_odt(u32 odt)
{
switch (odt) {
case 30:
return (1 << 9) | (1 << 2); // RZQ/8, RZQ/4
case 60:
return (1 << 2); // RZQ/4
case 120:
return (1 << 6); // RZQ/2
default:
case 0:
return 0;
}
}
static u32 make_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
odtmap odt;
u32 mr1reg;
odt = get_ODT(ctrl, rank, channel);
mr1reg = 0x2;
mr1reg |= encode_odt(odt.rttnom);
return mr1reg;
}
static void dram_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
u16 mr1reg;
mr1reg = make_mr1(ctrl, rank, channel);
write_mrreg(ctrl, channel, rank, 1, mr1reg);
}
static void dram_mr2(ramctr_timing *ctrl, u8 rank, int channel)
{
u16 pasr, cwl, mr2reg;
odtmap odt;
int srt;
pasr = 0;
cwl = ctrl->CWL - 5;
odt = get_ODT(ctrl, rank, channel);
srt = ctrl->extended_temperature_range && !ctrl->auto_self_refresh;
mr2reg = 0;
mr2reg = (mr2reg & ~0x7) | pasr;
mr2reg = (mr2reg & ~0x38) | (cwl << 3);
mr2reg = (mr2reg & ~0x40) | (ctrl->auto_self_refresh << 6);
mr2reg = (mr2reg & ~0x80) | (srt << 7);
mr2reg |= (odt.rttwr / 60) << 9;
write_mrreg(ctrl, channel, rank, 2, mr2reg);
}
static void dram_mr3(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 3, 0);
}
void dram_mrscommands(ramctr_timing * ctrl)
{
u8 slotrank;
u32 reg, addr;
int channel;
FOR_ALL_POPULATED_CHANNELS {
FOR_ALL_POPULATED_RANKS {
// MR2
dram_mr2(ctrl, slotrank, channel);
// MR3
dram_mr3(ctrl, slotrank, channel);
// MR1
dram_mr1(ctrl, slotrank, channel);
// MR0
dram_mr0(ctrl, slotrank, channel);
}
}
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4e20, 0x7);
write32(DEFAULT_MCHBAR + 0x4e30, 0xf1001);
write32(DEFAULT_MCHBAR + 0x4e00, 0x60002);
write32(DEFAULT_MCHBAR + 0x4e10, 0);
/* DRAM command ZQCL */
write32(DEFAULT_MCHBAR + 0x4e24, 0x1f003);
write32(DEFAULT_MCHBAR + 0x4e34, 0x1901001);
write32(DEFAULT_MCHBAR + 0x4e04, 0x60400);
write32(DEFAULT_MCHBAR + 0x4e14, 0x288);
/* execute command queue on all channels ? */
write32(DEFAULT_MCHBAR + 0x4e84, 0x40004);
// Drain
FOR_ALL_CHANNELS {
// Wait for ref drained
wait_428c(channel);
}
// Refresh enable
MCHBAR32(0x5030) |= 8;
FOR_ALL_POPULATED_CHANNELS {
addr = 0x400 * channel + 0x4020;
reg = MCHBAR32(addr);
reg &= ~0x200000;
MCHBAR32(addr) = reg;
wait_428c(channel);
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
// Drain
wait_428c(channel);
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x1);
// Drain
wait_428c(channel);
}
}
static const u32 lane_registers[] = {
0x0000, 0x0200, 0x0400, 0x0600,
0x1000, 0x1200, 0x1400, 0x1600,
0x0800
};
void program_timings(ramctr_timing * ctrl, int channel)
{
u32 reg32, reg_4024, reg_c14, reg_c18, reg_4028;
int lane;
int slotrank, slot;
int full_shift = 0;
u16 slot320c[NUM_SLOTS];
FOR_ALL_POPULATED_RANKS {
if (full_shift < -ctrl->timings[channel][slotrank].val_320c)
full_shift = -ctrl->timings[channel][slotrank].val_320c;
}
for (slot = 0; slot < NUM_SLOTS; slot++)
switch ((ctrl->rankmap[channel] >> (2 * slot)) & 3) {
case 0:
default:
slot320c[slot] = 0x7f;
break;
case 1:
slot320c[slot] =
ctrl->timings[channel][2 * slot + 0].val_320c +
full_shift;
break;
case 2:
slot320c[slot] =
ctrl->timings[channel][2 * slot + 1].val_320c +
full_shift;
break;
case 3:
slot320c[slot] =
(ctrl->timings[channel][2 * slot].val_320c +
ctrl->timings[channel][2 * slot +
1].val_320c) / 2 +
full_shift;
break;
}
/* enable CMD XOVER */
reg32 = get_XOVER_CMD(ctrl->rankmap[channel]);
reg32 |= ((slot320c[0] & 0x3f) << 6) | ((slot320c[0] & 0x40) << 9);
reg32 |= (slot320c[1] & 0x7f) << 18;
reg32 |= (full_shift & 0x3f) | ((full_shift & 0x40) << 6);
MCHBAR32(0x320c + 0x100 * channel) = reg32;
/* enable CLK XOVER */
reg_c14 = get_XOVER_CLK(ctrl->rankmap[channel]);
reg_c18 = 0;
FOR_ALL_POPULATED_RANKS {
int shift =
ctrl->timings[channel][slotrank].val_320c + full_shift;
int offset_val_c14;
if (shift < 0)
shift = 0;
offset_val_c14 = ctrl->reg_c14_offset + shift;
/* set CLK phase shift */
reg_c14 |= (offset_val_c14 & 0x3f) << (6 * slotrank);
reg_c18 |= ((offset_val_c14 >> 6) & 1) << slotrank;
}
MCHBAR32(0xc14 + channel * 0x100) = reg_c14;
MCHBAR32(0xc18 + channel * 0x100) = reg_c18;
reg_4028 = MCHBAR32(0x4028 + 0x400 * channel);
reg_4028 &= 0xffff0000;
reg_4024 = 0;
FOR_ALL_POPULATED_RANKS {
int post_timA_min_high = 7, post_timA_max_high = 0;
int pre_timA_min_high = 7, pre_timA_max_high = 0;
int shift_402x = 0;
int shift =
ctrl->timings[channel][slotrank].val_320c + full_shift;
if (shift < 0)
shift = 0;
FOR_ALL_LANES {
post_timA_min_high = MIN(post_timA_min_high,
(ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) >> 6);
pre_timA_min_high = MIN(pre_timA_min_high,
ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
post_timA_max_high = MAX(post_timA_max_high,
(ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) >> 6);
pre_timA_max_high = MAX(pre_timA_max_high,
ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
}
if (pre_timA_max_high - pre_timA_min_high <
post_timA_max_high - post_timA_min_high)
shift_402x = +1;
else if (pre_timA_max_high - pre_timA_min_high >
post_timA_max_high - post_timA_min_high)
shift_402x = -1;
reg_4028 |=
(ctrl->timings[channel][slotrank].val_4028 + shift_402x -
post_timA_min_high) << (4 * slotrank);
reg_4024 |=
(ctrl->timings[channel][slotrank].val_4024 +
shift_402x) << (8 * slotrank);
FOR_ALL_LANES {
MCHBAR32(lane_registers[lane] + 0x10 + 0x100 * channel +
4 * slotrank)
=
(((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) & 0x3f)
|
((ctrl->timings[channel][slotrank].lanes[lane].
rising + shift) << 8)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift -
(post_timA_min_high << 6)) & 0x1c0) << 10)
| ((ctrl->timings[channel][slotrank].lanes[lane].
falling + shift) << 20));
MCHBAR32(lane_registers[lane] + 0x20 + 0x100 * channel +
4 * slotrank)
=
(((ctrl->timings[channel][slotrank].lanes[lane].
timC + shift) & 0x3f)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timB + shift) & 0x3f) << 8)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timB + shift) & 0x1c0) << 9)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timC + shift) & 0x40) << 13));
}
}
MCHBAR32(0x4024 + 0x400 * channel) = reg_4024;
MCHBAR32(0x4028 + 0x400 * channel) = reg_4028;
}
static void test_timA(ramctr_timing * ctrl, int channel, int slotrank)
{
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x4040c01);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x100f | ((ctrl->CAS + 36) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
}
static int does_lane_work(ramctr_timing * ctrl, int channel, int slotrank,
int lane)
{
u32 timA = ctrl->timings[channel][slotrank].lanes[lane].timA;
return ((read32
(DEFAULT_MCHBAR + lane_registers[lane] + channel * 0x100 + 4 +
((timA / 32) & 1) * 4)
>> (timA % 32)) & 1);
}
struct run {
int middle;
int end;
int start;
int all;
int length;
};
static struct run get_longest_zero_run(int *seq, int sz)
{
int i, ls;
int bl = 0, bs = 0;
struct run ret;
ls = 0;
for (i = 0; i < 2 * sz; i++)
if (seq[i % sz]) {
if (i - ls > bl) {
bl = i - ls;
bs = ls;
}
ls = i + 1;
}
if (bl == 0) {
ret.middle = sz / 2;
ret.start = 0;
ret.end = sz;
ret.all = 1;
return ret;
}
ret.start = bs % sz;
ret.end = (bs + bl - 1) % sz;
ret.middle = (bs + (bl - 1) / 2) % sz;
ret.length = bl;
ret.all = 0;
return ret;
}
static void discover_timA_coarse(ramctr_timing * ctrl, int channel,
int slotrank, int *upperA)
{
int timA;
int statistics[NUM_LANES][128];
int lane;
for (timA = 0; timA < 128; timA++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timA = timA;
}
program_timings(ctrl, channel);
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timA] =
!does_lane_work(ctrl, channel, slotrank, lane);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], 128);
ctrl->timings[channel][slotrank].lanes[lane].timA = rn.middle;
upperA[lane] = rn.end;
if (upperA[lane] < rn.middle)
upperA[lane] += 128;
printram("timA: %d, %d, %d: 0x%02x-0x%02x-0x%02x\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
}
static void discover_timA_fine(ramctr_timing * ctrl, int channel, int slotrank,
int *upperA)
{
int timA_delta;
int statistics[NUM_LANES][51];
int lane, i;
memset(statistics, 0, sizeof(statistics));
for (timA_delta = -25; timA_delta <= 25; timA_delta++) {
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
timA = upperA[lane] + timA_delta + 0x40;
program_timings(ctrl, channel);
for (i = 0; i < 100; i++) {
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timA_delta + 25] +=
does_lane_work(ctrl, channel, slotrank,
lane);
}
}
}
FOR_ALL_LANES {
int last_zero, first_all;
for (last_zero = -25; last_zero <= 25; last_zero++)
if (statistics[lane][last_zero + 25])
break;
last_zero--;
for (first_all = -25; first_all <= 25; first_all++)
if (statistics[lane][first_all + 25] == 100)
break;
printram("lane %d: %d, %d\n", lane, last_zero,
first_all);
ctrl->timings[channel][slotrank].lanes[lane].timA =
(last_zero + first_all) / 2 + upperA[lane];
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].timA);
}
}
static int discover_402x(ramctr_timing *ctrl, int channel, int slotrank,
int *upperA)
{
int works[NUM_LANES];
int lane;
while (1) {
int all_works = 1, some_works = 0;
program_timings(ctrl, channel);
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
works[lane] =
!does_lane_work(ctrl, channel, slotrank, lane);
if (works[lane])
some_works = 1;
else
all_works = 0;
}
if (all_works)
return 0;
if (!some_works) {
if (ctrl->timings[channel][slotrank].val_4024 < 2) {
printk(BIOS_EMERG, "402x discovery failed (1): %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
ctrl->timings[channel][slotrank].val_4024 -= 2;
printram("4024 -= 2;\n");
continue;
}
ctrl->timings[channel][slotrank].val_4028 += 2;
printram("4028 += 2;\n");
if (ctrl->timings[channel][slotrank].val_4028 >= 0x10) {
printk(BIOS_EMERG, "402x discovery failed (2): %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
FOR_ALL_LANES if (works[lane]) {
ctrl->timings[channel][slotrank].lanes[lane].timA +=
128;
upperA[lane] += 128;
printram("increment %d, %d, %d\n", channel,
slotrank, lane);
}
}
return 0;
}
struct timA_minmax {
int timA_min_high, timA_max_high;
};
static void pre_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
struct timA_minmax *mnmx)
{
int lane;
mnmx->timA_min_high = 7;
mnmx->timA_max_high = 0;
FOR_ALL_LANES {
if (mnmx->timA_min_high >
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
mnmx->timA_min_high =
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
if (mnmx->timA_max_high <
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
mnmx->timA_max_high =
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
}
}
static void post_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
struct timA_minmax *mnmx)
{
struct timA_minmax post;
int shift_402x = 0;
/* Get changed maxima. */
pre_timA_change(ctrl, channel, slotrank, &post);
if (mnmx->timA_max_high - mnmx->timA_min_high <
post.timA_max_high - post.timA_min_high)
shift_402x = +1;
else if (mnmx->timA_max_high - mnmx->timA_min_high >
post.timA_max_high - post.timA_min_high)
shift_402x = -1;
else
shift_402x = 0;
ctrl->timings[channel][slotrank].val_4028 += shift_402x;
ctrl->timings[channel][slotrank].val_4024 += shift_402x;
printram("4024 += %d;\n", shift_402x);
printram("4028 += %d;\n", shift_402x);
}
/* Compensate the skew between DQS and DQs.
* To ease PCB design a small skew between Data Strobe signals and
* Data Signals is allowed.
* The controller has to measure and compensate this skew for every byte-lane.
* By delaying either all DQs signals or DQS signal, a full phase
* shift can be introduced.
* It is assumed that one byte-lane's DQs signals have the same routing delay.
*
* To measure the actual skew, the DRAM is placed in "read leveling" mode.
* In read leveling mode the DRAM-chip outputs an alternating periodic pattern.
* The memory controller iterates over all possible values to do a full phase shift
* and issues read commands.
* With DQS and DQs in phase the data read is expected to alternate on every byte:
* 0xFF 0x00 0xFF ...
* Once the controller has detected this pattern a bit in the result register is
* set for the current phase shift.
*/
int read_training(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
int err;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
int all_high, some_high;
int upperA[NUM_LANES];
struct timA_minmax mnmx;
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
write32(DEFAULT_MCHBAR + 0x3400, (slotrank << 2) | 0x8001);
ctrl->timings[channel][slotrank].val_4028 = 4;
ctrl->timings[channel][slotrank].val_4024 = 55;
program_timings(ctrl, channel);
discover_timA_coarse(ctrl, channel, slotrank, upperA);
all_high = 1;
some_high = 0;
FOR_ALL_LANES {
if (ctrl->timings[channel][slotrank].lanes[lane].
timA >= 0x40)
some_high = 1;
else
all_high = 0;
}
if (all_high) {
ctrl->timings[channel][slotrank].val_4028--;
printram("4028--;\n");
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].
timA -= 0x40;
upperA[lane] -= 0x40;
}
} else if (some_high) {
ctrl->timings[channel][slotrank].val_4024++;
ctrl->timings[channel][slotrank].val_4028++;
printram("4024++;\n");
printram("4028++;\n");
}
program_timings(ctrl, channel);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
err = discover_402x(ctrl, channel, slotrank, upperA);
if (err)
return err;
post_timA_change(ctrl, channel, slotrank, &mnmx);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
discover_timA_fine(ctrl, channel, slotrank, upperA);
post_timA_change(ctrl, channel, slotrank, &mnmx);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timA -= mnmx.timA_min_high * 0x40;
}
ctrl->timings[channel][slotrank].val_4028 -= mnmx.timA_min_high;
printram("4028 -= %d;\n", mnmx.timA_min_high);
post_timA_change(ctrl, channel, slotrank, &mnmx);
printram("4/8: %d, %d, %x, %x\n", channel, slotrank,
ctrl->timings[channel][slotrank].val_4024,
ctrl->timings[channel][slotrank].val_4028);
printram("final results:\n");
FOR_ALL_LANES
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
lane,
ctrl->timings[channel][slotrank].lanes[lane].timA);
write32(DEFAULT_MCHBAR + 0x3400, 0);
toggle_io_reset();
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel
+ 4 * lane, 0);
}
return 0;
}
static void test_timC(ramctr_timing * ctrl, int channel, int slotrank)
{
int lane;
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel + 4 * lane, 0);
read32(DEFAULT_MCHBAR + 0x4140 + 0x400 * channel + 4 * lane);
}
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(max((ctrl->tFAW >> 2) + 1, ctrl->tRRD) << 10)
| 4 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | (6 << 16));
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8041001);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 8);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x80411f4);
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 8);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
(max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1) << 10)
| 8 | (ctrl->CAS << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x244);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x40011f4 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
}
static int discover_timC(ramctr_timing *ctrl, int channel, int slotrank)
{
int timC;
int statistics[NUM_LANES][MAX_TIMC + 1];
int lane;
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
for (timC = 0; timC <= MAX_TIMC; timC++) {
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
timC = timC;
program_timings(ctrl, channel);
test_timC(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timC] =
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
0x400 * channel);
}
}
FOR_ALL_LANES {
struct run rn =
get_longest_zero_run(statistics[lane], MAX_TIMC + 1);
ctrl->timings[channel][slotrank].lanes[lane].timC = rn.middle;
if (rn.all) {
printk(BIOS_EMERG, "timC discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("timC: %d, %d, %d: 0x%02x-0x%02x-0x%02x\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
return 0;
}
static int get_precedening_channels(ramctr_timing * ctrl, int target_channel)
{
int channel, ret = 0;
FOR_ALL_POPULATED_CHANNELS if (channel < target_channel)
ret++;
return ret;
}
static void fill_pattern0(ramctr_timing * ctrl, int channel, u32 a, u32 b)
{
unsigned j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + 4 * j), j & 2 ? b : a);
sfence();
}
static int num_of_channels(const ramctr_timing * ctrl)
{
int ret = 0;
int channel;
FOR_ALL_POPULATED_CHANNELS ret++;
return ret;
}
static void fill_pattern1(ramctr_timing * ctrl, int channel)
{
unsigned j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
unsigned channel_step = 0x40 * num_of_channels(ctrl);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + j * 4), 0xffffffff);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + channel_step + j * 4), 0);
sfence();
}
static void precharge(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
FOR_ALL_POPULATED_CHANNELS {
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
16;
ctrl->timings[channel][slotrank].lanes[lane].rising =
16;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
48;
ctrl->timings[channel][slotrank].lanes[lane].rising =
48;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
}
}
static void test_timB(ramctr_timing * ctrl, int channel, int slotrank)
{
/* enable DQs on this slotrank */
write_mrreg(ctrl, channel, slotrank, 1,
0x80 | make_mr1(ctrl, slotrank, channel));
wait_428c(channel);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWLO) << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
8 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f107);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4000c01 | ((ctrl->CAS + 38) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 4);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x400 * channel + 0x4284, 0x40001);
wait_428c(channel);
/* disable DQs on this slotrank */
write_mrreg(ctrl, channel, slotrank, 1,
0x1080 | make_mr1(ctrl, slotrank, channel));
}
static int discover_timB(ramctr_timing *ctrl, int channel, int slotrank)
{
int timB;
int statistics[NUM_LANES][128];
int lane;
write32(DEFAULT_MCHBAR + 0x3400, 0x108052 | (slotrank << 2));
for (timB = 0; timB < 128; timB++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timB = timB;
}
program_timings(ctrl, channel);
test_timB(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timB] =
!((read32
(DEFAULT_MCHBAR + lane_registers[lane] +
channel * 0x100 + 4 + ((timB / 32) & 1) * 4)
>> (timB % 32)) & 1);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], 128);
/* timC is a direct function of timB's 6 LSBs.
* Some tests increments the value of timB by a small value,
* which might cause the 6bit value to overflow, if it's close
* to 0x3F. Increment the value by a small offset if it's likely
* to overflow, to make sure it won't overflow while running
* tests and bricks the system due to a non matching timC.
*
* TODO: find out why some tests (edge write discovery)
* increment timB. */
if ((rn.start & 0x3F) == 0x3E)
rn.start += 2;
else if ((rn.start & 0x3F) == 0x3F)
rn.start += 1;
ctrl->timings[channel][slotrank].lanes[lane].timB = rn.start;
if (rn.all) {
printk(BIOS_EMERG, "timB discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("timB: %d, %d, %d: 0x%02x-0x%02x-0x%02x\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
return 0;
}
static int get_timB_high_adjust(u64 val)
{
int i;
/* good */
if (val == 0xffffffffffffffffLL)
return 0;
if (val >= 0xf000000000000000LL) {
/* needs negative adjustment */
for (i = 0; i < 8; i++)
if (val << (8 * (7 - i) + 4))
return -i;
} else {
/* needs positive adjustment */
for (i = 0; i < 8; i++)
if (val >> (8 * (7 - i) + 4))
return i;
}
return 8;
}
static void adjust_high_timB(ramctr_timing * ctrl)
{
int channel, slotrank, lane, old;
write32(DEFAULT_MCHBAR + 0x3400, 0x200);
FOR_ALL_POPULATED_CHANNELS {
fill_pattern1(ctrl, channel);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 1);
}
FOR_ALL_POPULATED_CHANNELS FOR_ALL_POPULATED_RANKS {
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x10001);
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8040c01);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x8);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x8041003);
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x3e2);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x8);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | ((ctrl->tRP) << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0xc01 | ((ctrl->tRCD) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x3f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x4000c01 |
((ctrl->tRP +
ctrl->timings[channel][slotrank].val_4024 +
ctrl->timings[channel][slotrank].val_4028) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60008);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
wait_428c(channel);
FOR_ALL_LANES {
u64 res =
read32(DEFAULT_MCHBAR + lane_registers[lane] +
0x100 * channel + 4);
res |=
((u64) read32(DEFAULT_MCHBAR + lane_registers[lane] +
0x100 * channel + 8)) << 32;
old = ctrl->timings[channel][slotrank].lanes[lane].timB;
ctrl->timings[channel][slotrank].lanes[lane].timB +=
get_timB_high_adjust(res) * 64;
printram("High adjust %d:%016llx\n", lane, res);
printram("Bval+: %d, %d, %d, %x -> %x\n", channel,
slotrank, lane, old,
ctrl->timings[channel][slotrank].lanes[lane].
timB);
}
}
write32(DEFAULT_MCHBAR + 0x3400, 0);
}
static void write_op(ramctr_timing * ctrl, int channel)
{
int slotrank;
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
/* Compensate the skew between CMD/ADDR/CLK and DQ/DQS lanes.
* DDR3 adopted the fly-by topology. The data and strobes signals reach
* the chips at different times with respect to command, address and
* clock signals.
* By delaying either all DQ/DQs or all CMD/ADDR/CLK signals, a full phase
* shift can be introduced.
* It is assumed that the CLK/ADDR/CMD signals have the same routing delay.
*
* To find the required phase shift the DRAM is placed in "write leveling" mode.
* In this mode the DRAM-chip samples the CLK on every DQS edge and feeds back the
* sampled value on the data lanes (DQs).
*/
int write_training(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
int err;
FOR_ALL_POPULATED_CHANNELS
write32(DEFAULT_MCHBAR + 0x4008 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4008 +
0x400 * channel) | 0x8000000);
FOR_ALL_POPULATED_CHANNELS {
write_op(ctrl, channel);
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel) | 0x200000);
}
/* refresh disable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
FOR_ALL_POPULATED_CHANNELS {
write_op(ctrl, channel);
}
/* enable write leveling on all ranks
* disable all DQ outputs
* only NOP is allowed in this mode */
FOR_ALL_CHANNELS
FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel, slotrank, 1,
make_mr1(ctrl, slotrank, channel) | 0x1080);
write32(DEFAULT_MCHBAR + 0x3400, 0x108052);
toggle_io_reset();
/* set any valid value for timB, it gets corrected later */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_timB(ctrl, channel, slotrank);
if (err)
return err;
}
/* disable write leveling on all ranks */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel,
slotrank, 1, make_mr1(ctrl, slotrank, channel));
write32(DEFAULT_MCHBAR + 0x3400, 0);
FOR_ALL_POPULATED_CHANNELS
wait_428c(channel);
/* refresh enable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) | 8);
FOR_ALL_POPULATED_CHANNELS {
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
~0x00200000 & read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel));
read32(DEFAULT_MCHBAR + 0x428c + 0x400 * channel);
wait_428c(channel);
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel, 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
toggle_io_reset();
printram("CPE\n");
precharge(ctrl);
printram("CPF\n");
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0xaaaaaaaa, 0x55555555);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_timC(ctrl, channel, slotrank);
if (err)
return err;
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
/* measure and adjust timB timings */
adjust_high_timB(ctrl);
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
return 0;
}
static int test_320c(ramctr_timing * ctrl, int channel, int slotrank)
{
struct ram_rank_timings saved_rt = ctrl->timings[channel][slotrank];
int timC_delta;
int lanes_ok = 0;
int ctr = 0;
int lane;
for (timC_delta = -5; timC_delta <= 5; timC_delta++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timC =
saved_rt.lanes[lane].timC + timC_delta;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 4 * lane + 0x4f40, 0);
}
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
((max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1)) << 10)
| 8 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | ctr | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x8001020 | ((ctrl->CWL + ctrl->tWTR + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4244 + 0x400 * channel, 0x389abcd);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x20e42);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x4001020 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4248 + 0x400 * channel, 0x389abcd);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x20e42);
/* DRAM command PRE */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel, 0xf1001);
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
FOR_ALL_LANES {
u32 r32 =
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
0x400 * channel);
if (r32 == 0)
lanes_ok |= 1 << lane;
}
ctr++;
if (lanes_ok == ((1 << NUM_LANES) - 1))
break;
}
ctrl->timings[channel][slotrank] = saved_rt;
return lanes_ok != ((1 << NUM_LANES) - 1);
}
#include "raminit_patterns.h"
static void fill_pattern5(ramctr_timing * ctrl, int channel, int patno)
{
unsigned i, j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
unsigned channel_step = 0x40 * num_of_channels(ctrl);
if (patno) {
u8 base8 = 0x80 >> ((patno - 1) % 8);
u32 base = base8 | (base8 << 8) | (base8 << 16) | (base8 << 24);
for (i = 0; i < 32; i++) {
for (j = 0; j < 16; j++) {
u32 val = use_base[patno - 1][i] & (1 << (j / 2)) ? base : 0;
if (invert[patno - 1][i] & (1 << (j / 2)))
val = ~val;
write32((void *)(0x04000000 + channel_offset + i * channel_step +
j * 4), val);
}
}
} else {
for (i = 0; i < sizeof(pattern) / sizeof(pattern[0]); i++) {
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + i * channel_step +
j * 4), pattern[i][j]);
}
sfence();
}
}
static void reprogram_320c(ramctr_timing * ctrl)
{
int channel, slotrank;
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel) | 0x200000);
}
/* refresh disable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
/* jedec reset */
dram_jedecreset(ctrl);
/* mrs commands. */
dram_mrscommands(ctrl);
toggle_io_reset();
}
#define MIN_C320C_LEN 13
static int try_cmd_stretch(ramctr_timing *ctrl, int channel, int cmd_stretch)
{
struct ram_rank_timings saved_timings[NUM_CHANNELS][NUM_SLOTRANKS];
int slotrank;
int c320c;
int stat[NUM_SLOTRANKS][256];
int delta = 0;
printram("Trying cmd_stretch %d on channel %d\n", cmd_stretch, channel);
FOR_ALL_POPULATED_RANKS {
saved_timings[channel][slotrank] =
ctrl->timings[channel][slotrank];
}
ctrl->cmd_stretch[channel] = cmd_stretch;
MCHBAR32(0x4004 + 0x400 * channel) =
ctrl->tRRD
| (ctrl->tRTP << 4)
| (ctrl->tCKE << 8)
| (ctrl->tWTR << 12)
| (ctrl->tFAW << 16)
| (ctrl->tWR << 24)
| (ctrl->cmd_stretch[channel] << 30);
if (ctrl->cmd_stretch[channel] == 2)
delta = 2;
else if (ctrl->cmd_stretch[channel] == 0)
delta = 4;
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].val_4024 -= delta;
}
for (c320c = -127; c320c <= 127; c320c++) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].val_320c = c320c;
}
program_timings(ctrl, channel);
reprogram_320c(ctrl);
FOR_ALL_POPULATED_RANKS {
stat[slotrank][c320c + 127] =
test_320c(ctrl, channel, slotrank);
}
}
FOR_ALL_POPULATED_RANKS {
struct run rn =
get_longest_zero_run(stat[slotrank], 255);
ctrl->timings[channel][slotrank].val_320c =
rn.middle - 127;
printram("cmd_stretch: %d, %d: 0x%02x-0x%02x-0x%02x\n",
channel, slotrank, rn.start, rn.middle, rn.end);
if (rn.all || rn.length < MIN_C320C_LEN) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank] =
saved_timings[channel][slotrank];
}
return MAKE_ERR;
}
}
return 0;
}
/* Adjust CMD phase shift and try multiple command rates.
* A command rate of 2T doubles the time needed for address and
* command decode. */
int command_training(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
fill_pattern5(ctrl, channel, 0);
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
}
FOR_ALL_POPULATED_CHANNELS {
int cmdrate, err;
/*
* Dual DIMM per channel:
* Issue: While c320c discovery seems to succeed raminit
* will fail in write training.
* Workaround: Skip 1T in dual DIMM mode, that's only
* supported by a few DIMMs.
* TODO: How to detect "1T" DIMMs ?
*
* Single DIMM per channel:
* Try command rate 1T and 2T
*/
cmdrate = ((ctrl->rankmap[channel] & 0x5) == 0x5);
for (; cmdrate < 2; cmdrate++) {
err = try_cmd_stretch(ctrl, channel, cmdrate << 1);
if (!err)
break;
}
if (err) {
printk(BIOS_EMERG, "c320c discovery failed\n");
return err;
}
printram("Using CMD rate %uT on channel %u\n",
cmdrate + 1, channel);
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
reprogram_320c(ctrl);
return 0;
}
static int discover_edges_real(ramctr_timing *ctrl, int channel, int slotrank,
int *edges)
{
int edge;
int statistics[NUM_LANES][MAX_EDGE_TIMING + 1];
int lane;
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rising =
edge;
ctrl->timings[channel][slotrank].lanes[lane].falling =
edge;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
4 * lane, 0);
read32(DEFAULT_MCHBAR + 0x400 * channel + 4 * lane +
0x4140);
}
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x40411f4);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
FOR_ALL_LANES {
statistics[lane][edge] =
read32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
lane * 4);
}
}
FOR_ALL_LANES {
struct run rn =
get_longest_zero_run(statistics[lane], MAX_EDGE_TIMING + 1);
edges[lane] = rn.middle;
if (rn.all) {
printk(BIOS_EMERG, "edge discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("eval %d, %d, %d: %02x\n", channel, slotrank,
lane, edges[lane]);
}
return 0;
}
int discover_edges(ramctr_timing *ctrl)
{
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
int err;
write32(DEFAULT_MCHBAR + 0x3400, 0);
toggle_io_reset();
FOR_ALL_POPULATED_CHANNELS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 4 * lane +
0x400 * channel + 0x4080, 0);
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0, 0);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x400 * channel +
lane * 4 + 0x4140);
}
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
16;
ctrl->timings[channel][slotrank].lanes[lane].rising =
16;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* MR3 enable MPR
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
48;
ctrl->timings[channel][slotrank].lanes[lane].rising =
48;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* MR3 enable MPR
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel +
lane * 4,
~read32(DEFAULT_MCHBAR + 0x4040 +
0x400 * channel + lane * 4) & 0xff);
}
fill_pattern0(ctrl, channel, 0, 0xffffffff);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
}
/* FIXME: under some conditions (older chipsets?) vendor BIOS sets both edges to the same value. */
write32(DEFAULT_MCHBAR + 0x4eb0, 0x300);
printram("discover falling edges:\n[%x] = %x\n", 0x4eb0, 0x300);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_real(ctrl, channel, slotrank,
falling_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0x200);
printram("discover rising edges:\n[%x] = %x\n", 0x4eb0, 0x200);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_real(ctrl, channel, slotrank,
rising_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
falling_edges[channel][slotrank][lane];
ctrl->timings[channel][slotrank].lanes[lane].rising =
rising_edges[channel][slotrank][lane];
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
return 0;
}
static int discover_edges_write_real(ramctr_timing *ctrl, int channel,
int slotrank, int *edges)
{
int edge;
u32 raw_statistics[MAX_EDGE_TIMING + 1];
int statistics[MAX_EDGE_TIMING + 1];
const int reg3000b24[] = { 0, 0xc, 0x2c };
int lane, i;
int lower[NUM_LANES];
int upper[NUM_LANES];
int pat;
FOR_ALL_LANES {
lower[lane] = 0;
upper[lane] = MAX_EDGE_TIMING;
}
for (i = 0; i < 3; i++) {
write32(DEFAULT_MCHBAR + 0x3000 + 0x100 * channel,
reg3000b24[i] << 24);
printram("[%x] = 0x%08x\n",
0x3000 + 0x100 * channel, reg3000b24[i] << 24);
for (pat = 0; pat < NUM_PATTERNS; pat++) {
fill_pattern5(ctrl, channel, pat);
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
printram("using pattern %d\n", pat);
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].
rising = edge;
ctrl->timings[channel][slotrank].lanes[lane].
falling = edge;
}