blob: e64d8ade2d74dc4564ffeb88c51ce34df7dd6cb4 [file] [log] [blame]
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -07001/* SPDX-License-Identifier: GPL-2.0-only */
2
Elyes Haouas04c3b5a2022-10-07 10:08:05 +02003#include <commonlib/bsd/helpers.h>
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -07004#include <console/console.h>
5#include <device/device.h>
6#include <memrange.h>
7#include <post.h>
Elyes Haouas04c3b5a2022-10-07 10:08:05 +02008#include <types.h>
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -07009
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -070010static const char *resource2str(const struct resource *res)
11{
12 if (res->flags & IORESOURCE_IO)
13 return "io";
14 if (res->flags & IORESOURCE_PREFETCH)
15 return "prefmem";
16 if (res->flags & IORESOURCE_MEM)
17 return "mem";
18 return "undefined";
19}
20
Nico Huberee570652020-05-24 17:56:51 +020021static void print_domain_res(const struct device *dev,
22 const struct resource *res, const char *suffix)
23{
24 printk(BIOS_DEBUG, "%s %s: base: %llx size: %llx align: %u gran: %u limit: %llx%s\n",
25 dev_path(dev), resource2str(res), res->base, res->size,
26 res->align, res->gran, res->limit, suffix);
27}
28
29#define res_printk(depth, str, ...) printk(BIOS_DEBUG, "%*c"str, depth, ' ', __VA_ARGS__)
30
31static void print_bridge_res(const struct device *dev, const struct resource *res,
32 int depth, const char *suffix)
33{
34 res_printk(depth, "%s %s: size: %llx align: %u gran: %u limit: %llx%s\n", dev_path(dev),
35 resource2str(res), res->size, res->align, res->gran, res->limit, suffix);
36}
37
38static void print_child_res(const struct device *dev, const struct resource *res, int depth)
39{
40 res_printk(depth + 1, "%s %02lx * [0x%llx - 0x%llx] %s\n", dev_path(dev),
41 res->index, res->base, res->base + res->size - 1, resource2str(res));
42}
43
44static void print_fixed_res(const struct device *dev,
45 const struct resource *res, const char *prefix)
46{
47 printk(BIOS_DEBUG, " %s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
48 prefix, dev_path(dev), res->index, res->base, res->base + res->size - 1,
49 resource2str(res));
50}
51
52static void print_assigned_res(const struct device *dev, const struct resource *res)
53{
54 printk(BIOS_DEBUG, " %s %02lx * [0x%llx - 0x%llx] limit: %llx %s\n",
55 dev_path(dev), res->index, res->base, res->limit, res->limit, resource2str(res));
56}
57
58static void print_failed_res(const struct device *dev, const struct resource *res)
59{
60 printk(BIOS_DEBUG, " %s %02lx * size: 0x%llx limit: %llx %s\n",
61 dev_path(dev), res->index, res->size, res->limit, resource2str(res));
62}
63
64static void print_resource_ranges(const struct device *dev, const struct memranges *ranges)
65{
66 const struct range_entry *r;
67
68 printk(BIOS_INFO, " %s: Resource ranges:\n", dev_path(dev));
69
70 if (memranges_is_empty(ranges))
71 printk(BIOS_INFO, " * EMPTY!!\n");
72
73 memranges_each_entry(r, ranges) {
74 printk(BIOS_INFO, " * Base: %llx, Size: %llx, Tag: %lx\n",
75 range_entry_base(r), range_entry_size(r), range_entry_tag(r));
76 }
77}
78
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -070079static bool dev_has_children(const struct device *dev)
80{
81 const struct bus *bus = dev->link_list;
82 return bus && bus->children;
83}
84
Nico Huber52263012020-05-23 19:15:36 +020085static resource_t effective_limit(const struct resource *const res)
86{
87 /* Always allow bridge resources above 4G. */
88 if (res->flags & IORESOURCE_BRIDGE)
89 return res->limit;
90
91 const resource_t quirk_4g_limit =
92 res->flags & IORESOURCE_ABOVE_4G ? UINT64_MAX : UINT32_MAX;
93 return MIN(res->limit, quirk_4g_limit);
94}
95
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -070096/*
Nico Huber9d7728a2020-05-23 18:00:10 +020097 * During pass 1, once all the requirements for downstream devices of a
98 * bridge are gathered, this function calculates the overall resource
99 * requirement for the bridge. It starts by picking the largest resource
100 * requirement downstream for the given resource type and works by
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700101 * adding requirements in descending order.
102 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200103 * Additionally, it takes alignment and limits of the downstream devices
104 * into consideration and ensures that they get propagated to the bridge
105 * resource. This is required to guarantee that the upstream bridge/
106 * domain honors the limit and alignment requirements for this bridge
107 * based on the tightest constraints downstream.
Nico Huber9260ea62020-05-23 23:20:13 +0200108 *
109 * Last but not least, it stores the offset inside the bridge resource
110 * for each child resource in its base field. This simplifies pass 2
111 * for resources behind a bridge, as we only have to add offsets to the
112 * allocated base of the bridge resource.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700113 */
114static void update_bridge_resource(const struct device *bridge, struct resource *bridge_res,
Nico Huber58fe7032022-08-17 14:43:54 +0200115 int print_depth)
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700116{
117 const struct device *child;
118 struct resource *child_res;
119 resource_t base;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700120 const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH;
Nico Huber58fe7032022-08-17 14:43:54 +0200121 const unsigned long type_match = bridge_res->flags & type_mask;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700122 struct bus *bus = bridge->link_list;
123
124 child_res = NULL;
125
126 /*
Nico Huber9d7728a2020-05-23 18:00:10 +0200127 * `base` keeps track of where the next allocation for child resources
128 * can take place from within the bridge resource window. Since the
129 * bridge resource window allocation is not performed yet, it can start
130 * at 0. Base gets updated every time a resource requirement is
131 * accounted for in the loop below. After scanning all these resources,
132 * base will indicate the total size requirement for the current bridge
133 * resource window.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700134 */
135 base = 0;
136
Nico Huberee570652020-05-24 17:56:51 +0200137 print_bridge_res(bridge, bridge_res, print_depth, "");
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700138
139 while ((child = largest_resource(bus, &child_res, type_mask, type_match))) {
140
141 /* Size 0 resources can be skipped. */
142 if (!child_res->size)
143 continue;
144
Nico Huberec7b3132020-05-23 18:20:47 +0200145 /* Resources with 0 limit can't be assigned anything. */
146 if (!child_res->limit)
147 continue;
148
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700149 /*
Nico Huber74169c12020-05-23 18:15:34 +0200150 * Propagate the resource alignment to the bridge resource. The
151 * condition can only be true for the first (largest) resource. For all
Nico Huber9260ea62020-05-23 23:20:13 +0200152 * other child resources, alignment is taken care of by rounding their
153 * base up.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700154 */
Nico Huber74169c12020-05-23 18:15:34 +0200155 if (child_res->align > bridge_res->align)
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700156 bridge_res->align = child_res->align;
157
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700158 /*
Nico Huberec7b3132020-05-23 18:20:47 +0200159 * Propagate the resource limit to the bridge resource. If a downstream
160 * device has stricter requirements w.r.t. limits for any resource, that
Nico Huber9260ea62020-05-23 23:20:13 +0200161 * constraint needs to be propagated back up to the bridges downstream
162 * of the domain. This way, the whole bridge resource fulfills the limit.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700163 */
Nico Huber52263012020-05-23 19:15:36 +0200164 if (effective_limit(child_res) < bridge_res->limit)
165 bridge_res->limit = effective_limit(child_res);
Furquan Shaikh1bb05ef302020-05-15 17:33:52 -0700166
167 /*
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700168 * Alignment value of 0 means that the child resource has no alignment
169 * requirements and so the base value remains unchanged here.
170 */
Nico Huberb3277042020-05-23 18:08:50 +0200171 base = ALIGN_UP(base, POWER_OF_2(child_res->align));
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700172
Nico Huber9260ea62020-05-23 23:20:13 +0200173 /*
174 * Store the relative offset inside the bridge resource for later
175 * consumption in allocate_bridge_resources(), and invalidate flags
176 * related to the base.
177 */
178 child_res->base = base;
179 child_res->flags &= ~(IORESOURCE_ASSIGNED | IORESOURCE_STORED);
180
Nico Huberee570652020-05-24 17:56:51 +0200181 print_child_res(child, child_res, print_depth);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700182
183 base += child_res->size;
184 }
185
186 /*
Nico Huber9d7728a2020-05-23 18:00:10 +0200187 * After all downstream device resources are scanned, `base` represents
188 * the total size requirement for the current bridge resource window.
189 * This size needs to be rounded up to the granularity requirement of
190 * the bridge to ensure that the upstream bridge/domain allocates big
191 * enough window.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700192 */
Nico Huberb3277042020-05-23 18:08:50 +0200193 bridge_res->size = ALIGN_UP(base, POWER_OF_2(bridge_res->gran));
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700194
Nico Huberee570652020-05-24 17:56:51 +0200195 print_bridge_res(bridge, bridge_res, print_depth, " done");
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700196}
197
198/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200199 * During pass 1, at the bridge level, the resource allocator gathers
200 * requirements from downstream devices and updates its own resource
201 * windows for the provided resource type.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700202 */
Furquan Shaikhc3568612020-05-16 15:18:23 -0700203static void compute_bridge_resources(const struct device *bridge, unsigned long type_match,
204 int print_depth)
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700205{
206 const struct device *child;
207 struct resource *res;
208 struct bus *bus = bridge->link_list;
209 const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH;
210
211 for (res = bridge->resource_list; res; res = res->next) {
212 if (!(res->flags & IORESOURCE_BRIDGE))
213 continue;
214
215 if ((res->flags & type_mask) != type_match)
216 continue;
217
218 /*
219 * Ensure that the resource requirements for all downstream bridges are
220 * gathered before updating the window for current bridge resource.
221 */
222 for (child = bus->children; child; child = child->sibling) {
223 if (!dev_has_children(child))
224 continue;
Furquan Shaikhc3568612020-05-16 15:18:23 -0700225 compute_bridge_resources(child, type_match, print_depth + 1);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700226 }
227
228 /*
229 * Update the window for current bridge resource now that all downstream
230 * requirements are gathered.
231 */
Nico Huber58fe7032022-08-17 14:43:54 +0200232 update_bridge_resource(bridge, res, print_depth);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700233 }
234}
235
236/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200237 * During pass 1, the resource allocator walks down the entire sub-tree
238 * of a domain. It gathers resource requirements for every downstream
239 * bridge by looking at the resource requests of its children. Thus, the
240 * requirement gathering begins at the leaf devices and is propagated
241 * back up to the downstream bridges of the domain.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700242 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200243 * At the domain level, it identifies every downstream bridge and walks
244 * down that bridge to gather requirements for each resource type i.e.
245 * i/o, mem and prefmem. Since bridges have separate windows for mem and
246 * prefmem, requirements for each need to be collected separately.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700247 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200248 * Domain resource windows are fixed ranges and hence requirement
249 * gathering does not result in any changes to these fixed ranges.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700250 */
251static void compute_domain_resources(const struct device *domain)
252{
253 const struct device *child;
Furquan Shaikhc3568612020-05-16 15:18:23 -0700254 const int print_depth = 1;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700255
256 if (domain->link_list == NULL)
257 return;
258
259 for (child = domain->link_list->children; child; child = child->sibling) {
260
261 /* Skip if this is not a bridge or has no children under it. */
262 if (!dev_has_children(child))
263 continue;
264
Furquan Shaikhc3568612020-05-16 15:18:23 -0700265 compute_bridge_resources(child, IORESOURCE_IO, print_depth);
266 compute_bridge_resources(child, IORESOURCE_MEM, print_depth);
267 compute_bridge_resources(child, IORESOURCE_MEM | IORESOURCE_PREFETCH,
268 print_depth);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700269 }
270}
271
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700272/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200273 * Scan the entire tree to identify any fixed resources allocated by
274 * any device to ensure that the address map for domain resources are
275 * appropriately updated.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700276 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200277 * Domains can typically provide a memrange for entire address space.
278 * So, this function punches holes in the address space for all fixed
279 * resources that are already defined. Both I/O and normal memory
280 * resources are added as fixed. Both need to be removed from address
281 * space where dynamic resource allocations are sourced.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700282 */
283static void avoid_fixed_resources(struct memranges *ranges, const struct device *dev,
284 unsigned long mask_match)
285{
286 const struct resource *res;
287 const struct device *child;
288 const struct bus *bus;
289
290 for (res = dev->resource_list; res != NULL; res = res->next) {
291 if ((res->flags & mask_match) != mask_match)
292 continue;
Nico Huber866eff02020-05-24 18:32:51 +0200293 if (!res->size)
294 continue;
295 print_fixed_res(dev, res, __func__);
296 memranges_create_hole(ranges, res->base, res->size);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700297 }
298
299 bus = dev->link_list;
300 if (bus == NULL)
301 return;
302
303 for (child = bus->children; child != NULL; child = child->sibling)
304 avoid_fixed_resources(ranges, child, mask_match);
305}
306
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700307/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200308 * This function creates a list of memranges of given type using the
Nico Huber9260ea62020-05-23 23:20:13 +0200309 * resource that is provided. It applies additional constraints to
310 * ensure that the memranges do not overlap any of the fixed resources
311 * under the domain. The domain typically provides a memrange for the
312 * entire address space. Thus, it is up to the chipset to add DRAM and
313 * all other windows which cannot be used for resource allocation as
314 * fixed resources.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700315 */
Nico Huber9260ea62020-05-23 23:20:13 +0200316static void setup_resource_ranges(const struct device *const domain,
317 const unsigned long type,
318 struct memranges *const ranges)
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700319{
Nico Huber866eff02020-05-24 18:32:51 +0200320 /* Align mem resources to 2^12 (4KiB pages) at a minimum, so they
321 can be memory-mapped individually (e.g. for virtualization guests). */
322 const unsigned char alignment = type == IORESOURCE_MEM ? 12 : 0;
Nico Huber9260ea62020-05-23 23:20:13 +0200323 const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_FIXED;
Nico Huber52263012020-05-23 19:15:36 +0200324
325 memranges_init_empty_with_alignment(ranges, NULL, 0, alignment);
326
Nico Huber9260ea62020-05-23 23:20:13 +0200327 for (struct resource *res = domain->resource_list; res != NULL; res = res->next) {
328 if ((res->flags & type_mask) != type)
Nico Huber52263012020-05-23 19:15:36 +0200329 continue;
Nico Huberee570652020-05-24 17:56:51 +0200330 print_domain_res(domain, res, "");
Nico Huber52263012020-05-23 19:15:36 +0200331 memranges_insert(ranges, res->base, res->limit - res->base + 1, type);
Nico Huber38aafa32022-09-04 22:20:21 +0200332 }
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700333
Nico Huber866eff02020-05-24 18:32:51 +0200334 if (type == IORESOURCE_IO) {
335 /*
336 * Don't allow allocations in the VGA I/O range. PCI has special
337 * cases for that.
338 */
339 memranges_create_hole(ranges, 0x3b0, 0x3df - 0x3b0 + 1);
340
341 /*
342 * Resource allocator no longer supports the legacy behavior where
343 * I/O resource allocation is guaranteed to avoid aliases over legacy
344 * PCI expansion card addresses.
345 */
346 }
347
348 avoid_fixed_resources(ranges, domain, type | IORESOURCE_FIXED);
Nico Huber52263012020-05-23 19:15:36 +0200349
Nico Huber9260ea62020-05-23 23:20:13 +0200350 print_resource_ranges(domain, ranges);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700351}
352
Arthur Heymans68b2b8f2022-12-19 15:04:50 +0100353static void cleanup_domain_resource_ranges(const struct device *dev, struct memranges *ranges,
354 unsigned long type)
355{
356 memranges_teardown(ranges);
357 for (struct resource *res = dev->resource_list; res != NULL; res = res->next) {
Arthur Heymans68b2b8f2022-12-19 15:04:50 +0100358 if (res->flags & IORESOURCE_FIXED)
359 continue;
360 if ((res->flags & IORESOURCE_TYPE_MASK) != type)
361 continue;
Nico Huberee570652020-05-24 17:56:51 +0200362 print_domain_res(dev, res, " done");
Arthur Heymans68b2b8f2022-12-19 15:04:50 +0100363 }
364}
365
Nico Huber9260ea62020-05-23 23:20:13 +0200366static void assign_resource(struct resource *const res, const resource_t base,
367 const struct device *const dev)
368{
369 res->base = base;
370 res->limit = res->base + res->size - 1;
371 res->flags |= IORESOURCE_ASSIGNED;
372 res->flags &= ~IORESOURCE_STORED;
373
Nico Huberee570652020-05-24 17:56:51 +0200374 print_assigned_res(dev, res);
Nico Huber9260ea62020-05-23 23:20:13 +0200375}
376
377/*
378 * This is where the actual allocation of resources happens during
379 * pass 2. We construct a list of memory ranges corresponding to the
380 * resource of a given type, then look for the biggest unallocated
381 * resource on the downstream bus. This continues in a descending order
382 * until all resources of a given type have space allocated within the
383 * domain's resource window.
384 */
385static void allocate_toplevel_resources(const struct device *const domain,
386 const unsigned long type)
387{
388 const unsigned long type_mask = IORESOURCE_TYPE_MASK;
389 struct resource *res = NULL;
390 const struct device *dev;
391 struct memranges ranges;
392 resource_t base;
393
394 if (!dev_has_children(domain))
395 return;
396
397 setup_resource_ranges(domain, type, &ranges);
398
399 while ((dev = largest_resource(domain->link_list, &res, type_mask, type))) {
400
401 if (!res->size)
402 continue;
403
404 if (!memranges_steal(&ranges, res->limit, res->size, res->align, type, &base,
405 CONFIG(RESOURCE_ALLOCATION_TOP_DOWN))) {
Nico Huberee570652020-05-24 17:56:51 +0200406 printk(BIOS_ERR, "Resource didn't fit!!!\n");
407 print_failed_res(dev, res);
Nico Huber9260ea62020-05-23 23:20:13 +0200408 continue;
409 }
410
411 assign_resource(res, base, dev);
412 }
413
414 cleanup_domain_resource_ranges(domain, &ranges, type);
415}
416
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700417/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200418 * Pass 2 of the resource allocator at the bridge level loops through
Nico Huber9260ea62020-05-23 23:20:13 +0200419 * all the resources for the bridge and assigns all the base addresses
420 * of its children's resources of the same type. update_bridge_resource()
421 * of pass 1 pre-calculated the offsets of these bases inside the bridge
422 * resource. Now that the bridge resource is allocated, all we have to
423 * do is to add its final base to these offsets.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700424 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200425 * Once allocation at the current bridge is complete, resource allocator
426 * continues walking down the downstream bridges until it hits the leaf
427 * devices.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700428 */
Nico Huber9260ea62020-05-23 23:20:13 +0200429static void assign_resource_cb(void *param, struct device *dev, struct resource *res)
430{
431 /* We have to filter the same resources as update_bridge_resource(). */
432 if (!res->size || !res->limit)
433 return;
434
435 assign_resource(res, *(const resource_t *)param + res->base, dev);
436}
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700437static void allocate_bridge_resources(const struct device *bridge)
438{
Nico Huber9260ea62020-05-23 23:20:13 +0200439 const unsigned long type_mask =
440 IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH | IORESOURCE_FIXED;
441 struct bus *const bus = bridge->link_list;
442 struct resource *res;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700443 struct device *child;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700444
Nico Huber9260ea62020-05-23 23:20:13 +0200445 for (res = bridge->resource_list; res != NULL; res = res->next) {
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700446 if (!res->size)
447 continue;
448
449 if (!(res->flags & IORESOURCE_BRIDGE))
450 continue;
451
Nico Huber9260ea62020-05-23 23:20:13 +0200452 if (!(res->flags & IORESOURCE_ASSIGNED))
453 continue;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700454
Nico Huber9260ea62020-05-23 23:20:13 +0200455 /* Run assign_resource_cb() for all downstream resources of the same type. */
456 search_bus_resources(bus, type_mask, res->flags & type_mask,
457 assign_resource_cb, &res->base);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700458 }
459
Nico Huber9260ea62020-05-23 23:20:13 +0200460 for (child = bus->children; child != NULL; child = child->sibling) {
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700461 if (!dev_has_children(child))
462 continue;
463
464 allocate_bridge_resources(child);
465 }
466}
467
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700468/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200469 * Pass 2 of resource allocator begins at the domain level. Every domain
470 * has two types of resources - io and mem. For each of these resources,
471 * this function creates a list of memory ranges that can be used for
472 * downstream resource allocation. This list is constrained to remove
473 * any fixed resources in the domain sub-tree of the given resource
474 * type. It then uses the memory ranges to apply best fit on the
475 * resource requirements of the downstream devices.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700476 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200477 * Once resources are allocated to all downstream devices of the domain,
Nico Huber9260ea62020-05-23 23:20:13 +0200478 * it walks down each downstream bridge to finish resource assignment
479 * of its children resources within its own window.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700480 */
481static void allocate_domain_resources(const struct device *domain)
482{
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700483 /* Resource type I/O */
Nico Huber9260ea62020-05-23 23:20:13 +0200484 allocate_toplevel_resources(domain, IORESOURCE_IO);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700485
486 /*
487 * Resource type Mem:
Nico Huber9d7728a2020-05-23 18:00:10 +0200488 * Domain does not distinguish between mem and prefmem resources. Thus,
489 * the resource allocation at domain level considers mem and prefmem
490 * together when finding the best fit based on the biggest resource
491 * requirement.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700492 */
Nico Huber9260ea62020-05-23 23:20:13 +0200493 allocate_toplevel_resources(domain, IORESOURCE_MEM);
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700494
Nico Huber9260ea62020-05-23 23:20:13 +0200495 struct device *child;
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700496 for (child = domain->link_list->children; child; child = child->sibling) {
497 if (!dev_has_children(child))
498 continue;
499
500 /* Continue allocation for all downstream bridges. */
501 allocate_bridge_resources(child);
502 }
503}
504
505/*
Nico Huber9d7728a2020-05-23 18:00:10 +0200506 * This function forms the guts of the resource allocator. It walks
507 * through the entire device tree for each domain two times.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700508 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200509 * Every domain has a fixed set of ranges. These ranges cannot be
510 * relaxed based on the requirements of the downstream devices. They
511 * represent the available windows from which resources can be allocated
512 * to the different devices under the domain.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700513 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200514 * In order to identify the requirements of downstream devices, resource
515 * allocator walks in a DFS fashion. It gathers the requirements from
516 * leaf devices and propagates those back up to their upstream bridges
517 * until the requirements for all the downstream devices of the domain
518 * are gathered. This is referred to as pass 1 of the resource allocator.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700519 *
Nico Huber9d7728a2020-05-23 18:00:10 +0200520 * Once the requirements for all the devices under the domain are
521 * gathered, the resource allocator walks a second time to allocate
522 * resources to downstream devices as per the requirements. It always
523 * picks the biggest resource request as per the type (i/o and mem) to
524 * allocate space from its fixed window to the immediate downstream
525 * device of the domain. In order to accomplish best fit for the
526 * resources, a list of ranges is maintained by each resource type (i/o
527 * and mem). At the domain level we don't differentiate between mem and
528 * prefmem. Since they are allocated space from the same window, the
529 * resource allocator at the domain level ensures that the biggest
530 * requirement is selected independent of the prefetch type. Once the
531 * resource allocation for all immediate downstream devices is complete
532 * at the domain level, the resource allocator walks down the subtree
533 * for each downstream bridge to continue the allocation process at the
Nico Huber9260ea62020-05-23 23:20:13 +0200534 * bridge level. Since bridges have either their whole window allocated
535 * or nothing, we only need to place downstream resources inside these
536 * windows by re-using offsets that were pre-calculated in pass 1. This
537 * continues until resource allocation is realized for all downstream
538 * bridges in the domain sub-tree. This is referred to as pass 2 of the
539 * resource allocator.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700540 *
541 * Some rules that are followed by the resource allocator:
Nico Huber9d7728a2020-05-23 18:00:10 +0200542 * - Allocate resource locations for every device as long as
543 * the requirements can be satisfied.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700544 * - Don't overlap with resources in fixed locations.
Nico Huber9d7728a2020-05-23 18:00:10 +0200545 * - Don't overlap and follow the rules of bridges -- downstream
546 * devices of bridges should use parts of the address space
547 * allocated to the bridge.
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700548 */
549void allocate_resources(const struct device *root)
550{
551 const struct device *child;
552
553 if ((root == NULL) || (root->link_list == NULL))
554 return;
555
556 for (child = root->link_list->children; child; child = child->sibling) {
557
558 if (child->path.type != DEVICE_PATH_DOMAIN)
559 continue;
560
561 post_log_path(child);
562
Nico Huber9260ea62020-05-23 23:20:13 +0200563 /* Pass 1 - Relative placement. */
564 printk(BIOS_INFO, "=== Resource allocator: %s - Pass 1 (relative placement) ===\n",
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700565 dev_path(child));
566 compute_domain_resources(child);
567
568 /* Pass 2 - Allocate resources as per gathered requirements. */
Furquan Shaikhc3568612020-05-16 15:18:23 -0700569 printk(BIOS_INFO, "=== Resource allocator: %s - Pass 2 (allocating resources) ===\n",
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700570 dev_path(child));
571 allocate_domain_resources(child);
Furquan Shaikhc3568612020-05-16 15:18:23 -0700572
573 printk(BIOS_INFO, "=== Resource allocator: %s - resource allocation complete ===\n",
574 dev_path(child));
Furquan Shaikhf4bc9eb2020-05-15 16:04:28 -0700575 }
576}