blob: d19a83af875532729a43a3949939edca199c1144 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <assert.h>
#include <stdint.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <commonlib/helpers.h>
#include <delay.h>
#if CONFIG(SOUTHBRIDGE_INTEL_I82801GX)
#include <southbridge/intel/i82801gx/i82801gx.h>
#else
#include <southbridge/intel/i82801jx/i82801jx.h>
#endif
#include <string.h>
#include "raminit.h"
#include "x4x.h"
#define ME_UMA_SIZEMB 0
u32 fsb_to_mhz(u32 speed)
{
return (speed * 267) + 800;
}
u32 ddr_to_mhz(u32 speed)
{
static const u16 mhz[] = { 0, 0, 667, 800, 1067, 1333 };
if (speed <= 1 || speed >= ARRAY_SIZE(mhz))
die("RAM init: invalid memory speed %u\n", speed);
return mhz[speed];
}
static void program_crossclock(struct sysinfo *s)
{
u8 i, j;
u32 reg32;
mchbar_setbits16(0xc1c, 1 << 15);
static const u32 clkxtab[6][3][13] = {
/* MEMCLK 400 N/A */
{{}, {}, {} },
/* MEMCLK 533 N/A */
{{}, {}, {} },
/* MEMCLK 667
* FSB 800 */
{{0x1f1f1f1f, 0x0d07070b, 0x00000000, 0x10000000,
0x20010208, 0x04080000, 0x10010002, 0x00000000,
0x00000000, 0x02000000, 0x04000100, 0x08000000,
0x10200204},
/* FSB 1067 */
{0x6d5b1f1f, 0x0f0f0f0f, 0x00000000, 0x20000000,
0x80020410, 0x02040008, 0x10000100, 0x00000000,
0x00000000, 0x04000000, 0x08000102, 0x20000000,
0x40010208},
/* FSB 1333 */
{0x05050303, 0xffffffff, 0xffff0000, 0x00000000,
0x08020000, 0x00000000, 0x00020001, 0x00000000,
0x00000000, 0x00000000, 0x08010204, 0x00000000,
0x04010000} },
/* MEMCLK 800
* FSB 800 */
{{0xffffffff, 0x05030305, 0x0000ffff, 0x0000000,
0x08010204, 0x00000000, 0x08010204, 0x0000000,
0x00000000, 0x00000000, 0x00020001, 0x0000000,
0x04080102},
/* FSB 1067 */
{0x07070707, 0x06030303, 0x00000000, 0x00000000,
0x08010200, 0x00000000, 0x04000102, 0x00000000,
0x00000000, 0x00000000, 0x00020100, 0x00000000,
0x04080100},
/* FSB 1333 */
{0x0d0b0707, 0x3e1f1f2f, 0x01010000, 0x00000000,
0x10020400, 0x02000000, 0x00040100, 0x00000000,
0x00000000, 0x04080000, 0x00100102, 0x00000000,
0x08100200} },
/* MEMCLK 1067 */
{{},
/* FSB 1067 */
{0xffffffff, 0x05030305, 0x0000ffff, 0x00000000,
0x04080102, 0x00000000, 0x08010204, 0x00000000,
0x00000000, 0x00000000, 0x00020001, 0x00000000,
0x02040801},
/* FSB 1333 */
{0x0f0f0f0f, 0x5b1f1f6d, 0x00000000, 0x00000000,
0x08010204, 0x04000000, 0x00080102, 0x00000000,
0x00000000, 0x02000408, 0x00100001, 0x00000000,
0x04080102} },
/* MEMCLK 1333 */
{{}, {},
/* FSB 1333 */
{0xffffffff, 0x05030305, 0x0000ffff, 0x00000000,
0x04080102, 0x00000000, 0x04080102, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x02040801} }
};
i = (u8)s->selected_timings.mem_clk;
j = (u8)s->selected_timings.fsb_clk;
mchbar_write32(0xc04, clkxtab[i][j][0]);
reg32 = clkxtab[i][j][1];
if (s->spd_type == DDR3 && s->max_fsb == FSB_CLOCK_1333MHz
&& s->selected_timings.mem_clk == MEM_CLOCK_800MHz) {
reg32 &= ~(0xff << 24);
reg32 |= 0x3d << 24;
}
mchbar_write32(0xc50, reg32);
mchbar_write32(0xc54, clkxtab[i][j][2]);
mchbar_setbits8(0xc08, 1 << 7);
mchbar_write32(0x6d8, clkxtab[i][j][3]);
mchbar_write32(0x6e0, clkxtab[i][j][3]);
mchbar_write32(0x6dc, clkxtab[i][j][4]);
mchbar_write32(0x6e4, clkxtab[i][j][4]);
mchbar_write32(0x6e8, clkxtab[i][j][5]);
mchbar_write32(0x6f0, clkxtab[i][j][5]);
mchbar_write32(0x6ec, clkxtab[i][j][6]);
mchbar_write32(0x6f4, clkxtab[i][j][6]);
mchbar_write32(0x6f8, clkxtab[i][j][7]);
mchbar_write32(0x6fc, clkxtab[i][j][8]);
mchbar_write32(0x708, clkxtab[i][j][11]);
mchbar_write32(0x70c, clkxtab[i][j][12]);
}
static void setioclk_dram(struct sysinfo *s)
{
mchbar_write32(0x1bc, 0x08060402);
mchbar_setbits16(0x1c0, 1 << 9);
mchbar_setbits16(0x1c0, 1 << 8);
mchbar_setbits16(0x1c0, 1 << 5);
mchbar_clrbits16(0x1c0, 1 << 0);
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_800MHz:
case MEM_CLOCK_1066MHz:
mchbar_setbits8(0x5d9, 1 << 1);
mchbar_setbits8(0x9d9, 1 << 1);
mchbar_clrsetbits8(0x189, 0xf0, 0xc0);
mchbar_clrsetbits8(0x189, 0xf0, 0xe0);
mchbar_clrsetbits8(0x189, 0xf0, 0xa0);
break;
case MEM_CLOCK_667MHz:
case MEM_CLOCK_1333MHz:
mchbar_clrbits8(0x5d9, 1 << 1);
mchbar_clrbits8(0x9d9, 1 << 1);
mchbar_clrsetbits8(0x189, 0xf0, 0x40);
break;
}
mchbar_setbits32(0x594, 1 << 31);
mchbar_setbits32(0x994, 1 << 31);
}
static void launch_dram(struct sysinfo *s)
{
u8 i;
u32 launch1;
u32 launch2 = 0;
static const u32 ddr3_launch1_tab[2][3] = {
/* 1N */
{0x58000007, /* DDR3 800 */
0x58000007, /* DDR3 1067 */
0x58100107}, /* DDR3 1333 */
/* 2N */
{0x58001117, /* DDR3 800 */
0x58001117, /* DDR3 1067 */
0x58001117} /* DDR3 1333 */
};
static const u32 ddr3_launch2_tab[2][3][6] = {
{ /* 1N */
/* DDR3 800 */
{0x08030000, /* CL = 5 */
0x0C040100}, /* CL = 6 */
/* DDR3 1066 */
{0x00000000, /* CL = 5 */
0x00000000, /* CL = 6 */
0x10050100, /* CL = 7 */
0x14260200}, /* CL = 8 */
/* DDR3 1333 */
{0x00000000, /* CL = 5 */
0x00000000, /* CL = 6 */
0x00000000, /* CL = 7 */
0x14060000, /* CL = 8 */
0x18070100, /* CL = 9 */
0x1C280200}, /* CL = 10 */
},
{ /* 2N */
/* DDR3 800 */
{0x00040101, /* CL = 5 */
0x00250201}, /* CL = 6 */
/* DDR3 1066 */
{0x00000000, /* CL = 5 */
0x00050101, /* CL = 6 */
0x04260201, /* CL = 7 */
0x08470301}, /* CL = 8 */
/* DDR3 1333 */
{0x00000000, /* CL = 5 */
0x00000000, /* CL = 6 */
0x00000000, /* CL = 7 */
0x08070100, /* CL = 8 */
0x0C280200, /* CL = 9 */
0x10490300} /* CL = 10 */
}
};
if (s->spd_type == DDR2) {
launch1 = 0x58001117;
if (s->selected_timings.CAS == 5)
launch2 = 0x00220201;
else if (s->selected_timings.CAS == 6)
launch2 = 0x00230302;
else
die("Unsupported CAS\n");
} else { /* DDR3 */
/* Default 2N mode */
s->nmode = 2;
if (s->selected_timings.mem_clk <= MEM_CLOCK_1066MHz)
s->nmode = 1;
/* 2N on DDR3 1066 with 2 dimms per channel */
if ((s->selected_timings.mem_clk == MEM_CLOCK_1066MHz) &&
(BOTH_DIMMS_ARE_POPULATED(s->dimms, 0) ||
BOTH_DIMMS_ARE_POPULATED(s->dimms, 1)))
s->nmode = 2;
launch1 = ddr3_launch1_tab[s->nmode - 1]
[s->selected_timings.mem_clk - MEM_CLOCK_800MHz];
launch2 = ddr3_launch2_tab[s->nmode - 1]
[s->selected_timings.mem_clk - MEM_CLOCK_800MHz]
[s->selected_timings.CAS - 5];
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
mchbar_write32(0x400 * i + 0x220, launch1);
mchbar_write32(0x400 * i + 0x224, launch2);
mchbar_write32(0x400 * i + 0x21c, 0);
mchbar_setbits32(0x400 * i + 0x248, 1 << 23);
}
mchbar_clrsetbits32(0x2c0, 0x58 << 24, 0x48 << 24);
mchbar_setbits32(0x2c0, 0xf << 5);
mchbar_clrsetbits32(0x2c4, 0xf, 0xc);
if (s->spd_type == DDR3)
mchbar_setbits32(0x2c4, 1 << 8);
}
static void write_txdll_tap_pi(u8 ch, u16 reg, u8 tap, u8 pi)
{
mchbar_clrsetbits8(0x400 * ch + reg, 0x7f, pi << 4 | tap);
}
static void clkset0(u8 ch, const struct dll_setting *setting)
{
mchbar_clrsetbits16(0x400 * ch + 0x5a0, 0xc440,
(setting->clk_delay << 14) |
(setting->db_sel << 6) |
(setting->db_en << 10));
write_txdll_tap_pi(ch, 0x581, setting->tap, setting->pi);
}
static void clkset1(u8 ch, const struct dll_setting *setting)
{
mchbar_clrsetbits32(0x400 * ch + 0x5a0, 0x30880,
(setting->clk_delay << 16) |
(setting->db_sel << 7) |
(setting->db_en << 11));
write_txdll_tap_pi(ch, 0x582, setting->tap, setting->pi);
}
static void ctrlset0(u8 ch, const struct dll_setting *setting)
{
mchbar_clrsetbits32(0x400 * ch + 0x59c, 0x3300000,
(setting->clk_delay << 24) |
(setting->db_sel << 20) |
(setting->db_en << 21));
write_txdll_tap_pi(ch, 0x584, setting->tap, setting->pi);
}
static void ctrlset1(u8 ch, const struct dll_setting *setting)
{
mchbar_clrsetbits32(0x400 * ch + 0x59c, 0x18c00000,
(setting->clk_delay << 27) |
(setting->db_sel << 22) |
(setting->db_en << 23));
write_txdll_tap_pi(ch, 0x585, setting->tap, setting->pi);
}
static void ctrlset2(u8 ch, const struct dll_setting *setting)
{
/*
* MRC uses an incorrect mask when programming this register, but
* the reset default value is zero and it is only programmed once.
* As it makes no difference, we can safely use the correct mask.
*/
mchbar_clrsetbits32(0x400 * ch + 0x598, 0xf000,
(setting->clk_delay << 14) |
(setting->db_sel << 12) |
(setting->db_en << 13));
write_txdll_tap_pi(ch, 0x586, setting->tap, setting->pi);
}
static void ctrlset3(u8 ch, const struct dll_setting *setting)
{
/*
* MRC uses an incorrect mask when programming this register, but
* the reset default value is zero and it is only programmed once.
* As it makes no difference, we can safely use the correct mask.
*/
mchbar_clrsetbits32(0x400 * ch + 0x598, 0xf00,
(setting->clk_delay << 10) |
(setting->db_sel << 8) |
(setting->db_en << 9));
write_txdll_tap_pi(ch, 0x587, setting->tap, setting->pi);
}
static void cmdset(u8 ch, const struct dll_setting *setting)
{
mchbar_clrsetbits8(0x400 * ch + 0x598, 0x30, setting->clk_delay << 4);
mchbar_clrsetbits8(0x400 * ch + 0x594, 0x60,
(setting->db_sel << 5) |
(setting->db_en << 6));
write_txdll_tap_pi(ch, 0x580, setting->tap, setting->pi);
}
/**
* All finer DQ and DQS DLL settings are set to the same value
* for each rank in a channel, while coarse is common.
*/
void dqsset(u8 ch, u8 lane, const struct dll_setting *setting)
{
int rank;
mchbar_clrsetbits32(0x400 * ch + 0x5fc, 1 << (lane * 4 + 1),
setting->coarse << (lane * 4 + 1));
for (rank = 0; rank < 4; rank++) {
mchbar_clrsetbits32(0x400 * ch + 0x5b4 + rank * 4, 0x201 << lane,
(setting->db_en << (9 + lane)) |
(setting->db_sel << lane));
mchbar_clrsetbits32(0x400 * ch + 0x5c8 + rank * 4, 0x3 << (16 + lane * 2),
setting->clk_delay << (16 + lane * 2));
write_txdll_tap_pi(ch, 0x520 + lane * 4 + rank, setting->tap, setting->pi);
}
}
void dqset(u8 ch, u8 lane, const struct dll_setting *setting)
{
int rank;
mchbar_clrsetbits32(0x400 * ch + 0x5fc, 1 << (lane * 4),
setting->coarse << (lane * 4));
for (rank = 0; rank < 4; rank++) {
mchbar_clrsetbits32(0x400 * ch + 0x5a4 + rank * 4, 0x201 << lane,
(setting->db_en << (9 + lane)) |
(setting->db_sel << lane));
mchbar_clrsetbits32(0x400 * ch + 0x5c8 + rank * 4, 0x3 << (lane * 2),
setting->clk_delay << (2 * lane));
write_txdll_tap_pi(ch, 0x500 + lane * 4 + rank, setting->tap, setting->pi);
}
}
void rt_set_dqs(u8 channel, u8 lane, u8 rank, struct rt_dqs_setting *dqs_setting)
{
u16 saved_tap = mchbar_read16(0x540 + 0x400 * channel + lane * 4);
u16 saved_pi = mchbar_read16(0x542 + 0x400 * channel + lane * 4);
printk(RAM_SPEW, "RT DQS: ch%d, r%d, L%d: %d.%d\n", channel, rank, lane,
dqs_setting->tap,
dqs_setting->pi);
saved_tap &= ~(0xf << (rank * 4));
saved_tap |= dqs_setting->tap << (rank * 4);
mchbar_write16(0x540 + 0x400 * channel + lane * 4, saved_tap);
saved_pi &= ~(0x7 << (rank * 3));
saved_pi |= dqs_setting->pi << (rank * 3);
mchbar_write16(0x542 + 0x400 * channel + lane * 4, saved_pi);
}
static void program_timings(struct sysinfo *s)
{
u8 i;
u8 twl, ta1, ta2, ta3, ta4;
u8 reg8;
u8 flag1 = 0;
u8 flag2 = 0;
u16 reg16;
u32 reg32;
u16 ddr, fsb;
u8 trpmod = 0;
u8 bankmod = 1;
u8 pagemod = 0;
u8 adjusted_cas;
adjusted_cas = s->selected_timings.CAS - 3;
u16 fsb_to_ps[3] = {
5000, /* 800 */
3750, /* 1067 */
3000 /* 1333 */
};
u16 ddr_to_ps[6] = {
5000, /* 400 */
3750, /* 533 */
3000, /* 667 */
2500, /* 800 */
1875, /* 1067 */
1500 /* 1333 */
};
u16 lut1[6] = {
0,
0,
2600,
3120,
4171,
5200
};
static const u8 ddr3_turnaround_tab[3][6][4] = {
{ /* DDR3 800 */
{0x9, 0x7, 0x9, 0x7}, /* CL = 5 */
{0x9, 0x7, 0x8, 0x8}, /* CL = 6 */
},
{ /* DDR3 1066 */
{0x0, 0x0, 0x0, 0x0}, /* CL = 5 - Not supported */
{0x9, 0x7, 0x9, 0x7}, /* CL = 6 */
{0x9, 0x7, 0x8, 0x8}, /* CL = 7 */
{0x9, 0x7, 0x7, 0x9} /* CL = 8 */
},
{ /* DDR3 1333 */
{0x0, 0x0, 0x0, 0x0}, /* CL = 5 - Not supported */
{0x0, 0x0, 0x0, 0x0}, /* CL = 6 - Not supported */
{0x0, 0x0, 0x0, 0x0}, /* CL = 7 - Not supported */
{0x9, 0x7, 0x8, 0x9}, /* CL = 8 */
{0x9, 0x7, 0x7, 0xa}, /* CL = 9 */
{0x9, 0x7, 0x6, 0xb}, /* CL = 10 */
}
};
/* [DDR freq][0x26F & 1][pagemod] */
static const u8 ddr2_x252_tab[2][2][2] = {
{ /* DDR2 667 */
{12, 16},
{14, 18}
},
{ /* DDR2 800 */
{14, 18},
{16, 20}
}
};
static const u8 ddr3_x252_tab[3][2][2] = {
{ /* DDR3 800 */
{16, 20},
{18, 22}
},
{ /* DDR3 1067 */
{20, 26},
{26, 26}
},
{ /* DDR3 1333 */
{20, 30},
{22, 32},
}
};
if (s->spd_type == DDR2) {
ta1 = 6;
ta2 = 6;
ta3 = 5;
ta4 = 8;
} else {
int ddr3_idx = s->selected_timings.mem_clk - MEM_CLOCK_800MHz;
int cas_idx = s->selected_timings.CAS - 5;
ta1 = ddr3_turnaround_tab[ddr3_idx][cas_idx][0];
ta2 = ddr3_turnaround_tab[ddr3_idx][cas_idx][1];
ta3 = ddr3_turnaround_tab[ddr3_idx][cas_idx][2];
ta4 = ddr3_turnaround_tab[ddr3_idx][cas_idx][3];
}
if (s->spd_type == DDR2)
twl = s->selected_timings.CAS - 1;
else /* DDR3 */
twl = s->selected_timings.mem_clk - MEM_CLOCK_800MHz + 5;
FOR_EACH_POPULATED_DIMM(s->dimms, i) {
if (s->dimms[i].n_banks == N_BANKS_8) {
trpmod = 1;
bankmod = 0;
}
if (s->dimms[i].page_size == 2048)
pagemod = 1;
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
mchbar_setbits8(0x400 * i + 0x26f, 0x3);
mchbar_clrsetbits8(0x400 * i + 0x228, 0x7, 0x2);
/* tWL - x ?? */
mchbar_clrsetbits8(0x400 * i + 0x240, 0xf << 4, 0 << 4);
mchbar_clrsetbits8(0x400 * i + 0x240, 0xf, adjusted_cas);
mchbar_clrsetbits16(0x400 * i + 0x265, 0x3f << 8, (adjusted_cas + 9) << 8);
reg16 = (s->selected_timings.tRAS << 11) |
((twl + 4 + s->selected_timings.tWR) << 6) |
((2 + MAX(s->selected_timings.tRTP, 2)) << 2) | 1;
mchbar_write16(0x400 * i + 0x250, reg16);
reg32 = (bankmod << 21) |
(s->selected_timings.tRRD << 17) |
(s->selected_timings.tRP << 13) |
((s->selected_timings.tRP + trpmod) << 9) |
s->selected_timings.tRFC;
if (bankmod == 0) {
reg8 = mchbar_read8(0x400 * i + 0x26f) >> 1 & 1;
if (s->spd_type == DDR2)
reg32 |= ddr2_x252_tab[s->selected_timings.mem_clk
- MEM_CLOCK_667MHz][reg8][pagemod] << 22;
else
reg32 |= ddr3_x252_tab[s->selected_timings.mem_clk
- MEM_CLOCK_800MHz][reg8][pagemod] << 22;
}
mchbar_write32(0x400 * i + 0x252, reg32);
mchbar_write16(0x400 * i + 0x256, s->selected_timings.tRCD << 12 | 4 << 8 |
ta2 << 4 | ta4);
mchbar_write32(0x400 * i + 0x258, s->selected_timings.tRCD << 17 |
(twl + 4 + s->selected_timings.tWTR) << 12 |
ta3 << 8 | 4 << 4 | ta1);
mchbar_write16(0x400 * i + 0x25b, (s->selected_timings.tRP + trpmod) << 9 |
s->selected_timings.tRFC);
mchbar_clrsetbits16(0x400 * i + 0x260, 0x1ff << 1,
(s->spd_type == DDR2 ? 100 : 256) << 1);
mchbar_write8(0x400 * i + 0x264, 0xff);
mchbar_clrsetbits8(0x400 * i + 0x25d, 0x3f, s->selected_timings.tRAS);
mchbar_write16(0x400 * i + 0x244, 0x2310);
switch (s->selected_timings.mem_clk) {
case MEM_CLOCK_667MHz:
reg8 = 0;
break;
default:
reg8 = 1;
break;
}
mchbar_clrsetbits8(0x400 * i + 0x246, 0x1f, (reg8 << 2) | 1);
fsb = fsb_to_ps[s->selected_timings.fsb_clk];
ddr = ddr_to_ps[s->selected_timings.mem_clk];
reg32 = (u32)((s->selected_timings.CAS + 7 + reg8) * ddr);
reg32 = (u32)((reg32 / fsb) << 8);
reg32 |= 0x0e000000;
if ((fsb_to_mhz(s->selected_timings.fsb_clk) /
ddr_to_mhz(s->selected_timings.mem_clk)) > 2) {
reg32 |= 1 << 24;
}
mchbar_clrsetbits32(0x400 * i + 0x248, 0x0f001f00, reg32);
if (twl > 2)
flag1 = 1;
if (s->selected_timings.mem_clk >= MEM_CLOCK_800MHz)
flag2 = 1;
reg16 = (u8)(twl - 1 - flag1 - flag2);
reg16 |= reg16 << 4;
if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) {
if (reg16)
reg16--;
}
reg16 |= flag1 << 8;
reg16 |= flag2 << 9;
mchbar_clrsetbits16(0x400 * i + 0x24d, 0x1ff, reg16);
mchbar_write16(0x400 * i + 0x25e, 0x15a5);
mchbar_clrbits32(0x400 * i + 0x265, 0x1f);
mchbar_clrsetbits32(0x400 * i + 0x269, 0x000fffff,
(0x3f << 14) | lut1[s->selected_timings.mem_clk]);
mchbar_setbits8(0x400 * i + 0x274, 1);
mchbar_clrbits8(0x400 * i + 0x24c, 3);
reg16 = 0;
if (s->spd_type == DDR2) {
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
reg16 = 0x99;
break;
case MEM_CLOCK_800MHz:
if (s->selected_timings.CAS == 5)
reg16 = 0x19a;
else if (s->selected_timings.CAS == 6)
reg16 = 0x9a;
break;
}
} else { /* DDR3 */
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_800MHz:
case MEM_CLOCK_1066MHz:
reg16 = 1;
break;
case MEM_CLOCK_1333MHz:
reg16 = 2;
break;
}
}
reg16 &= 0x7;
reg16 += twl + 9;
reg16 <<= 10;
mchbar_clrsetbits16(0x400 * i + 0x24d, 0x1f << 10, reg16);
mchbar_clrsetbits8(0x400 * i + 0x267, 0x3f, 0x13);
mchbar_clrsetbits8(0x400 * i + 0x268, 0xff, 0x4a);
reg16 = (mchbar_read16(0x400 * i + 0x269) & 0xc000) >> 2;
reg16 += 2 << 12;
reg16 |= (0x15 << 6) | 0x1f;
mchbar_clrsetbits16(0x400 * i + 0x26d, 0x7fff, reg16);
reg32 = (1 << 25) | (6 << 27);
mchbar_clrsetbits32(0x400 * i + 0x269, 0xfa300000, reg32);
mchbar_clrbits8(0x400 * i + 0x271, 1 << 7);
mchbar_clrbits8(0x400 * i + 0x274, 3 << 1);
} /* END EACH POPULATED CHANNEL */
reg16 = 0x1f << 5;
reg16 |= 0xe << 10;
mchbar_clrsetbits16(0x125, 0x1ff << 5, reg16);
mchbar_clrsetbits16(0x127, 0x7ff, 0x540);
mchbar_setbits8(0x129, 0x1f);
mchbar_setbits8(0x12c, 0xa0);
mchbar_clrsetbits32(0x241, 0x1ffff, 0x11);
mchbar_clrsetbits32(0x641, 0x1ffff, 0x11);
mchbar_clrbits8(0x246, 1 << 4);
mchbar_clrbits8(0x646, 1 << 4);
mchbar_write32(0x120, 2 << 29 | 1 << 28 | 1 << 23 | 0xd7f5f);
reg8 = (u8)(mchbar_read32(0x252) >> 13 & 0xf);
mchbar_clrsetbits8(0x12d, 0xf << 4, reg8 << 4);
reg8 = (u8)(mchbar_read32(0x258) >> 17 & 0xf);
mchbar_clrsetbits8(0x12d, 0xf << 0, reg8 << 0);
mchbar_write8(0x12f, 0x4c);
reg32 = (1 << 31) | (0x80 << 14) | (1 << 13) | (0xa << 9);
if (s->spd_type == DDR3) {
mchbar_write8(0x114, 0x42);
reg16 = (512 - MAX(5, s->selected_timings.tRFC + 10000
/ ddr_to_ps[s->selected_timings.mem_clk]))
/ 2;
reg16 &= 0x1ff;
reg32 = (reg16 << 22) | (0x80 << 14) | (0xa << 9);
}
mchbar_clrsetbits32(0x6c0, 0xffffff00, reg32);
mchbar_clrsetbits8(0x6c4, 0x7, 0x2);
}
const unsigned int sync_dll_max_taps = 16;
static void sync_dll_load_tap(unsigned int tap)
{
mchbar_clrsetbits8(0x1c8, 0x1f, tap & 0x1f);
mchbar_setbits8(0x180, 1 << 4);
do {} while (mchbar_read8(0x180) & (1 << 4));
}
static bool sync_dll_test_tap(unsigned int tap, uint32_t val)
{
if (tap >= sync_dll_max_taps)
return false;
sync_dll_load_tap(tap);
return mchbar_read32(0x184) == val;
}
static void sync_dll_search_tap(unsigned int *tap, uint32_t val)
{
for (; *tap < sync_dll_max_taps; ++*tap)
if (sync_dll_test_tap(*tap, val))
return;
}
static void program_dll(struct sysinfo *s)
{
u8 i, r, reg8, clk, async = 0;
u16 reg16 = 0;
u32 reg32 = 0;
const u8 rank2clken[8] = { 0x04, 0x01, 0x20, 0x08, 0x01, 0x04, 0x08, 0x10 };
mchbar_clrsetbits16(0x180, 0x7e06, 0xc04);
mchbar_clrsetbits16(0x182, 0x3ff, 0xc8);
mchbar_clrsetbits16(0x18a, 0x1f1f, 0x0f0f);
mchbar_clrsetbits16(0x1b4, 0x8020, 0x100);
mchbar_clrsetbits8(0x194, 0x77, 0x33);
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
case MEM_CLOCK_1333MHz:
reg16 = (0xa << 9) | 0xa;
break;
case MEM_CLOCK_800MHz:
reg16 = (0x9 << 9) | 0x9;
break;
case MEM_CLOCK_1066MHz:
reg16 = (0x7 << 9) | 0x7;
break;
}
mchbar_clrsetbits16(0x19c, 0xf << 9 | 0xf, reg16);
mchbar_clrsetbits16(0x19c, 0x2030, 0x2010);
udelay(1);
mchbar_clrbits16(0x198, 1 << 8);
mchbar_clrsetbits16(0x1c8, 0x1f, 0xd);
udelay(1);
mchbar_clrbits8(0x190, 1);
udelay(1); /* 533ns */
mchbar_clrbits32(0x198, 0x11554000);
udelay(1);
mchbar_clrbits32(0x198, 0x1455);
udelay(1);
mchbar_clrbits8(0x583, 0x1c);
mchbar_clrbits8(0x983, 0x1c);
udelay(1); /* 533ns */
mchbar_clrbits8(0x583, 0x3);
mchbar_clrbits8(0x983, 0x3);
udelay(1); /* 533ns */
/* ME related */
mchbar_clrsetbits32(0x1a0, 0x7ffffff, s->spd_type == DDR2 ? 0x551803 : 0x555801);
mchbar_clrbits16(0x1b4, 0x800);
if (s->spd_type == DDR2) {
mchbar_setbits8(0x1a8, 0xf0);
} else { /* DDR3 */
reg8 = 0x9; /* 0x9 << 4 ?? */
if (s->dimms[0].ranks == 2)
reg8 &= ~0x80;
if (s->dimms[3].ranks == 2)
reg8 &= ~0x10;
mchbar_clrsetbits8(0x1a8, 0xf0, reg8);
}
FOR_EACH_CHANNEL(i) {
reg16 = 0;
if ((s->spd_type == DDR3) && (i == 0))
reg16 = (0x3 << 12);
mchbar_clrsetbits16(0x400 * i + 0x59c, 0x3 << 12, reg16);
reg32 = 0;
FOR_EACH_RANK_IN_CHANNEL(r) {
if (!RANK_IS_POPULATED(s->dimms, i, r))
reg32 |= 0x111 << r;
}
mchbar_clrsetbits32(0x400 * i + 0x59c, 0xfff, reg32);
mchbar_clrbits8(0x400 * i + 0x594, 1);
if (s->spd_type == DDR2) {
if (!CHANNEL_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "No dimms in channel %d\n", i);
reg8 = 0x3f;
} else if (ONLY_DIMMA_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "DimmA populated only in channel %d\n", i);
reg8 = 0x38;
} else if (ONLY_DIMMB_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "DimmB populated only in channel %d\n", i);
reg8 = 0x7;
} else if (BOTH_DIMMS_ARE_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "Both dimms populated in channel %d\n", i);
reg8 = 0;
} else {
die("Unhandled case\n");
}
mchbar_clrsetbits32(0x400 * i + 0x5a0, 0x3f000000, reg8 << 24);
} else { /* DDR3 */
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, i, r) {
mchbar_clrbits8(0x400 * i + 0x5a0 + 3, rank2clken[r + i * 4]);
}
}
} /* END EACH CHANNEL */
if (s->spd_type == DDR2) {
mchbar_setbits8(0x1a8, 1 << 0);
mchbar_clrbits8(0x1a8, 1 << 2);
} else { /* DDR3 */
mchbar_clrbits8(0x1a8, 1 << 0);
mchbar_setbits8(0x1a8, 1 << 2);
}
/* Update DLL timing */
mchbar_clrbits8(0x1a4, 1 << 7);
mchbar_setbits8(0x1a4, 1 << 6);
mchbar_setbits16(0x5f0, 1 << 10);
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
mchbar_setbits16(0x400 * i + 0x5f0, 0x3fc);
mchbar_clrbits32(0x400 * i + 0x5fc, 0xcccccccc);
mchbar_clrsetbits8(0x400 * i + 0x5d9, 0xf0, s->spd_type == DDR2 ? 0x70 : 0x60);
mchbar_clrsetbits16(0x400 * i + 0x590, ~0,
s->spd_type == DDR2 ? 0x5555 : 0xa955);
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
const struct dll_setting *setting;
switch (s->selected_timings.mem_clk) {
default: /* Should not happen */
case MEM_CLOCK_667MHz:
setting = default_ddr2_667_ctrl;
break;
case MEM_CLOCK_800MHz:
if (s->spd_type == DDR2)
setting = default_ddr2_800_ctrl;
else
setting = default_ddr3_800_ctrl[s->nmode - 1];
break;
case MEM_CLOCK_1066MHz:
setting = default_ddr3_1067_ctrl[s->nmode - 1];
break;
case MEM_CLOCK_1333MHz:
setting = default_ddr3_1333_ctrl[s->nmode - 1];
break;
}
clkset0(i, &setting[CLKSET0]);
clkset1(i, &setting[CLKSET1]);
ctrlset0(i, &setting[CTRL0]);
ctrlset1(i, &setting[CTRL1]);
ctrlset2(i, &setting[CTRL2]);
ctrlset3(i, &setting[CTRL3]);
cmdset(i, &setting[CMD]);
}
/* XXX if not async mode */
unsigned int tap;
mchbar_clrbits16(0x180, 1 << 15 | 1 << 9);
mchbar_setbits8(0x180, 1 << 2);
for (tap = 0; tap < sync_dll_max_taps; ++tap) {
sync_dll_search_tap(&tap, 0xffffffff);
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)
break;
++tap; /* other clock speeds need a second match */
if (sync_dll_test_tap(tap, 0xffffffff))
break;
}
/* look for a real edge if we started with a match */
if (tap <= 1) {
unsigned int tap2 = tap + 1;
sync_dll_search_tap(&tap2, 0);
for (++tap2; tap2 < sync_dll_max_taps; ++tap2) {
sync_dll_search_tap(&tap2, 0xffffffff);
++tap2; /* we need a second match */
if (sync_dll_test_tap(tap2, 0xffffffff))
break;
}
if (tap2 < sync_dll_max_taps) {
tap = tap2;
} else {
/* Using 0 instead of the original `tap` seems
inconsistent, but is what the code always did. */
sync_dll_load_tap(0);
tap = 0;
}
}
if (tap >= sync_dll_max_taps) {
mchbar_clrsetbits8(0x1c8, 0x1f, 0);
tap = 0;
async = 1;
printk(BIOS_NOTICE, "HMC failed, using async mode\n");
}
mchbar_clrbits8(0x180, 1 << 7);
if (s->spd_type == DDR3 && s->selected_timings.mem_clk == MEM_CLOCK_1066MHz)
sync_dll_load_tap((tap + 3) % 12);
if (s->spd_type == DDR2 &&
s->selected_timings.fsb_clk == FSB_CLOCK_800MHz &&
s->selected_timings.mem_clk == MEM_CLOCK_667MHz)
sync_dll_load_tap((tap + 10) % 14);
switch (s->selected_timings.mem_clk) {
case MEM_CLOCK_667MHz:
clk = 0x1a;
if (async != 1) {
if (s->selected_timings.fsb_clk == FSB_CLOCK_800MHz)
clk = 0x10;
}
break;
case MEM_CLOCK_800MHz:
case MEM_CLOCK_1066MHz:
if (async != 1)
clk = 0x10;
else
clk = 0x1a;
break;
case MEM_CLOCK_1333MHz:
clk = 0x18;
break;
default:
clk = 0x1a;
break;
}
reg8 = mchbar_read8(0x188) & ~1;
mchbar_write8(0x188, reg8);
reg8 &= ~0x3e;
reg8 |= clk;
mchbar_write8(0x188, reg8);
reg8 |= 1;
mchbar_write8(0x188, reg8);
if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz)
mchbar_setbits8(0x18c, 1);
}
static void select_default_dq_dqs_settings(struct sysinfo *s)
{
int ch, lane;
FOR_EACH_POPULATED_CHANNEL_AND_BYTELANE(s->dimms, ch, lane) {
switch (s->selected_timings.mem_clk) {
case MEM_CLOCK_667MHz:
memcpy(s->dqs_settings[ch],
default_ddr2_667_dqs,
sizeof(s->dqs_settings[ch]));
memcpy(s->dq_settings[ch],
default_ddr2_667_dq,
sizeof(s->dq_settings[ch]));
s->rt_dqs[ch][lane].tap = 7;
s->rt_dqs[ch][lane].pi = 2;
break;
case MEM_CLOCK_800MHz:
if (s->spd_type == DDR2) {
memcpy(s->dqs_settings[ch],
default_ddr2_800_dqs,
sizeof(s->dqs_settings[ch]));
memcpy(s->dq_settings[ch],
default_ddr2_800_dq,
sizeof(s->dq_settings[ch]));
s->rt_dqs[ch][lane].tap = 7;
s->rt_dqs[ch][lane].pi = 0;
} else { /* DDR3 */
memcpy(s->dqs_settings[ch],
default_ddr3_800_dqs[s->nmode - 1],
sizeof(s->dqs_settings[ch]));
memcpy(s->dq_settings[ch],
default_ddr3_800_dq[s->nmode - 1],
sizeof(s->dq_settings[ch]));
s->rt_dqs[ch][lane].tap = 6;
s->rt_dqs[ch][lane].pi = 3;
}
break;
case MEM_CLOCK_1066MHz:
memcpy(s->dqs_settings[ch],
default_ddr3_1067_dqs[s->nmode - 1],
sizeof(s->dqs_settings[ch]));
memcpy(s->dq_settings[ch],
default_ddr3_1067_dq[s->nmode - 1],
sizeof(s->dq_settings[ch]));
s->rt_dqs[ch][lane].tap = 5;
s->rt_dqs[ch][lane].pi = 3;
break;
case MEM_CLOCK_1333MHz:
memcpy(s->dqs_settings[ch],
default_ddr3_1333_dqs[s->nmode - 1],
sizeof(s->dqs_settings[ch]));
memcpy(s->dq_settings[ch],
default_ddr3_1333_dq[s->nmode - 1],
sizeof(s->dq_settings[ch]));
s->rt_dqs[ch][lane].tap = 7;
s->rt_dqs[ch][lane].pi = 0;
break;
default: /* not supported */
break;
}
}
}
/*
* It looks like only the RT DQS register for the first rank
* is used for all ranks. Just set all the 'unused' RT DQS registers
* to the same as rank 0, out of precaution.
*/
static void set_all_dq_dqs_dll_settings(struct sysinfo *s)
{
/* Program DQ/DQS dll settings */
int ch, lane, rank;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
FOR_EACH_BYTELANE(lane) {
FOR_EACH_RANK_IN_CHANNEL(rank) {
rt_set_dqs(ch, lane, rank, &s->rt_dqs[ch][lane]);
}
dqsset(ch, lane, &s->dqs_settings[ch][lane]);
dqset(ch, lane, &s->dq_settings[ch][lane]);
}
}
}
static void prog_rcomp(struct sysinfo *s)
{
u8 i, j, k, reg8;
const u32 ddr2_x32a[8] = { 0x04040404, 0x06050505, 0x09090807, 0x0d0c0b0a,
0x04040404, 0x08070605, 0x0c0b0a09, 0x100f0e0d };
const u16 ddr2_x378[5] = { 0xaaaa, 0x7777, 0x7777, 0x7777, 0x7777 };
const u32 ddr2_x382[5] = { 0x02020202, 0x02020202, 0x02020202, 0x04030303, 0x04030303 };
const u32 ddr2_x386[5] = { 0x03020202, 0x03020202, 0x03020202, 0x05040404, 0x05040404 };
const u32 ddr2_x38a[5] = { 0x04040303, 0x04040303, 0x04040303, 0x07070605, 0x07070605 };
const u32 ddr2_x38e[5] = { 0x06060505, 0x06060505, 0x06060505, 0x09090808, 0x09090808 };
const u32 ddr2_x392[5] = { 0x02020202, 0x02020202, 0x02020202, 0x03030202, 0x03030202 };
const u32 ddr2_x396[5] = { 0x03030202, 0x03030202, 0x03030202, 0x05040303, 0x05040303 };
const u32 ddr2_x39a[5] = { 0x04040403, 0x04040403, 0x04040403, 0x07070605, 0x07070605 };
const u32 ddr2_x39e[5] = { 0x06060505, 0x06060505, 0x06060505, 0x08080808, 0x08080808 };
const u32 ddr3_x32a[8] = { 0x06060606, 0x06060606, 0x0b090807, 0x12110f0d,
0x06060606, 0x08070606, 0x0d0b0a09, 0x16161511 };
const u16 ddr3_x378[5] = { 0xbbbb, 0x6666, 0x6666, 0x6666, 0x6666 };
const u32 ddr3_x382[5] = { 0x05050505, 0x04040404, 0x04040404, 0x34343434, 0x34343434 };
const u32 ddr3_x386[5] = { 0x05050505, 0x04040404, 0x04040404, 0x34343434, 0x34343434 };
const u32 ddr3_x38a[5] = { 0x06060605, 0x07060504, 0x07060504, 0x34343434, 0x34343434 };
const u32 ddr3_x38e[5] = { 0x09080707, 0x09090808, 0x09090808, 0x34343434, 0x34343434 };
const u32 ddr3_x392[5] = { 0x05050505, 0x04040404, 0x04040404, 0x34343434, 0x34343434 };
const u32 ddr3_x396[5] = { 0x05050505, 0x04040404, 0x04040404, 0x34343434, 0x34343434 };
const u32 ddr3_x39a[5] = { 0x07060606, 0x08070605, 0x08070605, 0x34343434, 0x34343434 };
const u32 ddr3_x39e[5] = { 0x09090807, 0x0b0b0a09, 0x0b0b0a09, 0x34343434, 0x34343434 };
const u16 *x378;
const u32 *x32a, *x382, *x386, *x38a, *x38e;
const u32 *x392, *x396, *x39a, *x39e;
const u16 addr[5] = { 0x374, 0x3a2, 0x3d0, 0x3fe, 0x42c };
const u8 bit[5] = { 0, 1, 1, 0, 0 };
if (s->spd_type == DDR2) {
x32a = ddr2_x32a;
x378 = ddr2_x378;
x382 = ddr2_x382;
x386 = ddr2_x386;
x38a = ddr2_x38a;
x38e = ddr2_x38e;
x392 = ddr2_x392;
x396 = ddr2_x396;
x39a = ddr2_x39a;
x39e = ddr2_x39e;
} else { /* DDR3 */
x32a = ddr3_x32a;
x378 = ddr3_x378;
x382 = ddr3_x382;
x386 = ddr3_x386;
x38a = ddr3_x38a;
x38e = ddr3_x38e;
x392 = ddr3_x392;
x396 = ddr3_x396;
x39a = ddr3_x39a;
x39e = ddr3_x39e;
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
/* RCOMP data group is special, program it separately */
mchbar_clrsetbits32(0x400 * i + 0x31c, 0xff000, 0xaa000);
mchbar_clrsetbits16(0x400 * i + 0x320, 0xffff, 0x6666);
for (k = 0; k < 8; k++) {
mchbar_clrsetbits32(0x400 * i + 0x32a + (k << 2), 0x3f3f3f3f, x32a[k]);
mchbar_clrsetbits32(0x400 * i + 0x34a + (k << 2), 0x3f3f3f3f, x32a[k]);
}
mchbar_clrsetbits8(0x400 * i + 0x31c, 1, 0);
/* Now program the other RCOMP groups */
for (j = 0; j < ARRAY_SIZE(addr); j++) {
mchbar_clrsetbits16(0x400 * i + addr[j] + 0, 0xf000, 0xa000);
mchbar_clrsetbits16(0x400 * i + addr[j] + 4, 0xffff, x378[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x0e, 0x3f3f3f3f, x382[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x12, 0x3f3f3f3f, x386[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x16, 0x3f3f3f3f, x38a[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x1a, 0x3f3f3f3f, x38e[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x1e, 0x3f3f3f3f, x392[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x22, 0x3f3f3f3f, x396[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x26, 0x3f3f3f3f, x39a[j]);
mchbar_clrsetbits32(0x400 * i + addr[j] + 0x2a, 0x3f3f3f3f, x39e[j]);
/* Override command group strength multiplier */
if (s->spd_type == DDR3 && BOTH_DIMMS_ARE_POPULATED(s->dimms, i)) {
mchbar_clrsetbits16(0x378 + 0x400 * i, 0xffff, 0xcccc);
}
mchbar_clrsetbits8(0x400 * i + addr[j], 1, bit[j]);
}
reg8 = (s->spd_type == DDR2) ? 0x12 : 0x36;
mchbar_clrsetbits8(0x400 * i + 0x45a, 0x3f, reg8);
mchbar_clrsetbits8(0x400 * i + 0x45e, 0x3f, reg8);
mchbar_clrsetbits8(0x400 * i + 0x462, 0x3f, reg8);
mchbar_clrsetbits8(0x400 * i + 0x466, 0x3f, reg8);
} /* END EACH POPULATED CHANNEL */
mchbar_clrsetbits32(0x134, 0x63c00, 0x63c00);
mchbar_clrsetbits16(0x174, 0x63ff, 0x63ff);
mchbar_write16(0x178, 0x0135);
mchbar_clrsetbits32(0x130, 0x7bdffe0, 0x7a9ffa0);
if (!CHANNEL_IS_POPULATED(s->dimms, 0))
mchbar_clrbits32(0x130, 1 << 27);
if (!CHANNEL_IS_POPULATED(s->dimms, 1))
mchbar_clrbits32(0x130, 1 << 28);
mchbar_setbits8(0x130, 1);
}
static void program_odt(struct sysinfo *s)
{
u8 i;
static const u16 ddr2_odt[16][2] = {
{ 0x0000, 0x0000 }, /* NC_NC */
{ 0x0000, 0x0001 }, /* x8SS_NC */
{ 0x0000, 0x0011 }, /* x8DS_NC */
{ 0x0000, 0x0001 }, /* x16SS_NC */
{ 0x0004, 0x0000 }, /* NC_x8SS */
{ 0x0101, 0x0404 }, /* x8SS_x8SS */
{ 0x0101, 0x4444 }, /* x8DS_x8SS */
{ 0x0101, 0x0404 }, /* x16SS_x8SS */
{ 0x0044, 0x0000 }, /* NC_x8DS */
{ 0x1111, 0x0404 }, /* x8SS_x8DS */
{ 0x1111, 0x4444 }, /* x8DS_x8DS */
{ 0x1111, 0x0404 }, /* x16SS_x8DS */
{ 0x0004, 0x0000 }, /* NC_x16SS */
{ 0x0101, 0x0404 }, /* x8SS_x16SS */
{ 0x0101, 0x4444 }, /* x8DS_x16SS */
{ 0x0101, 0x0404 }, /* x16SS_x16SS */
};
static const u16 ddr3_odt[16][2] = {
{ 0x0000, 0x0000 }, /* NC_NC */
{ 0x0000, 0x0001 }, /* x8SS_NC */
{ 0x0000, 0x0021 }, /* x8DS_NC */
{ 0x0000, 0x0001 }, /* x16SS_NC */
{ 0x0004, 0x0000 }, /* NC_x8SS */
{ 0x0105, 0x0405 }, /* x8SS_x8SS */
{ 0x0105, 0x4465 }, /* x8DS_x8SS */
{ 0x0105, 0x0405 }, /* x16SS_x8SS */
{ 0x0084, 0x0000 }, /* NC_x8DS */
{ 0x1195, 0x0405 }, /* x8SS_x8DS */
{ 0x1195, 0x4465 }, /* x8DS_x8DS */
{ 0x1195, 0x0405 }, /* x16SS_x8DS */
{ 0x0004, 0x0000 }, /* NC_x16SS */
{ 0x0105, 0x0405 }, /* x8SS_x16SS */
{ 0x0105, 0x4465 }, /* x8DS_x16SS */
{ 0x0105, 0x0405 }, /* x16SS_x16SS */
};
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
if (s->spd_type == DDR2) {
mchbar_write16(0x400 * i + 0x298, ddr2_odt[s->dimm_config[i]][1]);
mchbar_write16(0x400 * i + 0x294, ddr2_odt[s->dimm_config[i]][0]);
} else {
mchbar_write16(0x400 * i + 0x298, ddr3_odt[s->dimm_config[i]][1]);
mchbar_write16(0x400 * i + 0x294, ddr3_odt[s->dimm_config[i]][0]);
}
u16 reg16 = mchbar_read16(0x400 * i + 0x29c);
reg16 &= ~0xfff;
reg16 |= (s->spd_type == DDR2 ? 0x66b : 0x778);
mchbar_write16(0x400 * i + 0x29c, reg16);
mchbar_clrsetbits32(0x400 * i + 0x260, 0x70e3c00, 0x3063c00);
}
}
static void pre_jedec_memory_map(void)
{
/*
* Configure the memory mapping in stacked mode (channel 1 being mapped
* above channel 0) and with 128M per rank.
* This simplifies dram trainings a lot since those need a test address.
*
* +-------------+ => 0
* | ch 0, rank 0|
* +-------------+ => 0x8000000 (128M)
* | ch 0, rank 1|
* +-------------+ => 0x10000000 (256M)
* | ch 0, rank 2|
* +-------------+ => 0x18000000 (384M)
* | ch 0, rank 3|
* +-------------+ => 0x20000000 (512M)
* | ch 1, rank 0|
* +-------------+ => 0x28000000 (640M)
* | ch 1, rank 1|
* +-------------+ => 0x30000000 (768M)
* | ch 1, rank 2|
* +-------------+ => 0x38000000 (896M)
* | ch 1, rank 3|
* +-------------+
*
* After all trainings are done this is set to the real values specified
* by the SPD.
*/
/* Set rank 0-3 populated */
mchbar_clrsetbits32(C0CKECTRL, 1 << 0, 0xf << 20);
mchbar_clrsetbits32(C1CKECTRL, 1 << 0, 0xf << 20);
/* Set size of each rank to 128M */
mchbar_write16(C0DRA01, 0x0101);
mchbar_write16(C0DRA23, 0x0101);
mchbar_write16(C1DRA01, 0x0101);
mchbar_write16(C1DRA23, 0x0101);
mchbar_write16(C0DRB0, 0x0002);
mchbar_write16(C0DRB1, 0x0004);
mchbar_write16(C0DRB2, 0x0006);
mchbar_write16(C0DRB3, 0x0008);
mchbar_write16(C1DRB0, 0x0002);
mchbar_write16(C1DRB1, 0x0004);
mchbar_write16(C1DRB2, 0x0006);
/* In stacked mode the last present rank on ch1 needs to have its
size doubled in c1drbx */
mchbar_write16(C1DRB3, 0x0010);
mchbar_setbits8(0x111, STACKED_MEM);
mchbar_write32(0x104, 0);
mchbar_write16(0x102, 0x400);
mchbar_write8(0x110, 2 << 5 | 3 << 3);
mchbar_write16(0x10e, 0);
mchbar_write32(0x108, 0);
pci_write_config16(HOST_BRIDGE, D0F0_TOLUD, 0x4000);
/* TOM(64M unit) = 1G = TOTAL_CHANNELS * RANKS_PER_CHANNEL * 128M */
pci_write_config16(HOST_BRIDGE, D0F0_TOM, 0x10);
/* TOUUD(1M unit) = 1G = TOTAL_CHANNELS * RANKS_PER_CHANNEL * 128M */
pci_write_config16(HOST_BRIDGE, D0F0_TOUUD, 0x0400);
pci_write_config32(HOST_BRIDGE, D0F0_GBSM, 0x40000000);
pci_write_config32(HOST_BRIDGE, D0F0_BGSM, 0x40000000);
pci_write_config32(HOST_BRIDGE, D0F0_TSEG, 0x40000000);
}
u32 test_address(int channel, int rank)
{
ASSERT(channel <= 1 && rank < 4);
return channel * 512 * MiB + rank * 128 * MiB;
}
/* DDR3 Rank1 Address mirror
swap the following pins:
A3<->A4, A5<->A6, A7<->A8, BA0<->BA1 */
static u32 mirror_shift_bit(const u32 data, u8 bit)
{
u32 temp0 = data, temp1 = data;
temp0 &= 1 << bit;
temp0 <<= 1;
temp1 &= 1 << (bit + 1);
temp1 >>= 1;
return (data & ~(3 << bit)) | temp0 | temp1;
}
void send_jedec_cmd(const struct sysinfo *s, u8 r, u8 ch, u8 cmd, u32 val)
{
u32 addr = test_address(ch, r);
u8 data8 = cmd;
u32 data32;
if (s->spd_type == DDR3 && (r & 1)
&& s->dimms[ch * 2 + (r >> 1)].mirrored) {
data8 = (u8)mirror_shift_bit(data8, 4);
}
mchbar_clrsetbits8(0x271, 0x3e, data8);
mchbar_clrsetbits8(0x671, 0x3e, data8);
data32 = val;
if (s->spd_type == DDR3 && (r & 1)
&& s->dimms[ch * 2 + (r >> 1)].mirrored) {
data32 = mirror_shift_bit(data32, 3);
data32 = mirror_shift_bit(data32, 5);
data32 = mirror_shift_bit(data32, 7);
}
data32 <<= 3;
read32p(data32 | addr);
udelay(10);
mchbar_clrsetbits8(0x271, 0x3e, NORMALOP_CMD);
mchbar_clrsetbits8(0x671, 0x3e, NORMALOP_CMD);
}
static void jedec_ddr2(struct sysinfo *s)
{
u8 i;
u16 mrsval, ch, r, v;
u8 odt[16][4] = {
{0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00},
{0x01, 0x01, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x01, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x11, 0x11, 0x11, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x01, 0x01},
{0x11, 0x00, 0x11, 0x11},
{0x11, 0x11, 0x11, 0x11},
{0x11, 0x00, 0x11, 0x11},
{0x00, 0x00, 0x01, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x11, 0x11, 0x11, 0x00},
{0x11, 0x00, 0x11, 0x00}
};
u16 jedec[12][2] = {
{NOP_CMD, 0x0},
{PRECHARGE_CMD, 0x0},
{EMRS2_CMD, 0x0},
{EMRS3_CMD, 0x0},
{EMRS1_CMD, 0x0},
{MRS_CMD, 0x100}, /* DLL Reset */
{PRECHARGE_CMD, 0x0},
{CBR_CMD, 0x0},
{CBR_CMD, 0x0},
{MRS_CMD, 0x0}, /* DLL out of reset */
{EMRS1_CMD, 0x380}, /* OCD calib default */
{EMRS1_CMD, 0x0}
};
mrsval = (s->selected_timings.CAS << 4) | ((s->selected_timings.tWR - 1) << 9) | 0xb;
printk(BIOS_DEBUG, "MRS...\n");
udelay(200);
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
printk(BIOS_DEBUG, "CH%d: Found Rank %d\n", ch, r);
for (i = 0; i < 12; i++) {
v = jedec[i][1];
switch (jedec[i][0]) {
case EMRS1_CMD:
v |= (odt[s->dimm_config[ch]][r] << 2);
break;
case MRS_CMD:
v |= mrsval;
break;
default:
break;
}
send_jedec_cmd(s, r, ch, jedec[i][0], v);
udelay(1);
printk(RAM_SPEW, "Jedec step %d\n", i);
}
}
printk(BIOS_DEBUG, "MRS done\n");
}
static void jedec_ddr3(struct sysinfo *s)
{
int ch, r, dimmconfig, cmd, ddr3_freq;
u8 ddr3_emrs2_rtt_wr_config[16][4] = { /* [config][Rank] */
{0, 0, 0, 0}, /* NC_NC */
{0, 0, 0, 0}, /* x8ss_NC */
{0, 0, 0, 0}, /* x8ds_NC */
{0, 0, 0, 0}, /* x16ss_NC */
{0, 0, 0, 0}, /* NC_x8ss */
{2, 0, 2, 0}, /* x8ss_x8ss */
{2, 2, 2, 0}, /* x8ds_x8ss */
{2, 0, 2, 0}, /* x16ss_x8ss */
{0, 0, 0, 0}, /* NC_x8ss */
{2, 0, 2, 2}, /* x8ss_x8ds */
{2, 2, 2, 2}, /* x8ds_x8ds */
{2, 0, 2, 2}, /* x16ss_x8ds */
{0, 0, 0, 0}, /* NC_x16ss */
{2, 0, 2, 0}, /* x8ss_x16ss */
{2, 2, 2, 0}, /* x8ds_x16ss */
{2, 0, 2, 0}, /* x16ss_x16ss */
};
printk(BIOS_DEBUG, "MRS...\n");
ddr3_freq = s->selected_timings.mem_clk - MEM_CLOCK_800MHz;
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
printk(BIOS_DEBUG, "CH%d: Found Rank %d\n", ch, r);
send_jedec_cmd(s, r, ch, NOP_CMD, 0);
udelay(200);
dimmconfig = s->dimm_config[ch];
cmd = ddr3_freq << 3; /* actually twl - 5 which is same */
cmd |= ddr3_emrs2_rtt_wr_config[dimmconfig][r] << 9;
send_jedec_cmd(s, r, ch, EMRS2_CMD, cmd);
send_jedec_cmd(s, r, ch, EMRS3_CMD, 0);
cmd = ddr3_emrs1_rtt_nom_config[dimmconfig][r] << 2;
/* Hardcode output drive strength to 34 Ohm / RZQ/7 (why??) */
cmd |= (1 << 1);
send_jedec_cmd(s, r, ch, EMRS1_CMD, cmd);
/* Burst type interleaved, burst length 8, Reset DLL,
Precharge PD: DLL on */
send_jedec_cmd(s, r, ch, MRS_CMD, (1 << 3) | (1 << 8)
| (1 << 12) | ((s->selected_timings.CAS - 4) << 4)
| ((s->selected_timings.tWR - 4) << 9));
send_jedec_cmd(s, r, ch, ZQCAL_CMD, (1 << 10));
}
printk(BIOS_DEBUG, "MRS done\n");
}
static void sdram_recover_receive_enable(const struct sysinfo *s)
{
u32 reg32;
u16 medium, coarse_offset;
u8 pi_tap;
int lane, channel;
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
medium = 0;
coarse_offset = 0;
reg32 = mchbar_read32(0x400 * channel + 0x248);
reg32 &= ~0xf0000;
reg32 |= s->rcven_t[channel].min_common_coarse << 16;
mchbar_write32(0x400 * channel + 0x248, reg32);
FOR_EACH_BYTELANE(lane) {
medium |= s->rcven_t[channel].medium[lane] << (lane * 2);
coarse_offset |=
(s->rcven_t[channel].coarse_offset[lane] & 0x3) << (lane * 2);
pi_tap = mchbar_read8(0x400 * channel + 0x560 + lane * 4);
pi_tap &= ~0x7f;
pi_tap |= s->rcven_t[channel].tap[lane];
pi_tap |= s->rcven_t[channel].pi[lane] << 4;
mchbar_write8(0x400 * channel + 0x560 + lane * 4, pi_tap);
}
mchbar_write16(0x400 * channel + 0x58c, medium);
mchbar_write16(0x400 * channel + 0x5fa, coarse_offset);
}
}
static void sdram_program_receive_enable(struct sysinfo *s, int fast_boot)
{
/* Program Receive Enable Timings */
if (fast_boot)
sdram_recover_receive_enable(s);
else
rcven(s);
}
static void set_dradrb(struct sysinfo *s)
{
u8 map, i, ch, r, rankpop0, rankpop1, lastrank_ch1;
u32 c0dra = 0;
u32 c1dra = 0;
u32 c0drb = 0;
u32 c1drb = 0;
u32 dra;
u32 dra0;
u32 dra1;
u16 totalmemorymb;
u32 dual_channel_size, single_channel_size, single_channel_offset;
u32 size_ch0, size_ch1, size_me;
u8 dratab[2][2][2][4] = {
{
{
{0xff, 0xff, 0xff, 0xff},
{0xff, 0x00, 0x02, 0xff}
},
{
{0xff, 0x01, 0xff, 0xff},
{0xff, 0x03, 0xff, 0xff}
}
},
{
{
{0xff, 0xff, 0xff, 0xff},
{0xff, 0x04, 0x06, 0x08}
},
{
{0xff, 0xff, 0xff, 0xff},
{0x05, 0x07, 0x09, 0xff}
}
}
};
u8 drbtab[10] = {0x04, 0x02, 0x08, 0x04, 0x08, 0x04, 0x10, 0x08, 0x20, 0x10};
/* DRA */
rankpop0 = 0;
rankpop1 = 0;
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
if (s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED
&& (r) < s->dimms[ch<<1].ranks)
i = ch << 1;
else
i = (ch << 1) + 1;
dra = dratab[s->dimms[i].n_banks]
[s->dimms[i].width]
[s->dimms[i].cols-9]
[s->dimms[i].rows-12];
if (s->dimms[i].n_banks == N_BANKS_8)
dra |= 0x80;
if (ch == 0) {
c0dra |= dra << (r*8);
rankpop0 |= 1 << r;
} else {
c1dra |= dra << (r*8);
rankpop1 |= 1 << r;
}
}
mchbar_write32(0x208, c0dra);
mchbar_write32(0x608, c1dra);
mchbar_clrsetbits8(0x262, 0xf0, (rankpop0 << 4) & 0xf0);
mchbar_clrsetbits8(0x662, 0xf0, (rankpop1 << 4) & 0xf0);
if (s->spd_type == DDR3) {
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
/* ZQCAL enable */
mchbar_setbits32(0x269 + 0x400 * ch, 1 << 26);
}
}
if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0) || ONLY_DIMMB_IS_POPULATED(s->dimms, 0))
mchbar_setbits8(0x260, 1);
if (ONLY_DIMMA_IS_POPULATED(s->dimms, 1) || ONLY_DIMMB_IS_POPULATED(s->dimms, 1))
mchbar_setbits8(0x660, 1);
/* DRB */
lastrank_ch1 = 0;
FOR_EACH_RANK(ch, r) {
if (ch == 0) {
if (RANK_IS_POPULATED(s->dimms, ch, r)) {
dra0 = (c0dra >> (8*r)) & 0x7f;
c0drb = (u16)(c0drb + drbtab[dra0]);
}
mchbar_write16(0x200 + 2 * r, c0drb);
} else {
if (RANK_IS_POPULATED(s->dimms, ch, r)) {
lastrank_ch1 = r;
dra1 = (c1dra >> (8*r)) & 0x7f;
c1drb = (u16)(c1drb + drbtab[dra1]);
}
mchbar_write16(0x600 + 2 * r, c1drb);
}
}
s->channel_capacity[0] = c0drb << 6;
s->channel_capacity[1] = c1drb << 6;
/*
* In stacked mode the last present rank on ch1 needs to have its
* size doubled in c1drbx. All subsequent ranks need the same setting
* according to: "Intel 4 Series Chipset Family Datasheet"
*/
if (s->stacked_mode) {
for (r = lastrank_ch1; r < 4; r++)
mchbar_write16(0x600 + 2 * r, 2 * c1drb);
}
totalmemorymb = s->channel_capacity[0] + s->channel_capacity[1];
printk(BIOS_DEBUG, "Total memory: %d + %d = %dMiB\n",
s->channel_capacity[0], s->channel_capacity[1], totalmemorymb);
/* Populated channel sizes in MiB */
size_ch0 = s->channel_capacity[0];
size_ch1 = s->channel_capacity[1];
size_me = ME_UMA_SIZEMB;
if (s->stacked_mode) {
mchbar_setbits8(0x111, STACKED_MEM);
} else {
mchbar_clrbits8(0x111, STACKED_MEM);
mchbar_setbits8(0x111, 1 << 4);
}
if (s->stacked_mode) {
dual_channel_size = 0;
} else if (size_me == 0) {
dual_channel_size = MIN(size_ch0, size_ch1) * 2;
} else {
if (size_ch0 == 0) {
/* ME needs RAM on CH0 */
size_me = 0;
/* TOTEST: bailout? */
} else {
/* Set ME UMA size in MiB */
mchbar_write16(0x100, size_me);
/* Set ME UMA Present bit */
mchbar_setbits8(0x111, 1 << 0);
}
dual_channel_size = MIN(size_ch0 - size_me, size_ch1) * 2;
}
mchbar_write16(0x104, dual_channel_size);
single_channel_size = size_ch0 + size_ch1 - dual_channel_size;
mchbar_write16(0x102, single_channel_size);
map = 0;
if (size_ch0 == 0)
map = 0;
else if (size_ch1 == 0)
map |= 0x20;
else
map |= 0x40;
if (dual_channel_size == 0)
map |= 0x18;
/* Enable flex mode, we hardcode this everywhere */
if (size_me == 0) {
if (!(s->stacked_mode && size_ch0 != 0 && size_ch1 != 0)) {
map |= 0x04;
if (size_ch0 <= size_ch1)
map |= 0x01;
}
} else {
if (s->stacked_mode == 0 && size_ch0 - size_me < size_ch1)
map |= 0x04;
}
mchbar_write8(0x110, map);
mchbar_write16(0x10e, 0);
/*
* "108h[15:0] Single Channel Offset for Ch0"
* This is the 'limit' of the part on CH0 that cannot be matched
* with memory on CH1. MCHBAR16(0x10a) is where the dual channel
* memory on ch0s end and MCHBAR16(0x108) is the limit of the single
* channel size on ch0.
*/
if (s->stacked_mode && size_ch1 != 0) {
single_channel_offset = 0;
} else if (size_me == 0) {
if (size_ch0 > size_ch1)
single_channel_offset = dual_channel_size / 2 + single_channel_size;
else
single_channel_offset = dual_channel_size / 2;
} else {
if ((size_ch0 > size_ch1) && ((map & 0x7) == 4))
single_channel_offset = dual_channel_size / 2 + single_channel_size;
else
single_channel_offset = dual_channel_size / 2 + size_me;
}
mchbar_write16(0x108, single_channel_offset);
mchbar_write16(0x10a, dual_channel_size / 2);
}
static void configure_mmap(struct sysinfo *s)
{
bool reclaim;
u32 gfxsize, gttsize, tsegsize, mmiosize, tom, tolud, touud;
u32 gfxbase, gttbase, tsegbase, reclaimbase, reclaimlimit;
u32 mmiostart, umasizem;
u16 ggc;
u16 ggc2uma[] = { 0, 1, 4, 8, 16, 32, 48, 64, 128, 256, 96, 160, 224, 352 };
u8 ggc2gtt[] = { 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4};
ggc = pci_read_config16(HOST_BRIDGE, 0x52);
gfxsize = ggc2uma[(ggc & 0xf0) >> 4];
gttsize = ggc2gtt[(ggc & 0xf00) >> 8];
/* TSEG 2M, This amount can easily be covered by SMRR MTRR's,
which requires to have TSEG_BASE aligned to TSEG_SIZE. */
tsegsize = 2;
mmiosize = 0x800; /* 2GB MMIO */
umasizem = gfxsize + gttsize + tsegsize;
mmiostart = 0x1000 - mmiosize + umasizem;
tom = s->channel_capacity[0] + s->channel_capacity[1] - ME_UMA_SIZEMB;
tolud = MIN(mmiostart, tom);
reclaim = false;
if ((tom - tolud) > 0x40)
reclaim = true;
if (reclaim) {
tolud = tolud & ~0x3f;
tom = tom & ~0x3f;
reclaimbase = MAX(0x1000, tom);
reclaimlimit = reclaimbase + (MIN(0x1000, tom) - tolud) - 0x40;
}
touud = tom;
if (reclaim)
touud = reclaimlimit + 0x40;
gfxbase = tolud - gfxsize;
gttbase = gfxbase - gttsize;
tsegbase = gttbase - tsegsize;
pci_write_config16(HOST_BRIDGE, 0xb0, tolud << 4);
pci_write_config16(HOST_BRIDGE, 0xa0, tom >> 6);
if (reclaim) {
pci_write_config16(HOST_BRIDGE, 0x98, (u16)(reclaimbase >> 6));
pci_write_config16(HOST_BRIDGE, 0x9a, (u16)(reclaimlimit >> 6));
}
pci_write_config16(HOST_BRIDGE, 0xa2, touud);
pci_write_config32(HOST_BRIDGE, 0xa4, gfxbase << 20);
pci_write_config32(HOST_BRIDGE, 0xa8, gttbase << 20);
/* Enable and set TSEG size to 2M */
pci_update_config8(HOST_BRIDGE, D0F0_ESMRAMC, ~0x07, (1 << 1) | (1 << 0));
pci_write_config32(HOST_BRIDGE, 0xac, tsegbase << 20);
}
static void set_enhanced_mode(struct sysinfo *s)
{
u8 ch, reg8;
u32 reg32;
mchbar_write32(0xfb0, 0x1000d024);
mchbar_write32(0xfb4, 0xc842);
mchbar_write32(0xfbc, 0xf);
mchbar_write32(0xfc4, 0xfe22244);
mchbar_write8(0x12f, 0x5c);
mchbar_setbits8(0xfb0, 1 << 0);
if (s->selected_timings.mem_clk <= MEM_CLOCK_800MHz)
mchbar_setbits8(0x12f, 1 << 1);
else
mchbar_clrbits8(0x12f, 1 << 1);
mchbar_clrsetbits8(0x6c0, 0xf0, 0xa0);
mchbar_write32(0xfa8, 0x30d400);
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
mchbar_setbits8(0x400 * ch + 0x26c, 1);
mchbar_write32(0x400 * ch + 0x278, 0x88141881);
mchbar_write16(0x400 * ch + 0x27c, 0x0041);
mchbar_write8(0x400 * ch + 0x292, 0xf2);
mchbar_setbits16(0x400 * ch + 0x272, 1 << 8);
mchbar_clrsetbits8(0x400 * ch + 0x243, 3, 1);
mchbar_write32(0x400 * ch + 0x288, 0x8040200);
mchbar_write32(0x400 * ch + 0x28c, 0xff402010);
mchbar_write32(0x400 * ch + 0x290, 0x4f2091c);
}
reg8 = pci_read_config8(HOST_BRIDGE, 0xf0);
pci_write_config8(HOST_BRIDGE, 0xf0, reg8 | 1);
mchbar_clrsetbits32(0xfa0, 0x20002, 0x2 | (s->selected_timings.fsb_clk ==
FSB_CLOCK_1333MHz ? 0x20000 : 0));
reg32 = 0x219100c2;
if (s->selected_timings.fsb_clk == FSB_CLOCK_1333MHz) {
reg32 |= 1;
if (s->selected_timings.mem_clk == MEM_CLOCK_1066MHz)
reg32 &= ~0x10000;
} else if (s->selected_timings.fsb_clk == FSB_CLOCK_1066MHz) {
reg32 &= ~0x10000;
}
mchbar_clrsetbits32(0xfa4, 0x219100c3, reg32);
reg32 = 0x44a00;
switch (s->selected_timings.fsb_clk) {
case FSB_CLOCK_1333MHz:
reg32 |= 0x62;
break;
case FSB_CLOCK_1066MHz:
reg32 |= 0x5a;
break;
default:
case FSB_CLOCK_800MHz:
reg32 |= 0x53;
break;
}
mchbar_write32(0x2c, reg32);
mchbar_write32(0x30, 0x1f5a86);
mchbar_write32(0x34, 0x1902810);
mchbar_write32(0x38, 0xf7000000);
reg32 = 0x23014410;
if (s->selected_timings.fsb_clk > FSB_CLOCK_800MHz)
reg32 = (reg32 & ~0x2000000) | 0x44000000;
mchbar_write32(0x3c, reg32);
reg32 = 0x8f038000;
if (s->selected_timings.fsb_clk == FSB_CLOCK_1333MHz)
reg32 &= ~0x4000000;
mchbar_clrsetbits32(0x40, 0x8f038000, reg32);
reg32 = 0x00013001;
if (s->selected_timings.fsb_clk < FSB_CLOCK_1333MHz)
reg32 |= 0x20000;
mchbar_write32(0x20, reg32);
pci_write_config8(HOST_BRIDGE, 0xf0, reg8 & ~1);
}
static void power_settings(struct sysinfo *s)
{
u32 reg1, reg2, reg3, reg4, clkgate, x592;
u8 lane, ch;
u8 twl = 0;
u16 x264, x23c;
if (s->spd_type == DDR2) {
twl = s->selected_timings.CAS - 1;
x264 = 0x78;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
reg1 = 0x99;
reg2 = 0x1048a9;
clkgate = 0x230000;
x23c = 0x7a89;
break;
case MEM_CLOCK_800MHz:
if (s->selected_timings.CAS == 5) {
reg1 = 0x19a;
reg2 = 0x1048aa;
} else {
reg1 = 0x9a;
reg2 = 0x2158aa;
x264 = 0x89;
}
clkgate = 0x280000;
x23c = 0x7b89;
break;
}
reg3 = 0x232;
reg4 = 0x2864;
} else { /* DDR3 */
int ddr3_idx = s->selected_timings.mem_clk - MEM_CLOCK_800MHz;
int cas_idx = s->selected_timings.CAS - 5;
twl = s->selected_timings.mem_clk - MEM_CLOCK_800MHz + 5;
reg1 = ddr3_c2_tab[s->nmode - 1][ddr3_idx][cas_idx][0];
reg2 = ddr3_c2_tab[s->nmode - 1][ddr3_idx][cas_idx][1];
reg3 = 0x764;
reg4 = 0x78c8;
x264 = ddr3_c2_x264[ddr3_idx][cas_idx];
x23c = ddr3_c2_x23c[ddr3_idx][cas_idx];
switch (s->selected_timings.mem_clk) {
case MEM_CLOCK_800MHz:
default:
clkgate = 0x280000;
break;
case MEM_CLOCK_1066MHz:
clkgate = 0x350000;
break;
case MEM_CLOCK_1333MHz:
clkgate = 0xff0000;
break;
}
}
if (CHANNEL_IS_POPULATED(s->dimms, 0) && CHANNEL_IS_POPULATED(s->dimms, 1))
mchbar_write32(0x14, 0x0010461f);
else
mchbar_write32(0x14, 0x0010691f);
mchbar_write32(0x18, 0xdf6437f7);
mchbar_write32(0x1c, 0);
mchbar_clrsetbits32(0x24, 0xe0000000, 0x60000000);
mchbar_clrsetbits32(0x44, 0x1fef0000, 0x6b0000);
mchbar_write16(0x115, reg1);
mchbar_clrsetbits32(0x117, 0xffffff, reg2);
mchbar_write8(0x124, 0x7);
/* not sure if dummy reads are needed */
mchbar_clrsetbits16(0x12a, ~0, 0x80);
mchbar_clrsetbits8(0x12c, ~0, 0xa0);
mchbar_clrbits16(0x174, 1 << 15);
mchbar_clrsetbits16(0x188, 0x1f00, 0x1f00);
mchbar_clrbits8(0x18c, 1 << 3);
mchbar_setbits8(0x192, 1);
mchbar_setbits8(0x193, 0xf);
mchbar_clrsetbits16(0x1b4, 0x480, 0x80);
mchbar_clrsetbits16(0x210, 0x1fff, 0x3f); /* clockgating iii */
/* non-aligned access: possible bug? */
mchbar_clrsetbits32(0x6d1, 0xff03ff, 0x100 | clkgate);
mchbar_clrsetbits8(0x212, 0x7f, 0x7f);
mchbar_clrsetbits32(0x2c0, 0xffff0, 0xcc5f0);
mchbar_clrsetbits8(0x2c4, 0x70, 0x70);
/* non-aligned access: possible bug? */
mchbar_clrsetbits32(0x2d1, 0xffffff, 0xff2831); /* clockgating i */
mchbar_write32(0x2d4, 0x40453600);
mchbar_write32(0x300, 0xc0b0a08);
mchbar_write32(0x304, 0x6040201);
mchbar_clrsetbits32(0x30c, 0x43c0f, 0x41405);
mchbar_write16(0x610, reg3);
mchbar_write16(0x612, reg4);
mchbar_clrsetbits32(0x62c, 0xc000000, 0x4000000);
mchbar_write32(0xae4, 0);
mchbar_clrsetbits32(0xc00, 0xf0000, 0x10000);
mchbar_write32(0xf00, 0x393a3b3c);
mchbar_write32(0xf04, 0x3d3e3f40);
mchbar_write32(0xf08, 0x393a3b3c);
mchbar_write32(0xf0c, 0x3d3e3f40);
mchbar_clrbits32(0xf18, 0xfff00001);
mchbar_write32(0xf48, 0xfff0ffe0);
mchbar_write32(0xf4c, 0xffc0ff00);
mchbar_write32(0xf50, 0xfc00f000);
mchbar_write32(0xf54, 0xc0008000);
mchbar_clrsetbits32(0xf6c, 0xffff0000, 0xffff0000);
mchbar_clrbits32(0xfac, 0x80000000);
mchbar_clrbits32(0xfb8, 0xff000000);
mchbar_clrsetbits32(0xfbc, 0x7f800, 0xf000);
mchbar_write32(0x1104, 0x3003232);
mchbar_write32(0x1108, 0x74);
if (s->selected_timings.fsb_clk == FSB_CLOCK_800MHz)
mchbar_write32(0x110c, 0xaa);
else
mchbar_write32(0x110c, 0x100);
mchbar_write32(0x1110, 0x10810350 & ~0x78);
mchbar_write32(0x1114, 0);
x592 = 0xff;
if (pci_read_config8(HOST_BRIDGE, 0x8) < 3)
x592 = ~0x4;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
mchbar_write8(0x400 * ch + 0x239, twl + 15);
mchbar_write16(0x400 * ch + 0x23c, x23c);
mchbar_clrsetbits32(0x400 * ch + 0x248, 0x706033, 0x406033);
mchbar_clrsetbits32(0x400 * ch + 0x260, 1 << 16, 1 << 16);
mchbar_write8(0x400 * ch + 0x264, x264);
mchbar_clrsetbits8(0x400 * ch + 0x592, 0x3f, 0x3c & x592);
mchbar_clrsetbits8(0x400 * ch + 0x593, 0x1f, 0x1e);
}
for (lane = 0; lane < 8; lane++)
mchbar_clrbits8(0x561 + (lane << 2), 1 << 3);
}
static void software_ddr3_reset(struct sysinfo *s)
{
printk(BIOS_DEBUG, "Software initiated DDR3 reset.\n");
mchbar_setbits8(0x1a8, 1 << 1);
mchbar_clrbits8(0x5da, 1 << 7);
mchbar_clrbits8(0x1a8, 1 << 1);
mchbar_clrsetbits8(0x5da, 3, 1);
udelay(200);
mchbar_clrbits8(0x1a8, 1 << 1);
mchbar_setbits8(0x5da, 1 << 7);
mchbar_clrbits8(0x5da, 1 << 7);
udelay(500);
mchbar_setbits8(0x5da, 3);
mchbar_clrbits8(0x5da, 3);
/* After write leveling the dram needs to be reset and reinitialised */
jedec_ddr3(s);
}
void do_raminit(struct sysinfo *s, int fast_boot)
{
u8 ch;
u8 r, bank;
u32 reg32;
if (s->boot_path != BOOT_PATH_WARM_RESET) {
/* Clear self refresh */
mchbar_setbits32(PMSTS_MCHBAR, PMSTS_BOTH_SELFREFRESH);
/* Clear host clk gate reg */
mchbar_setbits32(0x1c, 0xffffffff);
/* Select type */
if (s->spd_type == DDR2)
mchbar_clrbits8(0x1a8, 1 << 2);
else
mchbar_setbits8(0x1a8, 1 << 2);
/* Set frequency */
mchbar_clrsetbits32(CLKCFG_MCHBAR, CLKCFG_MEMCLK_MASK,
(s->selected_timings.mem_clk << CLKCFG_MEMCLK_SHIFT) | CLKCFG_UPDATE);
/* Overwrite value if chipset rejects it */
s->selected_timings.mem_clk = (mchbar_read8(CLKCFG_MCHBAR) &
CLKCFG_MEMCLK_MASK) >> CLKCFG_MEMCLK_SHIFT;
if (s->selected_timings.mem_clk > (s->max_fsb + 3))
die("Error: DDR is faster than FSB, halt\n");
}
/* Program clock crossing */
program_crossclock(s);
printk(BIOS_DEBUG, "Done clk crossing\n");
if (s->boot_path != BOOT_PATH_WARM_RESET) {
setioclk_dram(s);
printk(BIOS_DEBUG, "Done I/O clk\n");
}
/* Grant to launch */
launch_dram(s);
printk(BIOS_DEBUG, "Done launch\n");
/* Program DRAM timings */
program_timings(s);
printk(BIOS_DEBUG, "Done timings\n");
/* Program DLL */
program_dll(s);
if (!fast_boot)
select_default_dq_dqs_settings(s);
set_all_dq_dqs_dll_settings(s);
/* RCOMP */
if (s->boot_path != BOOT_PATH_WARM_RESET) {
prog_rcomp(s);
printk(BIOS_DEBUG, "RCOMP\n");
}
/* ODT */
program_odt(s);
printk(BIOS_DEBUG, "Done ODT\n");
/* RCOMP update */
if (s->boot_path != BOOT_PATH_WARM_RESET) {
while (mchbar_read8(0x130) & 1)
;
printk(BIOS_DEBUG, "Done RCOMP update\n");
}
pre_jedec_memory_map();
/* IOBUFACT */
if (CHANNEL_IS_POPULATED(s->dimms, 0)) {
mchbar_clrsetbits8(0x5dd, 0x3f, 0x3f);
mchbar_setbits8(0x5d8, 0x7);
}
if (CHANNEL_IS_POPULATED(s->dimms, 1)) {
if (pci_read_config8(HOST_BRIDGE, 0x8) < 2) {
mchbar_clrsetbits8(0x5dd, 0x3f, 0x3f);
mchbar_setbits8(0x5d8, 1);
}
mchbar_setbits8(0x9dd, 0x3f);
mchbar_setbits8(0x9d8, 0x7);
}
/* DDR3 reset */
if ((s->spd_type == DDR3) && (s->boot_path != BOOT_PATH_RESUME)) {
printk(BIOS_DEBUG, "DDR3 Reset.\n");
mchbar_clrbits8(0x1a8, 1 << 1);
mchbar_setbits8(0x5da, 1 << 7);
udelay(500);
mchbar_clrbits8(0x1a8, 1 << 1);
mchbar_clrbits8(0x5da, 1 << 7);
udelay(500);
}
/* Pre jedec */
mchbar_setbits8(0x40, 1 << 1);
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
mchbar_setbits32(0x400 * ch + 0x260, 1 << 27);
}
mchbar_setbits16(0x212, 0xf << 12);
mchbar_setbits16(0x212, 0xf << 8);
printk(BIOS_DEBUG, "Done pre-jedec\n");
/* JEDEC reset */
if (s->boot_path != BOOT_PATH_RESUME) {
if (s->spd_type == DDR2)
jedec_ddr2(s);
else /* DDR3 */
jedec_ddr3(s);
}
printk(BIOS_DEBUG, "Done jedec steps\n");
if (s->spd_type == DDR3) {
if (!fast_boot)
search_write_leveling(s);
if (s->boot_path == BOOT_PATH_NORMAL)
software_ddr3_reset(s);
}
/* After JEDEC reset */
mchbar_clrbits8(0x40, 1 << 1);
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
reg32 = (2 << 18);
reg32 |= post_jedec_tab[s->selected_timings.fsb_clk]
[s->selected_timings.mem_clk - MEM_CLOCK_667MHz][0] << 13;
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz &&
s->selected_timings.fsb_clk == FSB_CLOCK_1066MHz &&
ch == 1) {
reg32 |= (post_jedec_tab[s->selected_timings.fsb_clk]
[s->selected_timings.mem_clk - MEM_CLOCK_667MHz][1] - 1) << 8;
} else {
reg32 |= post_jedec_tab[s->selected_timings.fsb_clk]
[s->selected_timings.mem_clk - MEM_CLOCK_667MHz][1] << 8;
}
mchbar_clrsetbits32(0x400 * ch + 0x274, 0xfff00, reg32);
mchbar_clrbits8(0x400 * ch + 0x274, 1 << 7);
mchbar_setbits8(0x400 * ch + 0x26c, 1 << 0);
mchbar_write32(0x400 * ch + 0x278, 0x88141881);
mchbar_write16(0x400 * ch + 0x27c, 0x41);
mchbar_write8(0x400 * ch + 0x292, 0xf2);
mchbar_setbits8(0x400 * ch + 0x271, 0xe);
}
mchbar_setbits8(0x2c4, 1 << 3);
mchbar_setbits8(0x2c3, 1 << 6);
mchbar_setbits8(0x2c4, 1 << 2);
printk(BIOS_DEBUG, "Done post-jedec\n");
/* Set DDR init complete */
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
mchbar_setbits32(0x400 * ch + 0x268, 3 << 30);
}
/* Dummy reads */
if (s->boot_path == BOOT_PATH_NORMAL) {
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
for (bank = 0; bank < 4; bank++)
read32p(test_address(ch, r) | 0x800000 | (bank << 12));
}
}
printk(BIOS_DEBUG, "Done dummy reads\n");
/* Receive enable */
sdram_program_receive_enable(s, fast_boot);
printk(BIOS_DEBUG, "Done rcven\n");
/* Finish rcven */
FOR_EACH_CHANNEL(ch) {
mchbar_clrbits8(0x400 * ch + 0x5d8, 7 << 1);
mchbar_setbits8(0x400 * ch + 0x5d8, 1 << 1);
mchbar_setbits8(0x400 * ch + 0x5d8, 1 << 2);
mchbar_setbits8(0x400 * ch + 0x5d8, 1 << 3);
}
mchbar_setbits8(0x5dc, 1 << 7);
mchbar_clrbits8(0x5dc, 1 << 7);
mchbar_setbits8(0x5dc, 1 << 7);
/* XXX tRD */
if (!fast_boot) {
if (s->selected_timings.mem_clk > MEM_CLOCK_667MHz) {
if (do_write_training(s))
die("DQ write training failed!");
}
if (do_read_training(s))
die("DQS read training failed!");
}
/* DRADRB */
set_dradrb(s);
printk(BIOS_DEBUG, "Done DRADRB\n");
/* Memory map */
configure_mmap(s);
printk(BIOS_DEBUG, "Done memory map\n");
/* Enhanced mode */
set_enhanced_mode(s);
printk(BIOS_DEBUG, "Done enhanced mode\n");
/* Periodic RCOMP */
mchbar_clrsetbits16(0x160, 0xfff, 0x999);
mchbar_setbits16(0x1b4, 0x3000);
mchbar_setbits8(0x130, 1 << 7 | 1 << 1);
printk(BIOS_DEBUG, "Done PRCOMP\n");
/* Power settings */
power_settings(s);
printk(BIOS_DEBUG, "Done power settings\n");
/* ME related */
/*
* FIXME: This locks some registers like bit1 of GGC
* and is only needed in case of ME being used.
*/
if (ME_UMA_SIZEMB != 0) {
if (RANK_IS_POPULATED(s->dimms, 0, 0) || RANK_IS_POPULATED(s->dimms, 1, 0))
mchbar_setbits8(0xa2f, 1 << 0);
if (RANK_IS_POPULATED(s->dimms, 0, 1) || RANK_IS_POPULATED(s->dimms, 1, 1))
mchbar_setbits8(0xa2f, 1 << 1);
mchbar_setbits32(0xa30, 1 << 26);
}
printk(BIOS_DEBUG, "Done raminit\n");
}