blob: ea006e333588280e01dcdb46e283126e0f0087ea [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include "assert.h"
#include <acpi/acpi_gnvs.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <rmodule.h>
#include <cbmem.h>
#include <cpu/x86/smm.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <security/intel/stm/SmmStm.h>
#define FXSAVE_SIZE 512
#define SMM_CODE_SEGMENT_SIZE 0x10000
/* FXSAVE area during relocation. While it may not be strictly needed the
SMM stub code relies on the FXSAVE area being non-zero to enable SSE
instructions within SMM mode. */
static uint8_t fxsave_area_relocation[CONFIG_MAX_CPUS][FXSAVE_SIZE]
__attribute__((aligned(16)));
/*
* Components that make up the SMRAM:
* 1. Save state - the total save state memory used
* 2. Stack - stacks for the CPUs in the SMM handler
* 3. Stub - SMM stub code for calling into handler
* 4. Handler - C-based SMM handler.
*
* The components are assumed to consist of one consecutive region.
*/
/*
* The stub is the entry point that sets up protected mode and stacks for each
* CPU. It then calls into the SMM handler module. It is encoded as an rmodule.
*/
extern unsigned char _binary_smmstub_start[];
/* Per CPU minimum stack size. */
#define SMM_MINIMUM_STACK_SIZE 32
struct cpu_smm_info {
uint8_t active;
uintptr_t smbase;
uintptr_t ss_start;
uintptr_t ss_top;
uintptr_t code_start;
uintptr_t code_end;
};
struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 };
/*
* This method creates a map of all the CPU entry points, save state locations
* and the beginning and end of code segments for each CPU. This map is used
* during relocation to properly align as many CPUs that can fit into the SMRAM
* region. For more information on how SMRAM works, refer to the latest Intel
* developer's manuals (volume 3, chapter 34). SMRAM is divided up into the
* following regions:
* +-----------------+ Top of SMRAM
* | | <- MSEG, FXSAVE
* +-----------------+
* | common |
* | smi handler | 64K
* | |
* +-----------------+
* | CPU 0 code seg |
* +-----------------+
* | CPU 1 code seg |
* +-----------------+
* | CPU x code seg |
* +-----------------+
* | |
* | |
* +-----------------+
* | stacks |
* +-----------------+ <- START of SMRAM
*
* The code below checks when a code segment is full and begins placing the remainder
* CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000
* and save state is smbase + 0x8000 + (0x8000 - state save size). Save state
* area grows downward into the CPUs entry point. Therefore staggering too many
* CPUs in one 32K block will corrupt CPU0's entry code as the save states move
* downward.
* input : smbase of first CPU (all other CPUs
* will go below this address)
* input : num_cpus in the system. The map will
* be created from 0 to num_cpus.
*/
static int smm_create_map(const uintptr_t smbase, const unsigned int num_cpus,
const struct smm_loader_params *params)
{
struct rmodule smm_stub;
if (ARRAY_SIZE(cpus) < num_cpus) {
printk(BIOS_ERR, "%s: increase MAX_CPUS in Kconfig\n", __func__);
return 0;
}
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__);
return 0;
}
/*
* How many CPUs can fit into one 64K segment?
* Make sure that the first stub does not overlap with the last save state of a segment.
*/
const size_t stub_size = rmodule_memory_size(&smm_stub);
const size_t needed_ss_size = MAX(params->real_cpu_save_state_size, stub_size);
const size_t cpus_per_segment =
(SMM_CODE_SEGMENT_SIZE - SMM_ENTRY_OFFSET - stub_size) / needed_ss_size;
if (cpus_per_segment == 0) {
printk(BIOS_ERR, "%s: CPUs won't fit in segment. Broken stub or save state size\n",
__func__);
return 0;
}
for (unsigned int i = 0; i < num_cpus; i++) {
if (i % cpus_per_segment == 0)
printk(BIOS_DEBUG, "-------------NEW CODE SEGMENT --------------\n");
printk(BIOS_DEBUG, "CPU 0x%x\n", i);
/* We copy the same stub for each CPU so they all need the same 'smbase'. */
const size_t segment_number = i / cpus_per_segment;
cpus[i].smbase = smbase - SMM_CODE_SEGMENT_SIZE * segment_number
- needed_ss_size * (i % cpus_per_segment);
cpus[i].code_start = cpus[i].smbase + SMM_ENTRY_OFFSET;
cpus[i].code_end = cpus[i].code_start + stub_size;
cpus[i].ss_top = cpus[i].smbase + SMM_CODE_SEGMENT_SIZE;
cpus[i].ss_start = cpus[i].ss_top - params->real_cpu_save_state_size;
printk(BIOS_DEBUG, " Stub [0x%lx-0x%lx[\n", cpus[i].code_start,
cpus[i].code_end);
printk(BIOS_DEBUG, " Save state [0x%lx-0x%lx[\n", cpus[i].ss_start,
cpus[i].ss_top);
cpus[i].active = 1;
}
return 1;
}
/*
* This method expects the smm relocation map to be complete.
* This method does not read any HW registers, it simply uses a
* map that was created during SMM setup.
* input: cpu_num - cpu number which is used as an index into the
* map to return the smbase
*/
u32 smm_get_cpu_smbase(unsigned int cpu_num)
{
if (cpu_num < CONFIG_MAX_CPUS) {
if (cpus[cpu_num].active)
return cpus[cpu_num].smbase;
}
return 0;
}
/*
* This method assumes that at least 1 CPU has been set up from
* which it will place other CPUs below its smbase ensuring that
* save state does not clobber the first CPUs init code segment. The init
* code which is the smm stub code is the same for all CPUs. They enter
* smm, setup stacks (based on their apic id), enter protected mode
* and then jump to the common smi handler. The stack is allocated
* at the beginning of smram (aka tseg base, not smbase). The stack
* pointer for each CPU is calculated by using its apic id
* (code is in smm_stub.s)
* Each entry point will now have the same stub code which, sets up the CPU
* stack, enters protected mode and then jumps to the smi handler. It is
* important to enter protected mode before the jump because the "jump to
* address" might be larger than the 20bit address supported by real mode.
* SMI entry right now is in real mode.
* input: smbase - this is the smbase of the first cpu not the smbase
* where tseg starts (aka smram_start). All CPUs code segment
* and stack will be below this point except for the common
* SMI handler which is one segment above
* input: num_cpus - number of cpus that need relocation including
* the first CPU (though its code is already loaded)
* input: top of stack (stacks work downward by default in Intel HW)
* output: return -1, if runtime smi code could not be installed. In
* this case SMM will not work and any SMI's generated will
* cause a CPU shutdown or general protection fault because
* the appropriate smi handling code was not installed
*/
static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus,
uintptr_t stack_top, const struct smm_loader_params *params)
{
unsigned int i;
unsigned int size;
/*
* Ensure there was enough space and the last CPUs smbase
* did not encroach upon the stack. Stack top is smram start
* + size of stack.
*/
if (cpus[num_cpus].active) {
if (cpus[num_cpus - 1].smbase + SMM_ENTRY_OFFSET < stack_top) {
printk(BIOS_ERR, "%s: stack encroachment\n", __func__);
printk(BIOS_ERR, "%s: smbase %lx, stack_top %lx\n",
__func__, cpus[num_cpus].smbase, stack_top);
return 0;
}
}
printk(BIOS_INFO, "%s: smbase %lx, stack_top %lx\n",
__func__, cpus[num_cpus-1].smbase, stack_top);
/* start at 1, the first CPU stub code is already there */
size = cpus[0].code_end - cpus[0].code_start;
for (i = 1; i < num_cpus; i++) {
memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size);
printk(BIOS_DEBUG,
"SMM Module: placing smm entry code at %lx, cpu # 0x%x\n",
cpus[i].code_start, i);
printk(BIOS_DEBUG, "%s: copying from %lx to %lx 0x%x bytes\n",
__func__, cpus[0].code_start, cpus[i].code_start, size);
}
return 1;
}
static uintptr_t stack_top;
static size_t g_stack_size;
int smm_setup_stack(const uintptr_t perm_smbase, const size_t perm_smram_size,
const unsigned int total_cpus, const size_t stack_size)
{
/* Need a minimum stack size and alignment. */
if (stack_size <= SMM_MINIMUM_STACK_SIZE || (stack_size & 3) != 0) {
printk(BIOS_ERR, "%s: need minimum stack size\n", __func__);
return -1;
}
const size_t total_stack_size = total_cpus * stack_size;
if (total_stack_size >= perm_smram_size) {
printk(BIOS_ERR, "%s: Stack won't fit smram\n", __func__);
return -1;
}
stack_top = perm_smbase + total_stack_size;
g_stack_size = stack_size;
return 0;
}
/*
* Place the staggered entry points for each CPU. The entry points are
* staggered by the per CPU SMM save state size extending down from
* SMM_ENTRY_OFFSET.
*/
static int smm_stub_place_staggered_entry_points(char *base,
const struct smm_loader_params *params, const struct rmodule *smm_stub)
{
size_t stub_entry_offset;
int rc = 1;
stub_entry_offset = rmodule_entry_offset(smm_stub);
/* Each CPU now has its own stub code, which enters protected mode,
* sets up the stack, and then jumps to common SMI handler
*/
if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) {
rc = smm_place_entry_code((uintptr_t)base,
params->num_concurrent_save_states,
stack_top, params);
}
return rc;
}
/*
* The stub setup code assumes it is completely contained within the
* default SMRAM size (0x10000) for the default SMI handler (entry at
* 0x30000), but no assumption should be made for the permanent SMI handler.
* The placement of CPU entry points for permanent handler are determined
* by the number of CPUs in the system and the amount of SMRAM.
* There are potentially 2 regions to place
* within the default SMRAM size:
* 1. Save state areas
* 2. Stub code
*
* The save state always lives at the top of the CPUS smbase (and the entry
* point is at offset 0x8000). This allows only a certain number of CPUs with
* staggered entry points until the save state area comes down far enough to
* overwrite/corrupt the entry code (stub code). Therefore, an SMM map is
* created to avoid this corruption, see smm_create_map() above.
* This module setup code works for the default (0x30000) SMM handler setup and the
* permanent SMM handler.
* The CPU stack is decided at runtime in the stub and is treaded as a continuous
* region. As this might not fit the default SMRAM region, the same region used
* by the permanent handler can be used during relocation.
*/
static int smm_module_setup_stub(const uintptr_t smbase, const size_t smm_size,
struct smm_loader_params *params,
void *const fxsave_area)
{
struct rmodule smm_stub;
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__);
return -1;
}
const size_t stub_size = rmodule_memory_size(&smm_stub);
/* Some sanity check */
if (stub_size >= SMM_ENTRY_OFFSET) {
printk(BIOS_ERR, "%s: Stub too large\n", __func__);
return -1;
}
const uintptr_t smm_stub_loc = smbase + SMM_ENTRY_OFFSET;
if (rmodule_load((void *)smm_stub_loc, &smm_stub)) {
printk(BIOS_ERR, "%s: load module failed\n", __func__);
return -1;
}
struct smm_stub_params *stub_params = rmodule_parameters(&smm_stub);
stub_params->stack_top = stack_top;
stub_params->stack_size = g_stack_size;
stub_params->c_handler = (uintptr_t)params->handler;
stub_params->fxsave_area = (uintptr_t)fxsave_area;
stub_params->fxsave_area_size = FXSAVE_SIZE;
/* Initialize the APIC id to CPU number table to be 1:1 */
for (int i = 0; i < params->num_cpus; i++)
stub_params->apic_id_to_cpu[i] = i;
printk(BIOS_DEBUG, "%s: stack_top = 0x%x\n", __func__, stub_params->stack_top);
printk(BIOS_DEBUG, "%s: per cpu stack_size = 0x%x\n", __func__,
stub_params->stack_size);
printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__,
stub_params->start32_offset);
printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n", __func__, smm_size);
if (!smm_stub_place_staggered_entry_points((void *)smbase, params, &smm_stub)) {
printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__);
return -1;
}
printk(BIOS_DEBUG, "SMM Module: stub loaded at %lx. Will call %p\n", smm_stub_loc,
params->handler);
return 0;
}
/*
* smm_setup_relocation_handler assumes the callback is already loaded in
* memory. i.e. Another SMM module isn't chained to the stub. The other
* assumption is that the stub will be entered from the default SMRAM
* location: 0x30000 -> 0x40000.
*/
int smm_setup_relocation_handler(struct smm_loader_params *params)
{
uintptr_t smram = SMM_DEFAULT_BASE;
printk(BIOS_SPEW, "%s: enter\n", __func__);
/* There can't be more than 1 concurrent save state for the relocation
* handler because all CPUs default to 0x30000 as SMBASE. */
if (params->num_concurrent_save_states > 1)
return -1;
/* A handler has to be defined to call for relocation. */
if (params->handler == NULL)
return -1;
/* Since the relocation handler always uses stack, adjust the number
* of concurrent stack users to be CONFIG_MAX_CPUS. */
if (params->num_cpus == 0)
params->num_cpus = CONFIG_MAX_CPUS;
printk(BIOS_SPEW, "%s: exit\n", __func__);
return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE,
params, fxsave_area_relocation);
}
static void setup_smihandler_params(struct smm_runtime *mod_params,
uintptr_t smram_base,
uintptr_t smram_size,
struct smm_loader_params *loader_params)
{
mod_params->smbase = smram_base;
mod_params->smm_size = smram_size;
mod_params->save_state_size = loader_params->real_cpu_save_state_size;
mod_params->num_cpus = loader_params->num_cpus;
mod_params->gnvs_ptr = (uint32_t)(uintptr_t)acpi_get_gnvs();
const struct cbmem_entry *cbmemc;
if (CONFIG(CONSOLE_CBMEM) && (cbmemc = cbmem_entry_find(CBMEM_ID_CONSOLE))) {
mod_params->cbmemc = cbmem_entry_start(cbmemc);
mod_params->cbmemc_size = cbmem_entry_size(cbmemc);
} else {
mod_params->cbmemc = 0;
mod_params->cbmemc_size = 0;
}
for (int i = 0; i < loader_params->num_cpus; i++)
mod_params->save_state_top[i] = cpus[i].ss_top;
}
/*
*The SMM module is placed within the provided region in the following
* manner:
* +-----------------+ <- smram + size
* | BIOS resource |
* | list (STM) |
* +-----------------+
* | fxsave area |
* +-----------------+
* | smi handler |
* | ... |
* +-----------------+ <- cpu0
* | stub code | <- cpu1
* | stub code | <- cpu2
* | stub code | <- cpu3, etc
* | |
* | |
* | |
* | stacks |
* +-----------------+ <- smram start
* It should be noted that this algorithm will not work for
* SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm
* expects a region large enough to encompass the handler and stacks
* as well as the SMM_DEFAULT_SIZE.
*/
static int smm_load_module_tseg(const uintptr_t smram_base, const size_t smram_size,
struct smm_loader_params *params)
{
if (smram_size <= SMM_DEFAULT_SIZE)
return -1;
struct rmodule smi_handler;
if (rmodule_parse(&_binary_smm_start, &smi_handler))
return -1;
const uintptr_t smram_top = smram_base + smram_size;
const size_t stm_size =
CONFIG(STM) ? CONFIG_MSEG_SIZE - CONFIG_BIOS_RESOURCE_LIST_SIZE : 0;
const uintptr_t stm_base = CONFIG(STM) ? smram_top - stm_size : 0;
if (stm_size) {
printk(BIOS_DEBUG, "STM [0x%lx-0x%lx[\n", stm_base,
stm_base + stm_size);
printk(BIOS_DEBUG, "MSEG size 0x%x\n", CONFIG_MSEG_SIZE);
printk(BIOS_DEBUG, "BIOS res list 0x%x\n", CONFIG_BIOS_RESOURCE_LIST_SIZE);
}
const size_t fx_save_area_size = CONFIG(SSE) ? FXSAVE_SIZE * params->num_cpus : 0;
const uintptr_t fx_save_area_base =
CONFIG(SSE) ? smram_top - stm_size - fx_save_area_size : 0;
if (fx_save_area_size)
printk(BIOS_DEBUG, "fx_save [0x%lx-0x%lx[\n", fx_save_area_base,
fx_save_area_base + fx_save_area_size);
const size_t handler_size = rmodule_memory_size(&smi_handler);
const size_t handler_alignment = rmodule_load_alignment(&smi_handler);
const uintptr_t handler_base =
ALIGN_DOWN(smram_top - stm_size - fx_save_area_size - handler_size,
handler_alignment);
printk(BIOS_DEBUG, "smihandler [0x%lx-0x%lx[\n", handler_base,
handler_base + handler_size);
if (handler_base <= smram_base) {
printk(BIOS_ERR, "Permanent handler won't FIT smram\n");
return -1;
}
const uintptr_t stub_segment_base = handler_base - SMM_CODE_SEGMENT_SIZE;
if (!smm_create_map(stub_segment_base, params->num_concurrent_save_states, params)) {
printk(BIOS_ERR, "%s: Error creating CPU map\n", __func__);
return -1;
}
const uintptr_t lowest_stub = cpus[params->num_concurrent_save_states - 1].code_start;
const uintptr_t smm_stack_top =
smram_base + params->num_concurrent_save_states * CONFIG_SMM_MODULE_STACK_SIZE;
printk(BIOS_DEBUG, "cpu stacks [0x%lx-0x%lx[\n", smram_base, smm_stack_top);
if (lowest_stub < smm_stack_top) {
printk(BIOS_ERR, "SMM stubs won't fit in SMRAM 0x%lx\n",
cpus[params->num_concurrent_save_states - 1].code_start);
return -1;
}
if (rmodule_load((void *)handler_base, &smi_handler))
return -1;
struct smm_runtime *smihandler_params = rmodule_parameters(&smi_handler);
params->handler = rmodule_entry(&smi_handler);
setup_smihandler_params(smihandler_params, smram_base, smram_size, params);
return smm_module_setup_stub(stub_segment_base, smram_size, params,
(void *)fx_save_area_base);
}
/*
*The SMM module is placed within the provided region in the following
* manner:
* +-----------------+ <- smram + size == 0xB0000
* | save states |
* +-----------------+
* | fxsave area |
* +-----------------+
* | smi handler | (or below the stubs if there is more space there)
* | ... |
* +-----------------+ <- cpu0
* | stub code | <- cpu1
* | stub code | <- cpu2
* | stub code | <- cpu3, etc
* | |
* | |
* | |
* | stacks |
* +-----------------+ <- smram start = 0xA0000
*/
static int smm_load_module_aseg(const uintptr_t smram_base, const size_t smram_size,
struct smm_loader_params *params)
{
if (smram_size != SMM_DEFAULT_SIZE)
return -1;
struct rmodule smi_handler;
if (rmodule_parse(&_binary_smm_start, &smi_handler))
return -1;
if (!smm_create_map(smram_base, params->num_concurrent_save_states, params)) {
printk(BIOS_ERR, "%s: Error creating CPU map\n", __func__);
return -1;
}
const uintptr_t smm_stack_top =
smram_base + params->num_concurrent_save_states * CONFIG_SMM_MODULE_STACK_SIZE;
printk(BIOS_DEBUG, "cpu stacks [0x%lx-0x%lx[\n", smram_base, smm_stack_top);
if (smm_stack_top > cpus[params->num_concurrent_save_states - 1].code_start) {
printk(BIOS_ERR, "stack won't fit in smram\n");
return -1;
}
const uintptr_t save_state_bottom =
cpus[params->num_concurrent_save_states - 1].ss_start;
const size_t fx_save_area_size = CONFIG(SSE) ? FXSAVE_SIZE * params->num_cpus : 0;
const uintptr_t fx_save_area_base =
CONFIG(SSE) ? save_state_bottom - fx_save_area_size : 0;
if (fx_save_area_size) {
printk(BIOS_DEBUG, "fx_save [0x%lx-0x%lx[\n", fx_save_area_base,
fx_save_area_base + fx_save_area_size);
if (fx_save_area_base < cpus[0].code_end) {
printk(BIOS_ERR, "fxsave won't fit in smram\n");
return -1;
}
}
const size_t top_space = save_state_bottom - fx_save_area_size - cpus[0].code_end;
const size_t bottom_space =
cpus[params->num_concurrent_save_states - 1].code_start - smm_stack_top;
const bool use_top = top_space >= bottom_space;
const size_t handler_size = rmodule_memory_size(&smi_handler);
const size_t handler_alignment = rmodule_load_alignment(&smi_handler);
uintptr_t handler_base;
if (use_top) {
handler_base = ALIGN_DOWN(save_state_bottom - fx_save_area_size - handler_size,
handler_alignment);
if (handler_base < cpus[0].code_end) {
printk(BIOS_ERR, "handler won't fit in top of smram\n");
return -1;
}
} else {
handler_base = ALIGN_UP(stack_top, handler_alignment);
const uintptr_t handler_top = handler_base + handler_size;
if (handler_top > cpus[params->num_concurrent_save_states - 1].code_start) {
printk(BIOS_ERR, "handler won't fit in bottom of smram\n");
return -1;
}
}
printk(BIOS_DEBUG, "handler [0x%lx-0x%lx[\n", handler_base,
handler_base + handler_size);
if (rmodule_load((void *)handler_base, &smi_handler))
return -1;
struct smm_runtime *smihandler_params = rmodule_parameters(&smi_handler);
params->handler = rmodule_entry(&smi_handler);
setup_smihandler_params(smihandler_params, smram_base, smram_size, params);
return smm_module_setup_stub(smram_base, smram_size, params,
(void *)fx_save_area_base);
}
int smm_load_module(const uintptr_t smram_base, const size_t smram_size,
struct smm_loader_params *params)
{
if (CONFIG(SMM_ASEG))
return smm_load_module_aseg(smram_base, smram_size, params);
else if (CONFIG(SMM_TSEG))
return smm_load_module_tseg(smram_base, smram_size, params);
return -1;
}