blob: b799d0253e3f2a0c3f36a5cb2e9312b550ba5f75 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
#define __SIMPLE_DEVICE__
#include <acpi/acpi.h>
#include <acpi/acpi_pm.h>
#include <arch/io.h>
#include <device/mmio.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <intelblocks/msr.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/rtc.h>
#include <intelblocks/tco.h>
#include <soc/iomap.h>
#include <soc/cpu.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/smbus.h>
#include <security/vboot/vbnv.h>
#include "chip.h"
uint8_t *pmc_mmio_regs(void)
{
return (void *)(uintptr_t)PCH_PWRM_BASE_ADDRESS;
}
uintptr_t soc_read_pmc_base(void)
{
return (uintptr_t)pmc_mmio_regs();
}
uint32_t *soc_pmc_etr_addr(void)
{
return (uint32_t *)(soc_read_pmc_base() + ETR);
}
const char *const *soc_smi_sts_array(size_t *a)
{
static const char *const smi_sts_bits[] = {
[BIOS_STS_BIT] = "BIOS",
[LEGACY_USB_STS_BIT] = "LEGACY USB",
[SMI_ON_SLP_EN_STS_BIT] = "SLP_SMI",
[APM_STS_BIT] = "APM",
[SWSMI_TMR_STS_BIT] = "SWSMI_TMR",
[PM1_STS_BIT] = "PM1",
[GPE0_STS_BIT] = "GPE0 (reserved)",
[GPIO_STS_BIT] = "GPIO_SMI",
[GPIO_UNLOCK_SMI_STS_BIT] = "GPIO_UNLOCK_SSMI",
[MC_SMI_STS_BIT] = "MCSMI",
[TCO_STS_BIT] = "TCO",
[PERIODIC_STS_BIT] = "PERIODIC",
[SERIRQ_SMI_STS_BIT] = "SERIRQ",
[SMBUS_SMI_STS_BIT] = "SMBUS_SMI",
[XHCI_SMI_STS_BIT] = "XHCI",
[HSMBUS_SMI_STS_BIT] = "HOST_SMBUS",
[SCS_SMI_STS_BIT] = "SCS",
[PCI_EXP_SMI_STS_BIT] = "PCI_EXP_SMI",
[SCC2_SMI_STS_BIT] = "SCC2",
[SPI_SSMI_STS_BIT] = "SPI_SSMI",
[SPI_SMI_STS_BIT] = "SPI",
[PMC_OCP_SMI_STS_BIT] = "OCP_CSE",
};
*a = ARRAY_SIZE(smi_sts_bits);
return smi_sts_bits;
}
/*
* For APL/GLK this check for power button status if nothing else
* is indicating an SMI and SMIs aren't turned into SCIs.
* Apparently, there is no PM1 status bit in the SMI status
* register. That makes things difficult for
* determining if the power button caused an SMI.
*/
uint32_t soc_get_smi_status(uint32_t generic_sts)
{
if (generic_sts == 0 && !(pmc_read_pm1_control() & SCI_EN)) {
uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS);
/* Fake PM1 status bit if power button pressed. */
if (pm1_sts & PWRBTN_STS)
generic_sts |= (1 << PM1_STS_BIT);
}
/*
* GPE0_STS is reserved in APL/GLK datasheets. For compatibility
* with common code, mask it out so that it is always zero.
*/
return generic_sts & ~(1 << GPE0_STS_BIT);
}
const char *const *soc_tco_sts_array(size_t *a)
{
static const char *const tco_sts_bits[] = {
[3] = "TIMEOUT",
[17] = "SECOND_TO",
};
*a = ARRAY_SIZE(tco_sts_bits);
return tco_sts_bits;
}
const char *const *soc_std_gpe_sts_array(size_t *a)
{
static const char *const gpe_sts_bits[] = {
[0] = "PCIE_SCI",
[2] = "SWGPE",
[3] = "PCIE_WAKE0",
[4] = "PUNIT",
[6] = "PCIE_WAKE1",
[7] = "PCIE_WAKE2",
[8] = "PCIE_WAKE3",
[9] = "PCI_EXP",
[10] = "BATLOW",
[11] = "CSE_PME",
[12] = "XDCI_PME",
[13] = "XHCI_PME",
[14] = "AVS_PME",
[15] = "GPIO_TIER1_SCI",
[16] = "SMB_WAK",
[17] = "SATA_PME",
};
*a = ARRAY_SIZE(gpe_sts_bits);
return gpe_sts_bits;
}
void soc_clear_pm_registers(uintptr_t pmc_bar)
{
uint32_t gen_pmcon1;
gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1);
/* Clear the status bits. The RPS field is cleared on a 0 write. */
write32p(pmc_bar + GEN_PMCON1, gen_pmcon1 & ~RPS);
}
void soc_get_gpi_gpe_configs(uint8_t *dw0, uint8_t *dw1, uint8_t *dw2)
{
DEVTREE_CONST struct soc_intel_apollolake_config *config;
config = config_of_soc();
/* Assign to out variable */
*dw0 = config->gpe0_dw1;
*dw1 = config->gpe0_dw2;
*dw2 = config->gpe0_dw3;
}
void soc_fill_power_state(struct chipset_power_state *ps)
{
uintptr_t pmc_bar0 = soc_read_pmc_base();
ps->tco1_sts = tco_read_reg(TCO1_STS);
ps->tco2_sts = tco_read_reg(TCO2_STS);
ps->prsts = read32p(pmc_bar0 + PRSTS);
ps->gen_pmcon1 = read32p(pmc_bar0 + GEN_PMCON1);
ps->gen_pmcon2 = read32p(pmc_bar0 + GEN_PMCON2);
ps->gen_pmcon3 = read32p(pmc_bar0 + GEN_PMCON3);
printk(BIOS_DEBUG, "prsts: %08x\n",
ps->prsts);
printk(BIOS_DEBUG, "tco_sts: %04x %04x\n",
ps->tco1_sts, ps->tco2_sts);
printk(BIOS_DEBUG,
"gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n",
ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3);
}
/* Return 0, 3, or 5 to indicate the previous sleep state. */
int soc_prev_sleep_state(const struct chipset_power_state *ps,
int prev_sleep_state)
{
/* WAK_STS bit will not be set when waking from G3 state */
if (!(ps->pm1_sts & WAK_STS) && (ps->gen_pmcon1 & COLD_BOOT_STS))
prev_sleep_state = ACPI_S5;
return prev_sleep_state;
}
static int rtc_failed(uint32_t gen_pmcon1)
{
return !!(gen_pmcon1 & RPS);
}
int soc_get_rtc_failed(void)
{
const struct chipset_power_state *ps;
if (acpi_fetch_pm_state(&ps, PS_CLAIMER_RTC) < 0)
return 1;
return rtc_failed(ps->gen_pmcon1);
}
int vbnv_cmos_failed(void)
{
uintptr_t pmc_bar = soc_read_pmc_base();
uint32_t gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1);
int rtc_failure = rtc_failed(gen_pmcon1);
if (rtc_failure) {
printk(BIOS_INFO, "RTC failed!\n");
/* We do not want to write 1 to clear-1 bits. Set them to 0. */
gen_pmcon1 &= ~GEN_PMCON1_CLR1_BITS;
/* RPS is write 0 to clear. */
gen_pmcon1 &= ~RPS;
write32p(pmc_bar + GEN_PMCON1, gen_pmcon1);
}
return rtc_failure;
}
/* STM Support */
uint16_t get_pmbase(void)
{
return (uint16_t)ACPI_BASE_ADDRESS;
}
void pmc_soc_set_afterg3_en(const bool on)
{
const uintptr_t gen_pmcon1 = soc_read_pmc_base() + GEN_PMCON1;
uint32_t reg32;
reg32 = read32p(gen_pmcon1);
if (on)
reg32 &= ~SLEEP_AFTER_POWER_FAIL;
else
reg32 |= SLEEP_AFTER_POWER_FAIL;
write32p(gen_pmcon1, reg32);
}