blob: 32e4f4bc4e3abc969647f9ac9236a43d5a6434da [file] [log] [blame]
// 16bit code to access hard drives.
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "disk.h" // floppy_13
#include "biosvar.h" // struct bregs
#include "config.h" // CONFIG_*
#include "cmos.h" // inb_cmos
#include "util.h" // debug_enter
#include "ata.h" // ATA_*
#define DEBUGF1(fmt, args...) bprintf(0, fmt , ##args)
#define DEBUGF(fmt, args...)
/****************************************************************
* Helper functions
****************************************************************/
#define DISK_STUB(regs) do { \
struct bregs *__regs = (regs); \
debug_stub(__regs); \
disk_ret(__regs, DISK_RET_SUCCESS); \
} while (0)
static u8
checksum_seg(u16 seg, u16 offset, u32 len)
{
u32 i;
u8 sum = 0;
for (i=0; i<len; i++)
sum += GET_FARVAR(seg, *(u8*)(offset+i));
return sum;
}
static void
basic_access(struct bregs *regs, u8 device, u16 command)
{
u16 count = regs->al;
u16 cylinder = regs->ch | ((((u16) regs->cl) << 2) & 0x300);
u16 sector = regs->cl & 0x3f;
u16 head = regs->dh;
if ((count > 128) || (count == 0) || (sector == 0)) {
BX_INFO("int13_harddisk: function %02x, parameter out of range!\n"
, regs->ah);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
u16 nlc = GET_EBDA(ata.devices[device].lchs.cylinders);
u16 nlh = GET_EBDA(ata.devices[device].lchs.heads);
u16 nlspt = GET_EBDA(ata.devices[device].lchs.spt);
u16 nph = GET_EBDA(ata.devices[device].pchs.heads);
u16 npspt = GET_EBDA(ata.devices[device].pchs.spt);
// sanity check on cyl heads, sec
if ( (cylinder >= nlc) || (head >= nlh) || (sector > nlspt )) {
BX_INFO("int13_harddisk: function %02x, parameters out of"
" range %04x/%04x/%04x!\n"
, regs->ah, cylinder, head, sector);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
u32 lba = 0;
// if needed, translate lchs to lba, and execute command
if ( (nph != nlh) || (npspt != nlspt)) {
lba = (((((u32)cylinder * (u32)nlh) + (u32)head) * (u32)nlspt)
+ (u32)sector - 1);
sector = 0; // this forces the command to be lba
}
u16 segment = regs->es;
u16 offset = regs->bx;
u8 status;
switch (command) {
case ATA_CMD_READ_SECTORS:
status = ata_cmd_data_in(device, ATA_CMD_READ_SECTORS
, count, cylinder, head, sector
, lba, segment, offset);
break;
case ATA_CMD_WRITE_SECTORS:
status = ata_cmd_data_out(device, ATA_CMD_WRITE_SECTORS
, count, cylinder, head, sector
, lba, segment, offset);
break;
default:
disk_ret(regs, DISK_RET_SUCCESS);
return;
}
// Set nb of sector transferred
regs->al = GET_EBDA(ata.trsfsectors);
if (status != 0) {
BX_INFO("int13_harddisk: function %02x, error %02x !\n",regs->ah,status);
disk_ret(regs, DISK_RET_EBADTRACK);
}
disk_ret(regs, DISK_RET_SUCCESS);
}
void
emu_access(struct bregs *regs, u8 device, u16 command)
{
u16 count = regs->al;
u16 cylinder = regs->ch | ((((u16) regs->cl) << 2) & 0x300);
u16 sector = regs->cl & 0x3f;
u16 head = regs->dh;
if ((count > 128) || (count == 0) || (sector == 0)) {
BX_INFO("int13_harddisk: function %02x, parameter out of range!\n"
, regs->ah);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
u16 nlc = GET_EBDA(cdemu.vdevice.cylinders);
u16 nlh = GET_EBDA(cdemu.vdevice.heads);
u16 nlspt = GET_EBDA(cdemu.vdevice.spt);
// sanity check on cyl heads, sec
if ( (cylinder >= nlc) || (head >= nlh) || (sector > nlspt )) {
BX_INFO("int13_harddisk: function %02x, parameters out of"
" range %04x/%04x/%04x!\n"
, regs->ah, cylinder, head, sector);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
if (!command) {
// If verify or seek
disk_ret(regs, DISK_RET_SUCCESS);
return;
}
u32 ilba = GET_EBDA(cdemu.ilba);
// calculate the virtual lba inside the image
u32 vlba= (((((u32)cylinder*(u32)nlh)+(u32)head)*(u32)nlspt)
+((u32)(sector-1)));
// start lba on cd
u32 slba = (u32)vlba/4;
u16 before= (u16)vlba%4;
u32 lba = ilba + slba;
u16 segment = regs->es;
u16 offset = regs->bx;
u8 status = cdrom_read(device, lba, count*512, segment, offset, before*512);
if (status != 0) {
BX_INFO("int13_harddisk: function %02x, error %02x !\n",regs->ah,status);
regs->al = 0;
disk_ret(regs, DISK_RET_EBADTRACK);
}
regs->al = count;
disk_ret(regs, DISK_RET_SUCCESS);
}
void
extended_access(struct bregs *regs, u8 device, u16 command)
{
u16 count = GET_INT13EXT(regs, count);
u16 segment = GET_INT13EXT(regs, segment);
u16 offset = GET_INT13EXT(regs, offset);
// Can't use 64 bits lba
u32 lba = GET_INT13EXT(regs, lba2);
if (lba != 0L) {
BX_PANIC("int13_harddisk: function %02x. Can't use 64bits lba\n"
, regs->ah);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
u8 type = GET_EBDA(ata.devices[device].type);
// Get 32 bits lba and check
lba = GET_INT13EXT(regs, lba1);
if (type == ATA_TYPE_ATA
&& lba >= GET_EBDA(ata.devices[device].sectors)) {
BX_INFO("int13_harddisk: function %02x. LBA out of range\n", regs->ah);
disk_ret(regs, DISK_RET_EPARAM);
return;
}
u8 status;
switch (command) {
case ATA_CMD_READ_SECTORS:
if (type == ATA_TYPE_ATA)
status = ata_cmd_data_in(device, ATA_CMD_READ_SECTORS
, count, 0, 0, 0
, lba, segment, offset);
else
status = cdrom_read(device, lba, count*2048, segment, offset, 0);
break;
case ATA_CMD_WRITE_SECTORS:
status = ata_cmd_data_out(device, ATA_CMD_WRITE_SECTORS
, count, 0, 0, 0
, lba, segment, offset);
break;
default:
// If verify or seek
disk_ret(regs, DISK_RET_SUCCESS);
return;
}
SET_INT13EXT(regs, count, GET_EBDA(ata.trsfsectors));
if (status != 0) {
BX_INFO("int13_harddisk: function %02x, error %02x !\n"
, regs->ah, status);
disk_ret(regs, DISK_RET_EBADTRACK);
return;
}
disk_ret(regs, DISK_RET_SUCCESS);
}
/****************************************************************
* Hard Drive functions
****************************************************************/
// disk controller reset
static void
disk_1300(struct bregs *regs, u8 device)
{
ata_reset(device);
}
// read disk status
static void
disk_1301(struct bregs *regs, u8 device)
{
regs->ah = GET_BDA(disk_last_status);
disk_ret(regs, DISK_RET_SUCCESS);
}
// read disk sectors
static void
disk_1302(struct bregs *regs, u8 device)
{
basic_access(regs, device, ATA_CMD_READ_SECTORS);
}
// write disk sectors
static void
disk_1303(struct bregs *regs, u8 device)
{
basic_access(regs, device, ATA_CMD_WRITE_SECTORS);
}
// verify disk sectors
static void
disk_1304(struct bregs *regs, u8 device)
{
basic_access(regs, device, 0);
// FIXME verify
}
// format disk track
static void
disk_1305(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// read disk drive parameters
static void
disk_1308(struct bregs *regs, u8 device)
{
// Get logical geometry from table
u16 nlc = GET_EBDA(ata.devices[device].lchs.cylinders);
u16 nlh = GET_EBDA(ata.devices[device].lchs.heads);
u16 nlspt = GET_EBDA(ata.devices[device].lchs.spt);
u16 count = GET_EBDA(ata.hdcount);
nlc = nlc - 2; /* 0 based , last sector not used */
regs->al = 0;
regs->ch = nlc & 0xff;
regs->cl = ((nlc >> 2) & 0xc0) | (nlspt & 0x3f);
regs->dh = nlh - 1;
regs->dl = count; /* FIXME returns 0, 1, or n hard drives */
// FIXME should set ES & DI
disk_ret(regs, DISK_RET_SUCCESS);
}
// initialize drive parameters
static void
disk_1309(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// seek to specified cylinder
static void
disk_130c(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// alternate disk reset
static void
disk_130d(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// check drive ready
static void
disk_1310(struct bregs *regs, u8 device)
{
// should look at 40:8E also???
// Read the status from controller
u8 status = inb(GET_EBDA(ata.channels[device/2].iobase1) + ATA_CB_STAT);
if ( (status & ( ATA_CB_STAT_BSY | ATA_CB_STAT_RDY )) == ATA_CB_STAT_RDY )
disk_ret(regs, DISK_RET_SUCCESS);
else
disk_ret(regs, DISK_RET_ENOTREADY);
}
// recalibrate
static void
disk_1311(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// controller internal diagnostic
static void
disk_1314(struct bregs *regs, u8 device)
{
DISK_STUB(regs);
}
// read disk drive size
static void
disk_1315(struct bregs *regs, u8 device)
{
// Get logical geometry from table
u16 nlc = GET_EBDA(ata.devices[device].lchs.cylinders);
u16 nlh = GET_EBDA(ata.devices[device].lchs.heads);
u16 nlspt = GET_EBDA(ata.devices[device].lchs.spt);
// Compute sector count seen by int13
u32 lba = (u32)(nlc - 1) * (u32)nlh * (u32)nlspt;
regs->cx = lba >> 16;
regs->dx = lba & 0xffff;
disk_ret(regs, DISK_RET_SUCCESS);
regs->ah = 3; // hard disk accessible
}
// IBM/MS installation check
static void
disk_1341(struct bregs *regs, u8 device)
{
regs->bx = 0xaa55; // install check
regs->cx = 0x0007; // ext disk access and edd, removable supported
disk_ret(regs, DISK_RET_SUCCESS);
regs->ah = 0x30; // EDD 3.0
}
// IBM/MS extended read
static void
disk_1342(struct bregs *regs, u8 device)
{
extended_access(regs, device, ATA_CMD_READ_SECTORS);
}
// IBM/MS extended write
static void
disk_1343(struct bregs *regs, u8 device)
{
extended_access(regs, device, ATA_CMD_WRITE_SECTORS);
}
// IBM/MS verify
static void
disk_1344(struct bregs *regs, u8 device)
{
extended_access(regs, device, 0);
}
// IBM/MS lock/unlock drive
static void
disk_1345(struct bregs *regs, u8 device)
{
// Always success for HD
disk_ret(regs, DISK_RET_SUCCESS);
}
// IBM/MS eject media
static void
disk_1346(struct bregs *regs, u8 device)
{
// Volume Not Removable
disk_ret(regs, DISK_RET_ENOTREMOVABLE);
}
// IBM/MS extended seek
static void
disk_1347(struct bregs *regs, u8 device)
{
extended_access(regs, device, 0);
}
// IBM/MS get drive parameters
static void
disk_1348(struct bregs *regs, u8 device)
{
u16 size = GET_INT13DPT(regs, size);
// Buffer is too small
if (size < 0x1a) {
disk_ret(regs, DISK_RET_EPARAM);
return;
}
// EDD 1.x
u8 type = GET_EBDA(ata.devices[device].type);
u16 npc = GET_EBDA(ata.devices[device].pchs.cylinders);
u16 nph = GET_EBDA(ata.devices[device].pchs.heads);
u16 npspt = GET_EBDA(ata.devices[device].pchs.spt);
u32 lba = GET_EBDA(ata.devices[device].sectors);
u16 blksize = GET_EBDA(ata.devices[device].blksize);
SET_INT13DPT(regs, size, 0x1a);
if (type == ATA_TYPE_ATA) {
if ((lba/npspt)/nph > 0x3fff) {
SET_INT13DPT(regs, infos, 0x00); // geometry is invalid
SET_INT13DPT(regs, cylinders, 0x3fff);
} else {
SET_INT13DPT(regs, infos, 0x02); // geometry is valid
SET_INT13DPT(regs, cylinders, (u32)npc);
}
SET_INT13DPT(regs, heads, (u32)nph);
SET_INT13DPT(regs, spt, (u32)npspt);
SET_INT13DPT(regs, sector_count1, lba); // FIXME should be Bit64
SET_INT13DPT(regs, sector_count2, 0L);
} else {
// ATAPI
// 0x74 = removable, media change, lockable, max values
SET_INT13DPT(regs, infos, 0x74);
SET_INT13DPT(regs, cylinders, 0xffffffff);
SET_INT13DPT(regs, heads, 0xffffffff);
SET_INT13DPT(regs, spt, 0xffffffff);
SET_INT13DPT(regs, sector_count1, 0xffffffff); // FIXME should be Bit64
SET_INT13DPT(regs, sector_count2, 0xffffffff);
}
SET_INT13DPT(regs, blksize, blksize);
if (size < 0x1e) {
disk_ret(regs, DISK_RET_SUCCESS);
return;
}
// EDD 2.x
SET_INT13DPT(regs, size, 0x1e);
SET_INT13DPT(regs, dpte_segment, EBDA_SEG);
SET_INT13DPT(regs, dpte_offset
, offsetof(struct extended_bios_data_area_s, ata.dpte));
// Fill in dpte
u8 channel = device / 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
u8 irq = GET_EBDA(ata.channels[channel].irq);
u8 mode = GET_EBDA(ata.devices[device].mode);
u16 options;
if (type == ATA_TYPE_ATA) {
u8 translation = GET_EBDA(ata.devices[device].translation);
options = (translation==ATA_TRANSLATION_NONE?0:1)<<3; // chs translation
options |= (translation==ATA_TRANSLATION_LBA?1:0)<<9;
options |= (translation==ATA_TRANSLATION_RECHS?3:0)<<9;
} else {
// ATAPI
options = (1<<5); // removable device
options |= (1<<6); // atapi device
}
options |= (1<<4); // lba translation
options |= (mode==ATA_MODE_PIO32?1:0)<<7;
SET_EBDA(ata.dpte.iobase1, iobase1);
SET_EBDA(ata.dpte.iobase2, iobase2 + ATA_CB_DC);
SET_EBDA(ata.dpte.prefix, (0xe | (device % 2))<<4 );
SET_EBDA(ata.dpte.unused, 0xcb );
SET_EBDA(ata.dpte.irq, irq );
SET_EBDA(ata.dpte.blkcount, 1 );
SET_EBDA(ata.dpte.dma, 0 );
SET_EBDA(ata.dpte.pio, 0 );
SET_EBDA(ata.dpte.options, options);
SET_EBDA(ata.dpte.reserved, 0);
if (size >= 0x42)
SET_EBDA(ata.dpte.revision, 0x11);
else
SET_EBDA(ata.dpte.revision, 0x10);
u8 sum = checksum_seg(EBDA_SEG
, offsetof(struct extended_bios_data_area_s, ata.dpte)
, 15);
SET_EBDA(ata.dpte.checksum, ~sum);
if (size < 0x42) {
disk_ret(regs, DISK_RET_SUCCESS);
return;
}
// EDD 3.x
channel = device / 2;
u8 iface = GET_EBDA(ata.channels[channel].iface);
iobase1 = GET_EBDA(ata.channels[channel].iobase1);
SET_INT13DPT(regs, size, 0x42);
SET_INT13DPT(regs, key, 0xbedd);
SET_INT13DPT(regs, dpi_length, 0x24);
SET_INT13DPT(regs, reserved1, 0);
SET_INT13DPT(regs, reserved2, 0);
if (iface==ATA_IFACE_ISA) {
SET_INT13DPT(regs, host_bus[0], 'I');
SET_INT13DPT(regs, host_bus[1], 'S');
SET_INT13DPT(regs, host_bus[2], 'A');
SET_INT13DPT(regs, host_bus[3], 0);
} else {
// FIXME PCI
}
SET_INT13DPT(regs, iface_type[0], 'A');
SET_INT13DPT(regs, iface_type[1], 'T');
SET_INT13DPT(regs, iface_type[2], 'A');
SET_INT13DPT(regs, iface_type[3], 0);
if (iface==ATA_IFACE_ISA) {
SET_INT13DPT(regs, iface_path[0], iobase1);
SET_INT13DPT(regs, iface_path[2], 0);
SET_INT13DPT(regs, iface_path[4], 0L);
} else {
// FIXME PCI
}
SET_INT13DPT(regs, device_path[0], device%2);
SET_INT13DPT(regs, device_path[1], 0);
SET_INT13DPT(regs, device_path[2], 0);
SET_INT13DPT(regs, device_path[4], 0L);
sum = checksum_seg(regs->ds, 30, 34);
SET_INT13DPT(regs, checksum, ~sum);
}
// IBM/MS extended media change
static void
disk_1349(struct bregs *regs, u8 device)
{
// Always success for HD
disk_ret(regs, DISK_RET_SUCCESS);
}
static void
disk_134e01(struct bregs *regs, u8 device)
{
disk_ret(regs, DISK_RET_SUCCESS);
}
static void
disk_134e03(struct bregs *regs, u8 device)
{
disk_ret(regs, DISK_RET_SUCCESS);
}
static void
disk_134e04(struct bregs *regs, u8 device)
{
disk_ret(regs, DISK_RET_SUCCESS);
}
static void
disk_134e06(struct bregs *regs, u8 device)
{
disk_ret(regs, DISK_RET_SUCCESS);
}
static void
disk_134eXX(struct bregs *regs, u8 device)
{
debug_stub(regs);
disk_ret(regs, DISK_RET_EPARAM);
}
// IBM/MS set hardware configuration
static void
disk_134e(struct bregs *regs, u8 device)
{
switch (regs->al) {
case 0x01: disk_134e01(regs, device); break;
case 0x03: disk_134e03(regs, device); break;
case 0x04: disk_134e04(regs, device); break;
case 0x06: disk_134e06(regs, device); break;
default: disk_134eXX(regs, device); break;
}
}
void
disk_13XX(struct bregs *regs, u8 device)
{
debug_stub(regs);
disk_ret(regs, DISK_RET_EPARAM);
}
void
disk_13(struct bregs *regs, u8 device)
{
//debug_stub(regs);
// clear completion flag
SET_BDA(disk_interrupt_flag, 0);
switch (regs->ah) {
case 0x00: disk_1300(regs, device); break;
case 0x01: disk_1301(regs, device); break;
case 0x02: disk_1302(regs, device); break;
case 0x03: disk_1303(regs, device); break;
case 0x04: disk_1304(regs, device); break;
case 0x05: disk_1305(regs, device); break;
case 0x08: disk_1308(regs, device); break;
case 0x09: disk_1309(regs, device); break;
case 0x0c: disk_130c(regs, device); break;
case 0x0d: disk_130d(regs, device); break;
case 0x10: disk_1310(regs, device); break;
case 0x11: disk_1311(regs, device); break;
case 0x14: disk_1314(regs, device); break;
case 0x15: disk_1315(regs, device); break;
case 0x41: disk_1341(regs, device); break;
case 0x42: disk_1342(regs, device); break;
case 0x43: disk_1343(regs, device); break;
case 0x44: disk_1344(regs, device); break;
case 0x45: disk_1345(regs, device); break;
case 0x46: disk_1346(regs, device); break;
case 0x47: disk_1347(regs, device); break;
case 0x48: disk_1348(regs, device); break;
case 0x49: disk_1349(regs, device); break;
case 0x4e: disk_134e(regs, device); break;
default: disk_13XX(regs, device); break;
}
}
/****************************************************************
* Entry points
****************************************************************/
static u8
get_device(struct bregs *regs, u8 iscd, u8 drive)
{
// basic check : device has to be defined
if (drive >= CONFIG_MAX_ATA_DEVICES) {
disk_ret(regs, DISK_RET_EPARAM);
return CONFIG_MAX_ATA_DEVICES;
}
// Get the ata channel
u8 device = GET_EBDA(ata.idmap[iscd][drive]);
// basic check : device has to be valid
if (device >= CONFIG_MAX_ATA_DEVICES) {
disk_ret(regs, DISK_RET_EPARAM);
return CONFIG_MAX_ATA_DEVICES;
}
return device;
}
static void
handle_legacy_disk(struct bregs *regs, u8 drive)
{
if (drive < 0x80) {
floppy_13(regs, drive);
return;
}
if (! CONFIG_ATA) {
// XXX - old code had other disk access method.
disk_ret(regs, DISK_RET_EPARAM);
return;
}
if (drive >= 0xe0) {
u8 device = get_device(regs, 1, drive - 0xe0);
if (device >= CONFIG_MAX_ATA_DEVICES)
return;
cdrom_13(regs, device);
return;
}
u8 device = get_device(regs, 0, drive - 0x80);
if (device >= CONFIG_MAX_ATA_DEVICES)
return;
disk_13(regs, device);
}
void VISIBLE16
handle_40(struct bregs *regs)
{
debug_enter(regs);
handle_legacy_disk(regs, regs->dl);
}
// INT 13h Fixed Disk Services Entry Point
void VISIBLE16
handle_13(struct bregs *regs)
{
//debug_enter(regs);
u8 drive = regs->dl;
if (CONFIG_CDROM_BOOT) {
if (regs->ah == 0x4b) {
cdemu_134b(regs);
return;
}
if (GET_EBDA(cdemu.active)) {
if (drive == GET_EBDA(cdemu.emulated_drive)) {
cdemu_13(regs);
return;
}
if (drive < 0xe0)
drive--;
}
}
handle_legacy_disk(regs, drive);
}
// record completion in BIOS task complete flag
void VISIBLE16
handle_76(struct bregs *regs)
{
debug_isr(regs);
SET_BDA(floppy_harddisk_info, 0xff);
eoi_both_pics();
}