blob: d2e689c12d6623f26499bab708caa532b33066f1 [file] [log] [blame]
// 16bit code to access floppy drives.
//
// Copyright (C) 2008,2009 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "types.h" // u8
#include "disk.h" // DISK_RET_SUCCESS
#include "config.h" // CONFIG_FLOPPY
#include "biosvar.h" // SET_BDA
#include "util.h" // wait_irq
#include "cmos.h" // inb_cmos
#include "pic.h" // eoi_pic1
#include "bregs.h" // struct bregs
#define FLOPPY_SIZE_CODE 0x02 // 512 byte sectors
#define FLOPPY_DATALEN 0xff // Not used - because size code is 0x02
#define FLOPPY_MOTOR_TICKS 37 // ~2 seconds
#define FLOPPY_FILLBYTE 0xf6
#define FLOPPY_GAPLEN 0x1B
#define FLOPPY_FORMAT_GAPLEN 0x6c
// New diskette parameter table adding 3 parameters from IBM
// Since no provisions are made for multiple drive types, most
// values in this table are ignored. I set parameters for 1.44M
// floppy here
struct floppy_ext_dbt_s diskette_param_table2 VAR16VISIBLE = {
.dbt = {
.specify1 = 0xAF, // step rate 12ms, head unload 240ms
.specify2 = 0x02, // head load time 4ms, DMA used
.shutoff_ticks = FLOPPY_MOTOR_TICKS, // ~2 seconds
.bps_code = FLOPPY_SIZE_CODE,
.sectors = 18,
.interblock_len = FLOPPY_GAPLEN,
.data_len = FLOPPY_DATALEN,
.gap_len = FLOPPY_FORMAT_GAPLEN,
.fill_byte = FLOPPY_FILLBYTE,
.settle_time = 0x0F, // 15ms
.startup_time = 0x08, // 1 second
},
.max_track = 79, // maximum track
.data_rate = 0, // data transfer rate
.drive_type = 4, // drive type in cmos
};
// Since no provisions are made for multiple drive types, most
// values in this table are ignored. I set parameters for 1.44M
// floppy here
struct floppy_dbt_s diskette_param_table VAR16FIXED(0xefc7) = {
.specify1 = 0xAF,
.specify2 = 0x02,
.shutoff_ticks = FLOPPY_MOTOR_TICKS,
.bps_code = FLOPPY_SIZE_CODE,
.sectors = 18,
.interblock_len = FLOPPY_GAPLEN,
.data_len = FLOPPY_DATALEN,
.gap_len = FLOPPY_FORMAT_GAPLEN,
.fill_byte = FLOPPY_FILLBYTE,
.settle_time = 0x0F,
.startup_time = 0x08,
};
struct floppyinfo_s {
struct chs_s chs;
u8 config_data;
u8 media_state;
};
struct floppyinfo_s FloppyInfo[] VAR16VISIBLE = {
// Unknown
{ {0, 0, 0}, 0x00, 0x00},
// 1 - 360KB, 5.25" - 2 heads, 40 tracks, 9 sectors
{ {2, 40, 9}, 0x00, 0x25},
// 2 - 1.2MB, 5.25" - 2 heads, 80 tracks, 15 sectors
{ {2, 80, 15}, 0x00, 0x25},
// 3 - 720KB, 3.5" - 2 heads, 80 tracks, 9 sectors
{ {2, 80, 9}, 0x00, 0x17},
// 4 - 1.44MB, 3.5" - 2 heads, 80 tracks, 18 sectors
{ {2, 80, 18}, 0x00, 0x17},
// 5 - 2.88MB, 3.5" - 2 heads, 80 tracks, 36 sectors
{ {2, 80, 36}, 0xCC, 0xD7},
// 6 - 160k, 5.25" - 1 heads, 40 tracks, 8 sectors
{ {1, 40, 8}, 0x00, 0x27},
// 7 - 180k, 5.25" - 1 heads, 40 tracks, 9 sectors
{ {1, 40, 9}, 0x00, 0x27},
// 8 - 320k, 5.25" - 2 heads, 40 tracks, 8 sectors
{ {2, 40, 8}, 0x00, 0x27},
};
struct drive_s *
addFloppy(int floppyid, int ftype, int driver)
{
if (ftype <= 0 || ftype >= ARRAY_SIZE(FloppyInfo)) {
dprintf(1, "Bad floppy type %d\n", ftype);
return NULL;
}
struct drive_s *drive_g = malloc_fseg(sizeof(*drive_g));
if (!drive_g) {
warn_noalloc();
return NULL;
}
memset(drive_g, 0, sizeof(*drive_g));
drive_g->cntl_id = floppyid;
drive_g->type = driver;
drive_g->blksize = DISK_SECTOR_SIZE;
drive_g->floppy_type = ftype;
drive_g->sectors = (u64)-1;
memcpy(&drive_g->lchs, &FloppyInfo[ftype].chs
, sizeof(FloppyInfo[ftype].chs));
map_floppy_drive(drive_g);
return drive_g;
}
void
describe_floppy(struct drive_s *drive_g)
{
printf("drive %c", 'A' + drive_g->cntl_id);
}
void
floppy_setup(void)
{
if (! CONFIG_FLOPPY)
return;
dprintf(3, "init floppy drives\n");
if (CONFIG_COREBOOT) {
// XXX - disable floppies on coreboot for now.
} else {
u8 type = inb_cmos(CMOS_FLOPPY_DRIVE_TYPE);
if (type & 0xf0)
addFloppy(0, type >> 4, DTYPE_FLOPPY);
if (type & 0x0f)
addFloppy(1, type & 0x0f, DTYPE_FLOPPY);
}
outb(0x02, PORT_DMA1_MASK_REG);
enable_hwirq(6, entry_0e);
}
// Find a floppy type that matches a given image size.
int
find_floppy_type(u32 size)
{
int i;
for (i=1; i<ARRAY_SIZE(FloppyInfo); i++) {
struct chs_s *c = &FloppyInfo[i].chs;
if (c->cylinders * c->heads * c->spt * DISK_SECTOR_SIZE == size)
return i;
}
return -1;
}
/****************************************************************
* Low-level floppy IO
****************************************************************/
static void
floppy_reset_controller(void)
{
// Reset controller
u8 val8 = inb(PORT_FD_DOR);
outb(val8 & ~0x04, PORT_FD_DOR);
outb(val8 | 0x04, PORT_FD_DOR);
// Wait for controller to come out of reset
while ((inb(PORT_FD_STATUS) & 0xc0) != 0x80)
;
}
static int
wait_floppy_irq(void)
{
ASSERT16();
u8 v;
for (;;) {
if (!GET_BDA(floppy_motor_counter))
return -1;
v = GET_BDA(floppy_recalibration_status);
if (v & FRS_TIMEOUT)
break;
// Could use wait_irq() here, but that causes issues on
// bochs, so use yield() instead.
yield();
}
v &= ~FRS_TIMEOUT;
SET_BDA(floppy_recalibration_status, v);
return 0;
}
static void
floppy_prepare_controller(u8 floppyid)
{
CLEARBITS_BDA(floppy_recalibration_status, FRS_TIMEOUT);
// turn on motor of selected drive, DMA & int enabled, normal operation
u8 prev_reset = inb(PORT_FD_DOR) & 0x04;
u8 dor = 0x10;
if (floppyid)
dor = 0x20;
dor |= 0x0c;
dor |= floppyid;
outb(dor, PORT_FD_DOR);
// reset the disk motor timeout value of INT 08
SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS);
// wait for drive readiness
while ((inb(PORT_FD_STATUS) & 0xc0) != 0x80)
;
if (!prev_reset)
wait_floppy_irq();
}
static int
floppy_pio(u8 *cmd, u8 cmdlen)
{
floppy_prepare_controller(cmd[1] & 1);
// send command to controller
u8 i;
for (i=0; i<cmdlen; i++)
outb(cmd[i], PORT_FD_DATA);
int ret = wait_floppy_irq();
if (ret) {
floppy_reset_controller();
return -1;
}
return 0;
}
static int
floppy_cmd(struct disk_op_s *op, u16 count, u8 *cmd, u8 cmdlen)
{
// es:bx = pointer to where to place information from diskette
u32 addr = (u32)op->buf_fl;
// check for 64K boundary overrun
u16 end = count - 1;
u32 last_addr = addr + end;
if ((addr >> 16) != (last_addr >> 16))
return DISK_RET_EBOUNDARY;
u8 mode_register = 0x4a; // single mode, increment, autoinit disable,
if (cmd[0] == 0xe6)
// read
mode_register = 0x46;
//DEBUGF("floppy dma c2\n");
outb(0x06, PORT_DMA1_MASK_REG);
outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop
outb(addr, PORT_DMA_ADDR_2);
outb(addr>>8, PORT_DMA_ADDR_2);
outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop
outb(end, PORT_DMA_CNT_2);
outb(end>>8, PORT_DMA_CNT_2);
// port 0b: DMA-1 Mode Register
// transfer type=write, channel 2
outb(mode_register, PORT_DMA1_MODE_REG);
// port 81: DMA-1 Page Register, channel 2
outb(addr>>16, PORT_DMA_PAGE_2);
outb(0x02, PORT_DMA1_MASK_REG); // unmask channel 2
int ret = floppy_pio(cmd, cmdlen);
if (ret)
return DISK_RET_ETIMEOUT;
// check port 3f4 for accessibility to status bytes
if ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0)
return DISK_RET_ECONTROLLER;
// read 7 return status bytes from controller
u8 i;
for (i=0; i<7; i++) {
u8 v = inb(PORT_FD_DATA);
cmd[i] = v;
SET_BDA(floppy_return_status[i], v);
}
return DISK_RET_SUCCESS;
}
/****************************************************************
* Floppy media sense
****************************************************************/
static inline void
set_diskette_current_cyl(u8 floppyid, u8 cyl)
{
SET_BDA(floppy_track[floppyid], cyl);
}
static void
floppy_drive_recal(u8 floppyid)
{
// send Recalibrate command (2 bytes) to controller
u8 data[12];
data[0] = 0x07; // 07: Recalibrate
data[1] = floppyid; // 0=drive0, 1=drive1
floppy_pio(data, 2);
SETBITS_BDA(floppy_recalibration_status, 1<<floppyid);
set_diskette_current_cyl(floppyid, 0);
}
static int
floppy_media_sense(struct drive_s *drive_g)
{
// for now cheat and get drive type from CMOS,
// assume media is same as drive type
// ** config_data **
// Bitfields for diskette media control:
// Bit(s) Description (Table M0028)
// 7-6 last data rate set by controller
// 00=500kbps, 01=300kbps, 10=250kbps, 11=1Mbps
// 5-4 last diskette drive step rate selected
// 00=0Ch, 01=0Dh, 10=0Eh, 11=0Ah
// 3-2 {data rate at start of operation}
// 1-0 reserved
// ** media_state **
// Bitfields for diskette drive media state:
// Bit(s) Description (Table M0030)
// 7-6 data rate
// 00=500kbps, 01=300kbps, 10=250kbps, 11=1Mbps
// 5 double stepping required (e.g. 360kB in 1.2MB)
// 4 media type established
// 3 drive capable of supporting 4MB media
// 2-0 on exit from BIOS, contains
// 000 trying 360kB in 360kB
// 001 trying 360kB in 1.2MB
// 010 trying 1.2MB in 1.2MB
// 011 360kB in 360kB established
// 100 360kB in 1.2MB established
// 101 1.2MB in 1.2MB established
// 110 reserved
// 111 all other formats/drives
u8 ftype = GET_GLOBAL(drive_g->floppy_type);
SET_BDA(floppy_last_data_rate, GET_GLOBAL(FloppyInfo[ftype].config_data));
u8 floppyid = GET_GLOBAL(drive_g->cntl_id);
SET_BDA(floppy_media_state[floppyid]
, GET_GLOBAL(FloppyInfo[ftype].media_state));
return DISK_RET_SUCCESS;
}
static int
check_recal_drive(struct drive_s *drive_g)
{
u8 floppyid = GET_GLOBAL(drive_g->cntl_id);
if ((GET_BDA(floppy_recalibration_status) & (1<<floppyid))
&& (GET_BDA(floppy_media_state[floppyid]) & FMS_MEDIA_DRIVE_ESTABLISHED))
// Media is known.
return DISK_RET_SUCCESS;
// Recalibrate drive.
floppy_drive_recal(floppyid);
// Sense media.
return floppy_media_sense(drive_g);
}
/****************************************************************
* Floppy handlers
****************************************************************/
static void
lba2chs(struct disk_op_s *op, u8 *track, u8 *sector, u8 *head)
{
u32 lba = op->lba;
u32 tmp = lba + 1;
u16 nlspt = GET_GLOBAL(op->drive_g->lchs.spt);
*sector = tmp % nlspt;
tmp /= nlspt;
u16 nlh = GET_GLOBAL(op->drive_g->lchs.heads);
*head = tmp % nlh;
tmp /= nlh;
*track = tmp;
}
// diskette controller reset
static int
floppy_reset(struct disk_op_s *op)
{
u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id);
set_diskette_current_cyl(floppyid, 0); // current cylinder
return DISK_RET_SUCCESS;
}
// Read Diskette Sectors
static int
floppy_read(struct disk_op_s *op)
{
int res = check_recal_drive(op->drive_g);
if (res)
goto fail;
u8 track, sector, head;
lba2chs(op, &track, &sector, &head);
// send read-normal-data command (9 bytes) to controller
u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id);
u8 data[12];
data[0] = 0xe6; // e6: read normal data
data[1] = (head << 2) | floppyid; // HD DR1 DR2
data[2] = track;
data[3] = head;
data[4] = sector;
data[5] = FLOPPY_SIZE_CODE;
data[6] = sector + op->count - 1; // last sector to read on track
data[7] = FLOPPY_GAPLEN;
data[8] = FLOPPY_DATALEN;
res = floppy_cmd(op, op->count * DISK_SECTOR_SIZE, data, 9);
if (res)
goto fail;
if (data[0] & 0xc0) {
res = DISK_RET_ECONTROLLER;
goto fail;
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(floppyid, track);
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// Write Diskette Sectors
static int
floppy_write(struct disk_op_s *op)
{
int res = check_recal_drive(op->drive_g);
if (res)
goto fail;
u8 track, sector, head;
lba2chs(op, &track, &sector, &head);
// send write-normal-data command (9 bytes) to controller
u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id);
u8 data[12];
data[0] = 0xc5; // c5: write normal data
data[1] = (head << 2) | floppyid; // HD DR1 DR2
data[2] = track;
data[3] = head;
data[4] = sector;
data[5] = FLOPPY_SIZE_CODE;
data[6] = sector + op->count - 1; // last sector to write on track
data[7] = FLOPPY_GAPLEN;
data[8] = FLOPPY_DATALEN;
res = floppy_cmd(op, op->count * DISK_SECTOR_SIZE, data, 9);
if (res)
goto fail;
if (data[0] & 0xc0) {
if (data[1] & 0x02)
res = DISK_RET_EWRITEPROTECT;
else
res = DISK_RET_ECONTROLLER;
goto fail;
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(floppyid, track);
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// Verify Diskette Sectors
static int
floppy_verify(struct disk_op_s *op)
{
int res = check_recal_drive(op->drive_g);
if (res)
goto fail;
u8 track, sector, head;
lba2chs(op, &track, &sector, &head);
// ??? should track be new val from return_status[3] ?
u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id);
set_diskette_current_cyl(floppyid, track);
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// format diskette track
static int
floppy_format(struct disk_op_s *op)
{
int ret = check_recal_drive(op->drive_g);
if (ret)
return ret;
u8 head = op->lba;
// send format-track command (6 bytes) to controller
u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id);
u8 data[12];
data[0] = 0x4d; // 4d: format track
data[1] = (head << 2) | floppyid; // HD DR1 DR2
data[2] = FLOPPY_SIZE_CODE;
data[3] = op->count; // number of sectors per track
data[4] = FLOPPY_FORMAT_GAPLEN;
data[5] = FLOPPY_FILLBYTE;
ret = floppy_cmd(op, op->count * 4, data, 6);
if (ret)
return ret;
if (data[0] & 0xc0) {
if (data[1] & 0x02)
return DISK_RET_EWRITEPROTECT;
return DISK_RET_ECONTROLLER;
}
set_diskette_current_cyl(floppyid, 0);
return DISK_RET_SUCCESS;
}
int
process_floppy_op(struct disk_op_s *op)
{
if (!CONFIG_FLOPPY)
return 0;
switch (op->command) {
case CMD_RESET:
return floppy_reset(op);
case CMD_READ:
return floppy_read(op);
case CMD_WRITE:
return floppy_write(op);
case CMD_VERIFY:
return floppy_verify(op);
case CMD_FORMAT:
return floppy_format(op);
default:
op->count = 0;
return DISK_RET_EPARAM;
}
}
/****************************************************************
* HW irqs
****************************************************************/
// INT 0Eh Diskette Hardware ISR Entry Point
void VISIBLE16
handle_0e(void)
{
debug_isr(DEBUG_ISR_0e);
if (! CONFIG_FLOPPY)
goto done;
if ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0) {
outb(0x08, PORT_FD_DATA); // sense interrupt status
while ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0)
;
do {
inb(PORT_FD_DATA);
} while ((inb(PORT_FD_STATUS) & 0xc0) == 0xc0);
}
// diskette interrupt has occurred
SETBITS_BDA(floppy_recalibration_status, FRS_TIMEOUT);
done:
eoi_pic1();
}
// Called from int08 handler.
void
floppy_tick(void)
{
if (! CONFIG_FLOPPY)
return;
// time to turn off drive(s)?
u8 fcount = GET_BDA(floppy_motor_counter);
if (fcount) {
fcount--;
SET_BDA(floppy_motor_counter, fcount);
if (fcount == 0)
// turn motor(s) off
outb(inb(PORT_FD_DOR) & 0xcf, PORT_FD_DOR);
}
}