blob: d87072df91b52a03cd9ac4b06380c49d9cb4aa9f [file] [log] [blame]
// Low level ATA disk access
//
// Copyright (C) 2008,2009 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "types.h" // u8
#include "ioport.h" // inb
#include "util.h" // dprintf
#include "cmos.h" // inb_cmos
#include "pic.h" // enable_hwirq
#include "biosvar.h" // GET_EBDA
#include "pci.h" // foreachpci
#include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER
#include "pci_regs.h" // PCI_INTERRUPT_LINE
#include "boot.h" // add_bcv_hd
#include "disk.h" // struct ata_s
#include "ata.h" // ATA_CB_STAT
#define IDE_TIMEOUT 32000 //32 seconds max for IDE ops
struct ata_channel_s ATA_channels[CONFIG_MAX_ATA_INTERFACES] VAR16VISIBLE;
/****************************************************************
* Helper functions
****************************************************************/
// Wait for the specified ide state
static inline int
await_ide(u8 mask, u8 flags, u16 base, u16 timeout)
{
u64 end = calc_future_tsc(timeout);
for (;;) {
u8 status = inb(base+ATA_CB_STAT);
if ((status & mask) == flags)
return status;
if (check_time(end)) {
dprintf(1, "IDE time out\n");
return -1;
}
yield();
}
}
// Wait for the device to be not-busy.
static int
await_not_bsy(u16 base)
{
return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT);
}
// Wait for the device to be ready.
static int
await_rdy(u16 base)
{
return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT);
}
// Wait for ide state - pauses for one ata cycle first.
static inline int
pause_await_not_bsy(u16 iobase1, u16 iobase2)
{
// Wait one PIO transfer cycle.
inb(iobase2 + ATA_CB_ASTAT);
return await_not_bsy(iobase1);
}
// Wait for ide state - pause for 400ns first.
static inline int
ndelay_await_not_bsy(u16 iobase1)
{
ndelay(400);
return await_not_bsy(iobase1);
}
// Reset a drive
static void
ata_reset(struct drive_s *drive_g)
{
u8 ataid = GET_GLOBAL(drive_g->cntl_id);
u8 channel = ataid / 2;
u8 slave = ataid % 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2);
dprintf(6, "ata_reset drive=%p\n", drive_g);
// Pulse SRST
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC);
udelay(5);
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
msleep(2);
// wait for device to become not busy.
int status = await_not_bsy(iobase1);
if (status < 0)
goto done;
if (slave) {
// Change device.
u64 end = calc_future_tsc(IDE_TIMEOUT);
for (;;) {
outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
goto done;
if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1)
break;
// Change drive request failed to take effect - retry.
if (check_time(end)) {
dprintf(1, "ata_reset slave time out\n");
goto done;
}
}
} else {
// QEMU doesn't reset dh on reset, so set it explicitly.
outb(ATA_CB_DH_DEV0, iobase1 + ATA_CB_DH);
}
// On a user-reset request, wait for RDY if it is an ATA device.
u8 type=GET_GLOBAL(drive_g->type);
if (type == DTYPE_ATA)
status = await_rdy(iobase1);
done:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
dprintf(6, "ata_reset exit status=%x\n", status);
}
static int
isready(struct drive_s *drive_g)
{
// Read the status from controller
u8 ataid = GET_GLOBAL(drive_g->cntl_id);
u8 channel = ataid / 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
u8 status = inb(iobase1 + ATA_CB_STAT);
if ((status & (ATA_CB_STAT_BSY|ATA_CB_STAT_RDY)) == ATA_CB_STAT_RDY)
return DISK_RET_SUCCESS;
return DISK_RET_ENOTREADY;
}
static int
process_ata_misc_op(struct disk_op_s *op)
{
if (!CONFIG_ATA)
return 0;
switch (op->command) {
case CMD_RESET:
ata_reset(op->drive_g);
return DISK_RET_SUCCESS;
case CMD_ISREADY:
return isready(op->drive_g);
case CMD_FORMAT:
case CMD_VERIFY:
case CMD_SEEK:
return DISK_RET_SUCCESS;
default:
op->count = 0;
return DISK_RET_EPARAM;
}
}
/****************************************************************
* ATA send command
****************************************************************/
struct ata_pio_command {
u8 feature;
u8 sector_count;
u8 lba_low;
u8 lba_mid;
u8 lba_high;
u8 device;
u8 command;
u8 sector_count2;
u8 lba_low2;
u8 lba_mid2;
u8 lba_high2;
};
// Send an ata command to the drive.
static int
send_cmd(struct drive_s *drive_g, struct ata_pio_command *cmd)
{
u8 ataid = GET_GLOBAL(drive_g->cntl_id);
u8 channel = ataid / 2;
u8 slave = ataid % 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
// Select device
int status = await_not_bsy(iobase1);
if (status < 0)
return status;
u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1)
| (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0));
u8 olddh = inb(iobase1 + ATA_CB_DH);
outb(newdh, iobase1 + ATA_CB_DH);
if ((olddh ^ newdh) & (1<<4)) {
// Was a device change - wait for device to become not busy.
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
}
if (cmd->command == ATA_CMD_READ_SECTORS_EXT
|| cmd->command == ATA_CMD_WRITE_SECTORS_EXT) {
outb(0x00, iobase1 + ATA_CB_FR);
outb(cmd->sector_count2, iobase1 + ATA_CB_SC);
outb(cmd->lba_low2, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid2, iobase1 + ATA_CB_CL);
outb(cmd->lba_high2, iobase1 + ATA_CB_CH);
}
outb(cmd->feature, iobase1 + ATA_CB_FR);
outb(cmd->sector_count, iobase1 + ATA_CB_SC);
outb(cmd->lba_low, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid, iobase1 + ATA_CB_CL);
outb(cmd->lba_high, iobase1 + ATA_CB_CH);
outb(cmd->command, iobase1 + ATA_CB_CMD);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n"
, status, inb(iobase1 + ATA_CB_ERR));
return -4;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status);
return -5;
}
return 0;
}
/****************************************************************
* ATA transfers
****************************************************************/
// Transfer 'op->count' blocks (of 'blocksize' bytes) to/from drive
// 'op->drive_g'.
static int
ata_transfer(struct disk_op_s *op, int iswrite, int blocksize)
{
dprintf(16, "ata_transfer id=%p write=%d count=%d bs=%d buf=%p\n"
, op->drive_g, iswrite, op->count, blocksize, op->buf_fl);
u8 ataid = GET_GLOBAL(op->drive_g->cntl_id);
u8 channel = ataid / 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2);
int count = op->count;
void *buf_fl = op->buf_fl;
int status;
for (;;) {
if (iswrite) {
// Write data to controller
dprintf(16, "Write sector id=%p dest=%p\n", op->drive_g, buf_fl);
if (CONFIG_ATA_PIO32)
outsl_fl(iobase1, buf_fl, blocksize / 4);
else
outsw_fl(iobase1, buf_fl, blocksize / 2);
} else {
// Read data from controller
dprintf(16, "Read sector id=%p dest=%p\n", op->drive_g, buf_fl);
if (CONFIG_ATA_PIO32)
insl_fl(iobase1, buf_fl, blocksize / 4);
else
insw_fl(iobase1, buf_fl, blocksize / 2);
}
buf_fl += blocksize;
status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0) {
// Error
op->count -= count;
return status;
}
count--;
if (!count)
break;
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR);
if (status != ATA_CB_STAT_DRQ) {
dprintf(6, "ata_transfer : more sectors left (status %02x)\n"
, status);
op->count -= count;
return -6;
}
}
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR);
if (!iswrite)
status &= ~ATA_CB_STAT_DF;
if (status != 0) {
dprintf(6, "ata_transfer : no sectors left (status %02x)\n", status);
return -7;
}
return 0;
}
/****************************************************************
* ATA hard drive functions
****************************************************************/
// Read/write count blocks from a harddrive.
static int
ata_cmd_data(struct disk_op_s *op, int iswrite, int command)
{
u8 ataid = GET_GLOBAL(op->drive_g->cntl_id);
u8 channel = ataid / 2;
u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2);
u64 lba = op->lba;
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = command;
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
cmd.sector_count2 = op->count >> 8;
cmd.lba_low2 = lba >> 24;
cmd.lba_mid2 = lba >> 32;
cmd.lba_high2 = lba >> 40;
cmd.command |= 0x04;
lba &= 0xffffff;
}
cmd.feature = 0;
cmd.sector_count = op->count;
cmd.lba_low = lba;
cmd.lba_mid = lba >> 8;
cmd.lba_high = lba >> 16;
cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA;
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
int ret = send_cmd(op->drive_g, &cmd);
if (ret)
goto fail;
ret = ata_transfer(op, iswrite, DISK_SECTOR_SIZE);
fail:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return ret;
}
int
process_ata_op(struct disk_op_s *op)
{
if (!CONFIG_ATA)
return 0;
int ret;
switch (op->command) {
case CMD_READ:
ret = ata_cmd_data(op, 0, ATA_CMD_READ_SECTORS);
break;
case CMD_WRITE:
ret = ata_cmd_data(op, 1, ATA_CMD_WRITE_SECTORS);
break;
default:
return process_ata_misc_op(op);
}
if (ret)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
/****************************************************************
* ATAPI functions
****************************************************************/
// Low-level atapi command transmit function.
static int
atapi_cmd_data(struct disk_op_s *op, u8 *cmdbuf, u8 cmdlen, u16 blocksize)
{
u8 ataid = GET_GLOBAL(op->drive_g->cntl_id);
u8 channel = ataid / 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2);
struct ata_pio_command cmd;
cmd.sector_count = 0;
cmd.feature = 0;
cmd.lba_low = 0;
cmd.lba_mid = blocksize;
cmd.lba_high = blocksize >> 8;
cmd.device = 0;
cmd.command = ATA_CMD_PACKET;
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
int ret = send_cmd(op->drive_g, &cmd);
if (ret)
goto fail;
// Send command to device
outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cmdbuf), cmdlen / 2);
int status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0) {
ret = status;
goto fail;
}
if (status & ATA_CB_STAT_ERR) {
u8 err = inb(iobase1 + ATA_CB_ERR);
// skip "Not Ready"
if (err != 0x20)
dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n"
, status, err);
ret = -2;
goto fail;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status);
ret = -3;
goto fail;
}
ret = ata_transfer(op, 0, blocksize);
fail:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return ret;
}
// Read sectors from the cdrom.
int
cdrom_read(struct disk_op_s *op)
{
u8 atacmd[12];
memset(atacmd, 0, sizeof(atacmd));
atacmd[0]=0x28; // READ command
atacmd[7]=(op->count & 0xff00) >> 8; // Sectors
atacmd[8]=(op->count & 0x00ff);
atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA
atacmd[3]=(op->lba & 0x00ff0000) >> 16;
atacmd[4]=(op->lba & 0x0000ff00) >> 8;
atacmd[5]=(op->lba & 0x000000ff);
return atapi_cmd_data(op, atacmd, sizeof(atacmd), CDROM_SECTOR_SIZE);
}
int
process_atapi_op(struct disk_op_s *op)
{
int ret;
switch (op->command) {
case CMD_READ:
ret = cdrom_read(op);
break;
case CMD_FORMAT:
case CMD_WRITE:
return DISK_RET_EWRITEPROTECT;
default:
return process_ata_misc_op(op);
}
if (ret)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
// Send a simple atapi command to a drive.
int
ata_cmd_packet(struct drive_s *drive_g, u8 *cmdbuf, u8 cmdlen
, u32 length, void *buf_fl)
{
struct disk_op_s dop;
memset(&dop, 0, sizeof(dop));
dop.drive_g = drive_g;
dop.count = 1;
dop.buf_fl = buf_fl;
return atapi_cmd_data(&dop, cmdbuf, cmdlen, length);
}
/****************************************************************
* ATA detect and init
****************************************************************/
// Extract the ATA/ATAPI version info.
static int
extract_version(u16 *buffer)
{
// Extract ATA/ATAPI version.
u16 ataversion = buffer[80];
u8 version;
for (version=15; version>0; version--)
if (ataversion & (1<<version))
break;
return version;
}
// Extract common information from IDENTIFY commands.
static void
extract_identify(struct drive_s *drive_g, u16 *buffer)
{
dprintf(3, "Identify w0=%x w2=%x\n", buffer[0], buffer[2]);
// Read model name
char *model = drive_g->model;
int maxsize = ARRAY_SIZE(drive_g->model);
int i;
for (i=0; i<maxsize/2; i++) {
u16 v = buffer[27+i];
model[i*2] = v >> 8;
model[i*2+1] = v & 0xff;
}
model[maxsize-1] = 0x00;
// Trim trailing spaces from model name.
for (i=maxsize-2; i>0 && model[i] == 0x20; i--)
model[i] = 0x00;
// Common flags.
SET_GLOBAL(drive_g->removable, (buffer[0] & 0x80) ? 1 : 0);
SET_GLOBAL(drive_g->cntl_info, extract_version(buffer));
}
void
describe_atapi(struct drive_s *drive_g)
{
u8 ataid = drive_g->cntl_id;
u8 channel = ataid / 2;
u8 slave = ataid % 2;
u8 version = drive_g->cntl_info;
int iscd = drive_g->floppy_type;
printf("ata%d-%d: %s ATAPI-%d %s", channel, slave
, drive_g->model, version
, (iscd ? "CD-Rom/DVD-Rom" : "Device"));
}
static struct drive_s *
init_drive_atapi(struct drive_s *dummy, u16 *buffer)
{
// Send an IDENTIFY_DEVICE_PACKET command to device
memset(buffer, 0, DISK_SECTOR_SIZE);
struct disk_op_s dop;
memset(&dop, 0, sizeof(dop));
dop.drive_g = dummy;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop, 0, ATA_CMD_IDENTIFY_DEVICE_PACKET);
if (ret)
return NULL;
// Success - setup as ATAPI.
struct drive_s *drive_g = allocDrive();
if (! drive_g)
return NULL;
SET_GLOBAL(drive_g->cntl_id, dummy->cntl_id);
extract_identify(drive_g, buffer);
SET_GLOBAL(drive_g->type, DTYPE_ATAPI);
SET_GLOBAL(drive_g->blksize, CDROM_SECTOR_SIZE);
SET_GLOBAL(drive_g->sectors, (u64)-1);
u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05;
SET_GLOBAL(drive_g->floppy_type, iscd);
// fill cdidmap
if (iscd)
map_cd_drive(drive_g);
return drive_g;
}
void
describe_ata(struct drive_s *drive_g)
{
u8 ataid = drive_g->cntl_id;
u8 channel = ataid / 2;
u8 slave = ataid % 2;
u64 sectors = drive_g->sectors;
u8 version = drive_g->cntl_info;
char *model = drive_g->model;
printf("ata%d-%d: %s ATA-%d Hard-Disk", channel, slave, model, version);
u64 sizeinmb = sectors >> 11;
if (sizeinmb < (1 << 16))
printf(" (%u MiBytes)", (u32)sizeinmb);
else
printf(" (%u GiBytes)", (u32)(sizeinmb >> 10));
}
static struct drive_s *
init_drive_ata(struct drive_s *dummy, u16 *buffer)
{
// Send an IDENTIFY_DEVICE command to device
memset(buffer, 0, DISK_SECTOR_SIZE);
struct disk_op_s dop;
memset(&dop, 0, sizeof(dop));
dop.drive_g = dummy;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop, 0, ATA_CMD_IDENTIFY_DEVICE);
if (ret)
return NULL;
// Success - setup as ATA.
struct drive_s *drive_g = allocDrive();
if (! drive_g)
return NULL;
SET_GLOBAL(drive_g->cntl_id, dummy->cntl_id);
extract_identify(drive_g, buffer);
SET_GLOBAL(drive_g->type, DTYPE_ATA);
SET_GLOBAL(drive_g->blksize, DISK_SECTOR_SIZE);
SET_GLOBAL(drive_g->pchs.cylinders, buffer[1]);
SET_GLOBAL(drive_g->pchs.heads, buffer[3]);
SET_GLOBAL(drive_g->pchs.spt, buffer[6]);
u64 sectors;
if (buffer[83] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100]; // word 100-103
else
sectors = *(u32*)&buffer[60]; // word 60 and word 61
SET_GLOBAL(drive_g->sectors, sectors);
// Setup disk geometry translation.
setup_translation(drive_g);
// Register with bcv system.
add_bcv_internal(drive_g);
return drive_g;
}
static u64 SpinupEnd;
static int
powerup_await_non_bsy(u16 base)
{
u8 orstatus = 0;
u8 status;
for (;;) {
status = inb(base+ATA_CB_STAT);
if (!(status & ATA_CB_STAT_BSY))
break;
orstatus |= status;
if (orstatus == 0xff) {
dprintf(1, "powerup IDE floating\n");
return orstatus;
}
if (check_time(SpinupEnd)) {
dprintf(1, "powerup IDE time out\n");
return -1;
}
yield();
}
dprintf(6, "powerup iobase=%x st=%x\n", base, status);
return status;
}
static void
ata_detect(void *data)
{
struct ata_channel_s *atachannel = data;
int startid = (atachannel - ATA_channels) * 2;
struct drive_s dummy;
memset(&dummy, 0, sizeof(dummy));
// Device detection
int ataid, last_reset_ataid=-1;
for (ataid=startid; ataid<startid+2; ataid++) {
u8 channel = ataid / 2;
u8 slave = ataid % 2;
u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1);
if (!iobase1)
break;
// Wait for not-bsy.
int status = powerup_await_non_bsy(iobase1);
if (status < 0)
continue;
u8 newdh = slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0;
outb(newdh, iobase1+ATA_CB_DH);
ndelay(400);
status = powerup_await_non_bsy(iobase1);
if (status < 0)
continue;
// Check if ioport registers look valid.
outb(newdh, iobase1+ATA_CB_DH);
u8 dh = inb(iobase1+ATA_CB_DH);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect ataid=%d sc=%x sn=%x dh=%x\n"
, ataid, sc, sn, dh);
if (sc != 0x55 || sn != 0xaa || dh != newdh)
continue;
// Prepare new drive.
dummy.cntl_id = ataid;
// reset the channel
if (slave && ataid == last_reset_ataid + 1) {
// The drive was just reset - no need to reset it again.
} else {
ata_reset(&dummy);
last_reset_ataid = ataid;
}
// check for ATAPI
u16 buffer[256];
struct drive_s *drive_g = init_drive_atapi(&dummy, buffer);
if (!drive_g) {
// Didn't find an ATAPI drive - look for ATA drive.
u8 st = inb(iobase1+ATA_CB_STAT);
if (!st)
// Status not set - can't be a valid drive.
continue;
// Wait for RDY.
int ret = await_rdy(iobase1);
if (ret < 0)
continue;
// check for ATA.
drive_g = init_drive_ata(&dummy, buffer);
if (!drive_g)
// No ATA drive found
continue;
}
u16 resetresult = buffer[93];
dprintf(6, "ata_detect resetresult=%04x\n", resetresult);
if (!slave && (resetresult & 0xdf61) == 0x4041)
// resetresult looks valid and device 0 is responding to
// device 1 requests - device 1 must not be present - skip
// detection.
ataid++;
}
}
static void
init_controller(struct ata_channel_s *atachannel
, int bdf, int irq, u32 port1, u32 port2)
{
SET_GLOBAL(atachannel->irq, irq);
SET_GLOBAL(atachannel->pci_bdf, bdf);
SET_GLOBAL(atachannel->iobase1, port1);
SET_GLOBAL(atachannel->iobase2, port2);
dprintf(1, "ATA controller %d at %x/%x (irq %d dev %x)\n"
, atachannel - ATA_channels, port1, port2, irq, bdf);
run_thread(ata_detect, atachannel);
}
#define IRQ_ATA1 14
#define IRQ_ATA2 15
static void
ata_init()
{
// Scan PCI bus for ATA adapters
int count=0, pcicount=0;
int bdf, max;
foreachpci(bdf, max) {
pcicount++;
if (pci_config_readw(bdf, PCI_CLASS_DEVICE) != PCI_CLASS_STORAGE_IDE)
continue;
if (count >= ARRAY_SIZE(ATA_channels))
break;
u8 pciirq = pci_config_readb(bdf, PCI_INTERRUPT_LINE);
u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG);
u32 port1, port2, irq;
if (prog_if & 1) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3;
irq = pciirq;
} else {
port1 = PORT_ATA1_CMD_BASE;
port2 = PORT_ATA1_CTRL_BASE;
irq = IRQ_ATA1;
}
init_controller(&ATA_channels[count], bdf, irq, port1, port2);
count++;
if (prog_if & 4) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3;
irq = pciirq;
} else {
port1 = PORT_ATA2_CMD_BASE;
port2 = PORT_ATA2_CTRL_BASE;
irq = IRQ_ATA2;
}
init_controller(&ATA_channels[count], bdf, irq, port1, port2);
count++;
}
if (!CONFIG_COREBOOT && !pcicount && ARRAY_SIZE(ATA_channels) >= 2) {
// No PCI devices found - probably a QEMU "-M isapc" machine.
// Try using ISA ports for ATA controllers.
init_controller(&ATA_channels[0]
, -1, IRQ_ATA1, PORT_ATA1_CMD_BASE, PORT_ATA1_CTRL_BASE);
init_controller(&ATA_channels[1]
, -1, IRQ_ATA2, PORT_ATA2_CMD_BASE, PORT_ATA2_CTRL_BASE);
}
}
void
ata_setup()
{
if (!CONFIG_ATA)
return;
dprintf(3, "init hard drives\n");
SpinupEnd = calc_future_tsc(IDE_TIMEOUT);
ata_init();
SET_BDA(disk_control_byte, 0xc0);
enable_hwirq(14, entry_76);
}