blob: 8d849db71d7d205a5e4a60262f2b5a8dcb05ab69 [file] [log] [blame]
Uwe Hermann39955932008-04-03 23:01:23 +00001/*
2 * This file is part of the libpayload project.
3 *
4 * It has originally been taken from the OpenBSD project.
5 */
6
7/* $OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $ */
8
9/*
10 * SHA-1 in C
11 * By Steve Reid <steve@edmweb.com>
12 * 100% Public Domain
13 *
14 * Test Vectors (from FIPS PUB 180-1)
15 * "abc"
16 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
17 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
18 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
19 * A million repetitions of "a"
20 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
21 */
22
Jordan Crousedb8c0ab2008-11-24 17:54:46 +000023#include <libpayload-config.h>
Uwe Hermann39955932008-04-03 23:01:23 +000024#include <libpayload.h>
25
26typedef u8 u_int8_t;
27typedef u32 u_int32_t;
28typedef u64 u_int64_t;
29typedef unsigned int u_int;
30
Jordan Crouse12e27262008-08-11 17:10:58 +000031/* Moved from libpayload.h */
32
33#ifdef CONFIG_TARGET_I386
34#define BYTE_ORDER LITTLE_ENDIAN
35#else
36#define BYTE_ORDER BIG_ENDIAN
37#endif
38
Uwe Hermann39955932008-04-03 23:01:23 +000039#if 0
40#include <sys/param.h>
41#include <string.h>
42#include <sha1.h>
43#endif
44
45#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
46
47/*
48 * blk0() and blk() perform the initial expand.
49 * I got the idea of expanding during the round function from SSLeay
50 */
51#if BYTE_ORDER == LITTLE_ENDIAN
52# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
53 |(rol(block->l[i],8)&0x00FF00FF))
54#else
55# define blk0(i) block->l[i]
56#endif
57#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
58 ^block->l[(i+2)&15]^block->l[i&15],1))
59
60/*
61 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
62 */
63#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
64#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
65#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
66#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
67#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
68
69/*
70 * Hash a single 512-bit block. This is the core of the algorithm.
71 */
72void
73SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
74{
75 u_int32_t a, b, c, d, e;
76 u_int8_t workspace[SHA1_BLOCK_LENGTH];
77 typedef union {
78 u_int8_t c[64];
79 u_int32_t l[16];
80 } CHAR64LONG16;
81 CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
82
83 (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
84
85 /* Copy context->state[] to working vars */
86 a = state[0];
87 b = state[1];
88 c = state[2];
89 d = state[3];
90 e = state[4];
91
92 /* 4 rounds of 20 operations each. Loop unrolled. */
93 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
94 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
95 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
96 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
97 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
98 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
99 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
100 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
101 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
102 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
103 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
104 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
105 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
106 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
107 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
108 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
109 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
110 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
111 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
112 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
113
114 /* Add the working vars back into context.state[] */
115 state[0] += a;
116 state[1] += b;
117 state[2] += c;
118 state[3] += d;
119 state[4] += e;
120
121 /* Wipe variables */
122 a = b = c = d = e = 0;
123}
124
125
126/*
127 * SHA1Init - Initialize new context
128 */
129void
130SHA1Init(SHA1_CTX *context)
131{
132
133 /* SHA1 initialization constants */
134 context->count = 0;
135 context->state[0] = 0x67452301;
136 context->state[1] = 0xEFCDAB89;
137 context->state[2] = 0x98BADCFE;
138 context->state[3] = 0x10325476;
139 context->state[4] = 0xC3D2E1F0;
140}
141
142
143/*
144 * Run your data through this.
145 */
146void
147SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
148{
149 size_t i, j;
150
151 j = (size_t)((context->count >> 3) & 63);
152 context->count += (len << 3);
153 if ((j + len) > 63) {
154 (void)memcpy(&context->buffer[j], data, (i = 64-j));
155 SHA1Transform(context->state, context->buffer);
156 for ( ; i + 63 < len; i += 64)
157 SHA1Transform(context->state, (u_int8_t *)&data[i]);
158 j = 0;
159 } else {
160 i = 0;
161 }
162 (void)memcpy(&context->buffer[j], &data[i], len - i);
163}
164
165
166/*
167 * Add padding and return the message digest.
168 */
169void
170SHA1Pad(SHA1_CTX *context)
171{
172 u_int8_t finalcount[8];
173 u_int i;
174
175 for (i = 0; i < 8; i++) {
176 finalcount[i] = (u_int8_t)((context->count >>
177 ((7 - (i & 7)) * 8)) & 255); /* Endian independent */
178 }
179 SHA1Update(context, (u_int8_t *)"\200", 1);
180 while ((context->count & 504) != 448)
181 SHA1Update(context, (u_int8_t *)"\0", 1);
182 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
183}
184
185void
186SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
187{
188 u_int i;
189
190 SHA1Pad(context);
191 if (digest) {
192 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
193 digest[i] = (u_int8_t)
194 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
195 }
196 memset(context, 0, sizeof(*context));
197 }
198}
199
200/**
201 * Compute the SHA-1 hash of the given data as specified by the 'data' and
202 * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the
203 * specified output buffer 'buf'.
204 *
205 * @param data Pointer to the input data that shall be hashed.
206 * @param len Length of the input data (in bytes).
207 * @param buf Buffer which will hold the resulting hash (must be at
208 * least 20 bytes in size).
209 * @return Pointer to the output buffer where the hash is stored.
210 */
211u8 *sha1(const u8 *data, size_t len, u8 *buf)
212{
213 SHA1_CTX ctx;
214
215 SHA1Init(&ctx);
216 SHA1Update(&ctx, data, len);
217 SHA1Final(buf, &ctx);
218
219 return buf;
220}