blob: bfce0490cd44a83c4f377d94ab50e08599880e86 [file] [log] [blame]
Sol Boucher69b88bf2015-02-26 11:47:19 -08001/*
2 * fmd.c, parser frontend and utility functions for flashmap descriptor language
3 *
4 * Copyright (C) 2015 Google, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
18 */
19
20#include "fmd.h"
21
22#include "fmd_parser.h"
23#include "fmd_scanner.h"
24#include "option.h"
25
26#include <assert.h>
27#include <search.h>
28#include <string.h>
29
30/*
31 * Validate the given flashmap descriptor node's properties. In particular:
32 * - Ensure its name is globally unique.
33 * - Ensure its offset, if known, isn't located before the end of the previous
34 * section, if this can be determined.
35 * - Ensure its offset, if known, isn't located after the beginning of the next
36 * section or off the end of its parent section, if this can be determined.
37 * - Ensure its size is nonzero.
38 * - Ensure that the combination of its size and offset, if they are both
39 * known, doesn't place its end after the beginning of the next section or
40 * off the end of its parent section, if this can be determined.
41 * In the case of a validation error, the particular problem is reported to
42 * standard error and this function returns false. It should be noted that this
43 * function makes no claim that the members of the node's child list are valid:
44 * under no circumstances is any recursive validation performed.
45 *
46 * @param node The flashmap descriptor node to be validated
47 * @param start Optional minimum permissible base of the section to be
48 * validated, to be provided if known
49 * @param end Optional maximum permissible offset to the end of the section to
50 * be validated, to be provided if known
51 * @return Whether the node is valid
52 */
53static bool validate_descriptor_node(const struct flashmap_descriptor *node,
54 struct unsigned_option start, struct unsigned_option end) {
55 assert(node);
56
57 ENTRY search_key = {node->name, NULL};
58 if (hsearch(search_key, FIND)) {
59 fprintf(stderr, "ERROR: Multiple sections with name '%s'\n",
60 node->name);
61 return false;
62 }
63 if (!hsearch(search_key, ENTER))
64 assert(false);
65
66 if (node->offset_known) {
67 if (start.val_known && node->offset < start.val) {
68 fprintf(stderr, "ERROR: Section '%s' starts too low\n",
69 node->name);
70 return false;
71 } else if (end.val_known && node->offset > end.val) {
72 fprintf(stderr, "ERROR: Section '%s' starts too high\n",
73 node->name);
74 return false;
75 }
76 }
77
78 if (node->size_known) {
79 if (node->size == 0) {
80 fprintf(stderr, "ERROR: Section '%s' given no space\n",
81 node->name);
82 return false;
83 } else if (node->offset_known) {
84 unsigned node_end = node->offset + node->size;
85 if (end.val_known && node_end > end.val) {
86 fprintf(stderr, "ERROR: Section '%s' too big\n",
87 node->name);
88 return false;
89 }
90 }
91 }
92
93 return true;
94}
95
96/*
97 * Performs reverse lateral processing of sibling nodes, as described by the
98 * documentation of its caller, validate_and_complete_info(). If it encounters
99 * a node that is invalid in a way that couldn't have been discovered earlier,
100 * it explains the problem to standard output and returns false.
101 *
102 * @param first_incomplete_it First node whose offset or size couldn't be
103 * determined during forward processing
104 * @param cur_incomplete_it Last node whose offset or size is unknown
105 * @param end_watermark Offset to the end of the unresolved region
106 * @return Whether all completed nodes were still valid
107 */
108static bool complete_missing_info_backward(
109 flashmap_descriptor_iterator_t first_incomplete_it,
110 flashmap_descriptor_iterator_t cur_incomplete_it,
111 unsigned end_watermark)
112{
113 assert(first_incomplete_it);
114 assert(cur_incomplete_it);
115 assert(cur_incomplete_it >= first_incomplete_it);
116
117 do {
118 struct flashmap_descriptor *cur = *cur_incomplete_it;
119
120 assert(cur->offset_known || cur->size_known);
121 if (!cur->offset_known) {
122 if (cur->size > end_watermark) {
123 fprintf(stderr, "ERROR: Section '%s' too big\n",
124 cur->name);
125 return false;
126 }
127 cur->offset_known = true;
128 cur->offset = end_watermark -= cur->size;
129 } else if (!cur->size_known) {
130 if (cur->offset > end_watermark) {
131 fprintf(stderr,
132 "ERROR: Section '%s' starts too high\n",
133 cur->name);
134 return false;
135 }
136 cur->size_known = true;
137 cur->size = end_watermark - cur->offset;
138 end_watermark = cur->offset;
139 }
140 } while (--cur_incomplete_it >= first_incomplete_it);
141
142 return true;
143}
144
145/*
146 * Recursively examine each descendant of the provided flashmap descriptor node
147 * to ensure its position and size are known, attempt to infer them otherwise,
148 * and validate their values once they've been populated.
149 * This processes nodes according to the following algorithm:
150 * - At each level of the tree, it moves laterally between siblings, keeping
151 * a watermark of its current offset relative to the previous section, which
152 * it uses to fill in any unknown offsets it encounters along the way.
153 * - The first time it encounters a sibling with unknown size, it loses track
154 * of the watermark, and is therefore unable to complete further offsets;
155 * instead, if the watermark was known before, it marks the current node as
156 * the first that couldn't be completed in the initial pass.
157 * - If the current watermark is unknown (i.e. a node has been marked as the
158 * first incomplete one) and one with a fixed offset is encountered, a
159 * reverse lateral traversal is dispatched that uses that provided offset as
160 * a reverse watermark to complete all unknown fields until it finishes with
161 * the node marked as the first incomplete one: at this point, that flag is
162 * cleared, the watermark is updated, and forward processing resumes from
163 * where it left off.
164 * - If the watermark is unknown (i.e. node(s) are incomplete) after traversing
165 * all children of a particular parent node, reverse processing is employed
166 * as described above, except that the reverse watermark is initialized to
167 * the parent node's size instead of the (nonexistent) next node's offset.
168 * - Once all of a node's children have been processed, the algorithm applies
169 * itself recursively to each of the child nodes; thus, lower levels of the
170 * tree are processed only after their containing levels are finished.
171 * This approach can fail in two possible ways (in which case the problem is
172 * reported to standard output and this function returns false):
173 * - Processing reveals that some node's provided value is invalid in some way.
174 * - Processing determines that one or more provided values require an omitted
175 * field to take a nonsensical value.
176 * - Processing determines that it is impossible to determine a group of
177 * omitted values. This state is detected when a node whose offset *and*
178 * value are omitted is encountered during forward processing and while the
179 * current watermark is unknown: in such a case, neither can be known without
180 * being provided with either the other or more context.
181 * The function notably performs neither validation nor completion on the parent
182 * node it is passed; thus, it is important to ensure that that node is valid.
183 * (At the very least, it must have a valid size field in order for the
184 * algorithm to work on its children.)
185 *
186 * @param cur_level Parent node, which must minimally already have a valid size
187 * @return Whether completing and validating the children succeeded
188 */
189static bool validate_and_complete_info(struct flashmap_descriptor *cur_level)
190{
191 assert(cur_level);
192 assert(cur_level->size_known);
193
194 // Our watermark is only known when first_incomplete_it is NULL.
195 flashmap_descriptor_iterator_t first_incomplete_it = NULL;
196 unsigned watermark = 0;
197
198 fmd_foreach_child_iterator(cur_it, cur_level) {
199 struct flashmap_descriptor *cur_section = *cur_it;
200
201 if (first_incomplete_it) {
202 if (cur_section->offset_known) {
203 if (complete_missing_info_backward(
204 first_incomplete_it, cur_it - 1,
205 cur_section->offset)) {
206 first_incomplete_it = NULL;
207 watermark = cur_section->offset;
208 } else {
209 return false;
210 }
211 }
212 // Otherwise, we can't go back until a provided offset.
213 } else if (!cur_section->offset_known) {
214 cur_section->offset_known = true;
215 cur_section->offset = watermark;
216 }
217
218 assert(cur_level->size_known);
219 struct unsigned_option max_endpoint = {true, cur_level->size};
220 if (cur_it != cur_level->list + cur_level->list_len - 1) {
221 struct flashmap_descriptor *next_section = cur_it[1];
222 max_endpoint.val_known = next_section->offset_known;
223 max_endpoint.val = next_section->offset;
224 }
225 if (!validate_descriptor_node(cur_section,
226 (struct unsigned_option)
227 {!first_incomplete_it, watermark},
228 max_endpoint))
229 return false;
230
231 if (!cur_section->size_known) {
232 if (!cur_section->offset_known) {
233 fprintf(stderr,
234 "ERROR: Cannot determine either offset or size of section '%s'\n",
235 cur_section->name);
236 return false;
237 } else if (!first_incomplete_it) {
238 first_incomplete_it = cur_it;
239 } else {
240 // We shouldn't find an unknown size within an
241 // incomplete region because the backward
242 // traversal at the beginning of this node's
243 // processing should have concluded said region.
244 assert(!first_incomplete_it);
245 }
246 } else if (!first_incomplete_it) {
247 watermark = cur_section->offset + cur_section->size;
248 }
249 }
250
251 if (first_incomplete_it &&
252 !complete_missing_info_backward(first_incomplete_it,
253 cur_level->list + cur_level->list_len - 1,
254 cur_level->size))
255 return false;
256
257 fmd_foreach_child(cur_section, cur_level) {
258 assert(cur_section->offset_known);
259 assert(cur_section->size_known);
260
261 if (!validate_and_complete_info(cur_section))
262 return false;
263 }
264
265 return true;
266}
267
268static void print_with_prefix(const struct flashmap_descriptor *tree,
269 const char *pre)
270{
271 assert(tree);
272 assert(pre);
273
274 printf("%ssection '%s' has ", pre, tree->name);
275
276 if (tree->offset_known)
277 printf("offset %uB, ", tree->offset);
278 else
279 fputs("unknown offset, ", stdout);
280
281 if (tree->size_known)
282 printf("size %uB, ", tree->size);
283 else
284 fputs("unknown size, ", stdout);
285
286 printf("and %zu subsections", tree->list_len);
287 if (tree->list_len) {
288 puts(":");
289
290 char child_prefix[strlen(pre) + 1];
291 strcpy(child_prefix, pre);
292 strcat(child_prefix, "\t");
293 fmd_foreach_child(each, tree)
294 print_with_prefix(each, child_prefix);
295 } else {
296 puts("");
297 }
298}
299
300struct flashmap_descriptor *fmd_create(FILE *stream)
301{
302 assert(stream);
303
304 yyin = stream;
305
306 struct flashmap_descriptor *ret = NULL;
307 if (yyparse() == 0)
308 ret = res;
309
310 yylex_destroy();
311 yyin = NULL;
312 res = NULL;
313
314 if (ret) {
315 // This hash table is used to store the declared name of each
316 // section and ensure that each is globally unique.
317 if (!hcreate(fmd_count_nodes(ret))) {
318 perror("ERROR: While initializing hashtable");
319 fmd_cleanup(ret);
320 return NULL;
321 }
322
323 // Even though we haven't checked that the root node (ret) has
324 // a size field as required by this function, the parser
325 // warrants that it does because the grammar requires it.
326 if (!validate_and_complete_info(ret)) {
327 hdestroy();
328 fmd_cleanup(ret);
329 return NULL;
330 }
331
332 hdestroy();
333 }
334
335 return ret;
336}
337
338void fmd_cleanup(struct flashmap_descriptor *victim)
339{
340 if (!victim)
341 return;
342
343 free(victim->name);
344 for (unsigned idx = 0; idx < victim->list_len; ++idx)
345 fmd_cleanup(victim->list[idx]);
346 free(victim->list);
347 free(victim);
348}
349
350size_t fmd_count_nodes(const struct flashmap_descriptor *tree)
351{
352 assert(tree);
353
354 if (!tree->list_len)
355 return 1;
356
357 unsigned count = 1;
358 fmd_foreach_child(lower, tree)
359 count += fmd_count_nodes(lower);
360 return count;
361}
362
363const struct flashmap_descriptor *fmd_find_node(
364 const struct flashmap_descriptor *root, const char *name)
365{
366 assert(root);
367 assert(name);
368
369 if (strcmp(root->name, name) == 0)
370 return root;
371
372 fmd_foreach_child(descendant, root) {
373 const struct flashmap_descriptor *match =
374 fmd_find_node(descendant, name);
375 if (match)
376 return match;
377 }
378 return NULL;
379}
380
381unsigned fmd_calc_absolute_offset(const struct flashmap_descriptor *root,
382 const char *name)
383{
384 assert(root);
385 assert(name);
386
387 if (strcmp(root->name, name) == 0)
388 return 0;
389
390 fmd_foreach_child(descendant, root) {
391 unsigned subtotal = fmd_calc_absolute_offset(descendant, name);
392 if (subtotal != FMD_NOTFOUND)
393 return descendant->offset + subtotal;
394 }
395 return FMD_NOTFOUND;
396}
397
398void fmd_print(const struct flashmap_descriptor *tree)
399{
400 print_with_prefix(tree, "");
401}