blob: d0e1d7b2f546a885193b64fa671cefe88b7c7103 [file] [log] [blame]
Patrick Georgi26774f22009-11-21 19:54:02 +00001/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
Angel Ponsb3bfb2a2020-03-01 15:41:55 +010027#ifndef _GNU_SOURCE
Patrick Georgi26774f22009-11-21 19:54:02 +000028#define _GNU_SOURCE
Angel Ponsb3bfb2a2020-03-01 15:41:55 +010029#endif
Patrick Georgi26774f22009-11-21 19:54:02 +000030
31/* We need this for `regex.h', and perhaps for the Emacs include files. */
32#include <sys/types.h>
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38/* The `emacs' switch turns on certain matching commands
39 that make sense only in Emacs. */
40#ifdef emacs
41
42#include "lisp.h"
43#include "buffer.h"
44#include "syntax.h"
45
46/* Emacs uses `NULL' as a predicate. */
47#undef NULL
48
49#else /* not emacs */
50
51/* We used to test for `BSTRING' here, but only GCC and Emacs define
52 `BSTRING', as far as I know, and neither of them use this code. */
53#if HAVE_STRING_H || STDC_HEADERS
54#include <string.h>
55#ifndef bcmp
56#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
57#endif
58#ifndef bcopy
59#define bcopy(s, d, n) memcpy ((d), (s), (n))
60#endif
61#ifndef bzero
62#define bzero(s, n) memset ((s), 0, (n))
63#endif
64#else
65#include <strings.h>
66#endif
67
68#ifdef STDC_HEADERS
69#include <stdlib.h>
70#else
71char *malloc ();
72char *realloc ();
73#endif
74
75
76/* Define the syntax stuff for \<, \>, etc. */
77
78/* This must be nonzero for the wordchar and notwordchar pattern
79 commands in re_match_2. */
Stefan Reinauer14e22772010-04-27 06:56:47 +000080#ifndef Sword
Patrick Georgi26774f22009-11-21 19:54:02 +000081#define Sword 1
82#endif
83
84#ifdef SYNTAX_TABLE
85
86extern char *re_syntax_table;
87
88#else /* not SYNTAX_TABLE */
89
90/* How many characters in the character set. */
91#define CHAR_SET_SIZE 256
92
93static char re_syntax_table[CHAR_SET_SIZE];
94
95static void
96init_syntax_once ()
97{
98 register int c;
99 static int done = 0;
100
101 if (done)
102 return;
103
104 bzero (re_syntax_table, sizeof re_syntax_table);
105
106 for (c = 'a'; c <= 'z'; c++)
107 re_syntax_table[c] = Sword;
108
109 for (c = 'A'; c <= 'Z'; c++)
110 re_syntax_table[c] = Sword;
111
112 for (c = '0'; c <= '9'; c++)
113 re_syntax_table[c] = Sword;
114
115 re_syntax_table['_'] = Sword;
116
117 done = 1;
118}
119
120#endif /* not SYNTAX_TABLE */
121
122#define SYNTAX(c) re_syntax_table[c]
123
124#endif /* not emacs */
Martin Roth0cd338e2016-07-29 14:07:30 -0600125
Patrick Georgi26774f22009-11-21 19:54:02 +0000126/* Get the interface, including the syntax bits. */
127#include "regex.h"
128
129/* isalpha etc. are used for the character classes. */
130#include <ctype.h>
131
132#ifndef isascii
133#define isascii(c) 1
134#endif
135
136#ifdef isblank
137#define ISBLANK(c) (isascii (c) && isblank (c))
138#else
139#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
140#endif
141#ifdef isgraph
142#define ISGRAPH(c) (isascii (c) && isgraph (c))
143#else
144#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
145#endif
146
147#define ISPRINT(c) (isascii (c) && isprint (c))
148#define ISDIGIT(c) (isascii (c) && isdigit (c))
149#define ISALNUM(c) (isascii (c) && isalnum (c))
150#define ISALPHA(c) (isascii (c) && isalpha (c))
151#define ISCNTRL(c) (isascii (c) && iscntrl (c))
152#define ISLOWER(c) (isascii (c) && islower (c))
153#define ISPUNCT(c) (isascii (c) && ispunct (c))
154#define ISSPACE(c) (isascii (c) && isspace (c))
155#define ISUPPER(c) (isascii (c) && isupper (c))
156#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
157
158#ifndef NULL
159#define NULL 0
160#endif
161
162/* We remove any previous definition of `SIGN_EXTEND_CHAR',
163 since ours (we hope) works properly with all combinations of
164 machines, compilers, `char' and `unsigned char' argument types.
165 (Per Bothner suggested the basic approach.) */
166#undef SIGN_EXTEND_CHAR
167#if __STDC__
168#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
169#else /* not __STDC__ */
170/* As in Harbison and Steele. */
171#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
172#endif
Martin Roth0cd338e2016-07-29 14:07:30 -0600173
Patrick Georgi26774f22009-11-21 19:54:02 +0000174/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
175 use `alloca' instead of `malloc'. This is because using malloc in
176 re_search* or re_match* could cause memory leaks when C-g is used in
177 Emacs; also, malloc is slower and causes storage fragmentation. On
Stefan Reinauer14e22772010-04-27 06:56:47 +0000178 the other hand, malloc is more portable, and easier to debug.
179
Patrick Georgi26774f22009-11-21 19:54:02 +0000180 Because we sometimes use alloca, some routines have to be macros,
181 not functions -- `alloca'-allocated space disappears at the end of the
182 function it is called in. */
183
184#ifdef REGEX_MALLOC
185
186#define REGEX_ALLOCATE malloc
187#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
188
189#else /* not REGEX_MALLOC */
190
191/* Emacs already defines alloca, sometimes. */
192#ifndef alloca
193
194/* Make alloca work the best possible way. */
195#ifdef __GNUC__
196#define alloca __builtin_alloca
197#else /* not __GNUC__ */
198#if HAVE_ALLOCA_H
199#include <alloca.h>
200#else /* not __GNUC__ or HAVE_ALLOCA_H */
201#ifndef _AIX /* Already did AIX, up at the top. */
202char *alloca ();
203#endif /* not _AIX */
Stefan Reinauer14e22772010-04-27 06:56:47 +0000204#endif /* not HAVE_ALLOCA_H */
Patrick Georgi26774f22009-11-21 19:54:02 +0000205#endif /* not __GNUC__ */
206
207#endif /* not alloca */
208
209#define REGEX_ALLOCATE alloca
210
211/* Assumes a `char *destination' variable. */
212#define REGEX_REALLOCATE(source, osize, nsize) \
213 (destination = (char *) alloca (nsize), \
214 bcopy (source, destination, osize), \
215 destination)
216
217#endif /* not REGEX_MALLOC */
218
219
220/* True if `size1' is non-NULL and PTR is pointing anywhere inside
221 `string1' or just past its end. This works if PTR is NULL, which is
222 a good thing. */
223#define FIRST_STRING_P(ptr) \
224 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
225
226/* (Re)Allocate N items of type T using malloc, or fail. */
227#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
228#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
229#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
230
231#define BYTEWIDTH 8 /* In bits. */
232
233#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
234
235#define MAX(a, b) ((a) > (b) ? (a) : (b))
236#define MIN(a, b) ((a) < (b) ? (a) : (b))
237
238typedef char boolean;
239#define false 0
240#define true 1
Martin Roth0cd338e2016-07-29 14:07:30 -0600241
Patrick Georgi26774f22009-11-21 19:54:02 +0000242/* These are the command codes that appear in compiled regular
243 expressions. Some opcodes are followed by argument bytes. A
244 command code can specify any interpretation whatsoever for its
245 arguments. Zero bytes may appear in the compiled regular expression.
246
247 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
248 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
249 `exactn' we use here must also be 1. */
250
251typedef enum
252{
253 no_op = 0,
254
255 /* Followed by one byte giving n, then by n literal bytes. */
256 exactn = 1,
257
258 /* Matches any (more or less) character. */
259 anychar,
260
261 /* Matches any one char belonging to specified set. First
262 following byte is number of bitmap bytes. Then come bytes
263 for a bitmap saying which chars are in. Bits in each byte
264 are ordered low-bit-first. A character is in the set if its
265 bit is 1. A character too large to have a bit in the map is
266 automatically not in the set. */
267 charset,
268
269 /* Same parameters as charset, but match any character that is
270 not one of those specified. */
271 charset_not,
272
273 /* Start remembering the text that is matched, for storing in a
274 register. Followed by one byte with the register number, in
275 the range 0 to one less than the pattern buffer's re_nsub
276 field. Then followed by one byte with the number of groups
277 inner to this one. (This last has to be part of the
278 start_memory only because we need it in the on_failure_jump
279 of re_match_2.) */
280 start_memory,
281
282 /* Stop remembering the text that is matched and store it in a
283 memory register. Followed by one byte with the register
284 number, in the range 0 to one less than `re_nsub' in the
285 pattern buffer, and one byte with the number of inner groups,
286 just like `start_memory'. (We need the number of inner
287 groups here because we don't have any easy way of finding the
288 corresponding start_memory when we're at a stop_memory.) */
289 stop_memory,
290
291 /* Match a duplicate of something remembered. Followed by one
292 byte containing the register number. */
293 duplicate,
294
295 /* Fail unless at beginning of line. */
296 begline,
297
298 /* Fail unless at end of line. */
299 endline,
300
301 /* Succeeds if at beginning of buffer (if emacs) or at beginning
302 of string to be matched (if not). */
303 begbuf,
304
305 /* Analogously, for end of buffer/string. */
306 endbuf,
Stefan Reinauer14e22772010-04-27 06:56:47 +0000307
Patrick Georgi26774f22009-11-21 19:54:02 +0000308 /* Followed by two byte relative address to which to jump. */
Stefan Reinauer14e22772010-04-27 06:56:47 +0000309 jump,
Patrick Georgi26774f22009-11-21 19:54:02 +0000310
311 /* Same as jump, but marks the end of an alternative. */
312 jump_past_alt,
313
314 /* Followed by two-byte relative address of place to resume at
315 in case of failure. */
316 on_failure_jump,
Stefan Reinauer14e22772010-04-27 06:56:47 +0000317
Patrick Georgi26774f22009-11-21 19:54:02 +0000318 /* Like on_failure_jump, but pushes a placeholder instead of the
319 current string position when executed. */
320 on_failure_keep_string_jump,
Stefan Reinauer14e22772010-04-27 06:56:47 +0000321
Patrick Georgi26774f22009-11-21 19:54:02 +0000322 /* Throw away latest failure point and then jump to following
323 two-byte relative address. */
324 pop_failure_jump,
325
326 /* Change to pop_failure_jump if know won't have to backtrack to
327 match; otherwise change to jump. This is used to jump
328 back to the beginning of a repeat. If what follows this jump
329 clearly won't match what the repeat does, such that we can be
330 sure that there is no use backtracking out of repetitions
331 already matched, then we change it to a pop_failure_jump.
332 Followed by two-byte address. */
333 maybe_pop_jump,
334
335 /* Jump to following two-byte address, and push a dummy failure
336 point. This failure point will be thrown away if an attempt
337 is made to use it for a failure. A `+' construct makes this
338 before the first repeat. Also used as an intermediary kind
339 of jump when compiling an alternative. */
340 dummy_failure_jump,
341
342 /* Push a dummy failure point and continue. Used at the end of
343 alternatives. */
344 push_dummy_failure,
345
346 /* Followed by two-byte relative address and two-byte number n.
347 After matching N times, jump to the address upon failure. */
348 succeed_n,
349
350 /* Followed by two-byte relative address, and two-byte number n.
351 Jump to the address N times, then fail. */
352 jump_n,
353
354 /* Set the following two-byte relative address to the
355 subsequent two-byte number. The address *includes* the two
356 bytes of number. */
357 set_number_at,
358
359 wordchar, /* Matches any word-constituent character. */
360 notwordchar, /* Matches any char that is not a word-constituent. */
361
362 wordbeg, /* Succeeds if at word beginning. */
363 wordend, /* Succeeds if at word end. */
364
365 wordbound, /* Succeeds if at a word boundary. */
366 notwordbound /* Succeeds if not at a word boundary. */
367
368#ifdef emacs
369 ,before_dot, /* Succeeds if before point. */
370 at_dot, /* Succeeds if at point. */
371 after_dot, /* Succeeds if after point. */
372
373 /* Matches any character whose syntax is specified. Followed by
374 a byte which contains a syntax code, e.g., Sword. */
375 syntaxspec,
376
377 /* Matches any character whose syntax is not that specified. */
378 notsyntaxspec
379#endif /* emacs */
380} re_opcode_t;
Martin Roth0cd338e2016-07-29 14:07:30 -0600381
Patrick Georgi26774f22009-11-21 19:54:02 +0000382/* Common operations on the compiled pattern. */
383
384/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
385
386#define STORE_NUMBER(destination, number) \
387 do { \
388 (destination)[0] = (number) & 0377; \
389 (destination)[1] = (number) >> 8; \
390 } while (0)
391
392/* Same as STORE_NUMBER, except increment DESTINATION to
393 the byte after where the number is stored. Therefore, DESTINATION
394 must be an lvalue. */
395
396#define STORE_NUMBER_AND_INCR(destination, number) \
397 do { \
398 STORE_NUMBER (destination, number); \
399 (destination) += 2; \
400 } while (0)
401
402/* Put into DESTINATION a number stored in two contiguous bytes starting
403 at SOURCE. */
404
405#define EXTRACT_NUMBER(destination, source) \
406 do { \
407 (destination) = *(source) & 0377; \
408 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
409 } while (0)
410
411#ifdef DEBUG
412static void
413extract_number (dest, source)
414 int *dest;
415 unsigned char *source;
416{
Stefan Reinauer14e22772010-04-27 06:56:47 +0000417 int temp = SIGN_EXTEND_CHAR (*(source + 1));
Patrick Georgi26774f22009-11-21 19:54:02 +0000418 *dest = *source & 0377;
419 *dest += temp << 8;
420}
421
422#ifndef EXTRACT_MACROS /* To debug the macros. */
423#undef EXTRACT_NUMBER
424#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
425#endif /* not EXTRACT_MACROS */
426
427#endif /* DEBUG */
428
429/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
430 SOURCE must be an lvalue. */
431
432#define EXTRACT_NUMBER_AND_INCR(destination, source) \
433 do { \
434 EXTRACT_NUMBER (destination, source); \
435 (source) += 2; \
436 } while (0)
437
438#ifdef DEBUG
439static void
440extract_number_and_incr (destination, source)
441 int *destination;
442 unsigned char **source;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000443{
Patrick Georgi26774f22009-11-21 19:54:02 +0000444 extract_number (destination, *source);
445 *source += 2;
446}
447
448#ifndef EXTRACT_MACROS
449#undef EXTRACT_NUMBER_AND_INCR
450#define EXTRACT_NUMBER_AND_INCR(dest, src) \
451 extract_number_and_incr (&dest, &src)
452#endif /* not EXTRACT_MACROS */
453
454#endif /* DEBUG */
Martin Roth0cd338e2016-07-29 14:07:30 -0600455
Patrick Georgi26774f22009-11-21 19:54:02 +0000456/* If DEBUG is defined, Regex prints many voluminous messages about what
457 it is doing (if the variable `debug' is nonzero). If linked with the
458 main program in `iregex.c', you can enter patterns and strings
459 interactively. And if linked with the main program in `main.c' and
460 the other test files, you can run the already-written tests. */
461
462#ifdef DEBUG
463
464/* We use standard I/O for debugging. */
465#include <stdio.h>
466
467/* It is useful to test things that ``must'' be true when debugging. */
468#include <assert.h>
469
470static int debug = 0;
471
472#define DEBUG_STATEMENT(e) e
473#define DEBUG_PRINT1(x) if (debug) printf (x)
474#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
475#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
476#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
477#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
478 if (debug) print_partial_compiled_pattern (s, e)
479#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
480 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481
482
483extern void printchar ();
484
485/* Print the fastmap in human-readable form. */
486
487void
488print_fastmap (fastmap)
489 char *fastmap;
490{
491 unsigned was_a_range = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000492 unsigned i = 0;
493
Patrick Georgi26774f22009-11-21 19:54:02 +0000494 while (i < (1 << BYTEWIDTH))
495 {
496 if (fastmap[i++])
497 {
498 was_a_range = 0;
499 printchar (i - 1);
500 while (i < (1 << BYTEWIDTH) && fastmap[i])
501 {
502 was_a_range = 1;
503 i++;
504 }
505 if (was_a_range)
506 {
507 printf ("-");
508 printchar (i - 1);
509 }
510 }
511 }
Stefan Reinauer14e22772010-04-27 06:56:47 +0000512 putchar ('\n');
Patrick Georgi26774f22009-11-21 19:54:02 +0000513}
514
515
516/* Print a compiled pattern string in human-readable form, starting at
517 the START pointer into it and ending just before the pointer END. */
518
519void
520print_partial_compiled_pattern (start, end)
521 unsigned char *start;
522 unsigned char *end;
523{
524 int mcnt, mcnt2;
525 unsigned char *p = start;
526 unsigned char *pend = end;
527
528 if (start == NULL)
529 {
530 printf ("(null)\n");
531 return;
532 }
Stefan Reinauer14e22772010-04-27 06:56:47 +0000533
Patrick Georgi26774f22009-11-21 19:54:02 +0000534 /* Loop over pattern commands. */
535 while (p < pend)
536 {
537 switch ((re_opcode_t) *p++)
538 {
539 case no_op:
540 printf ("/no_op");
541 break;
542
543 case exactn:
544 mcnt = *p++;
545 printf ("/exactn/%d", mcnt);
546 do
547 {
548 putchar ('/');
549 printchar (*p++);
550 }
551 while (--mcnt);
552 break;
553
554 case start_memory:
555 mcnt = *p++;
556 printf ("/start_memory/%d/%d", mcnt, *p++);
557 break;
558
559 case stop_memory:
560 mcnt = *p++;
561 printf ("/stop_memory/%d/%d", mcnt, *p++);
562 break;
563
564 case duplicate:
565 printf ("/duplicate/%d", *p++);
566 break;
567
568 case anychar:
569 printf ("/anychar");
570 break;
571
572 case charset:
573 case charset_not:
574 {
575 register int c;
576
577 printf ("/charset%s",
578 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
Stefan Reinauer14e22772010-04-27 06:56:47 +0000579
Patrick Georgi26774f22009-11-21 19:54:02 +0000580 assert (p + *p < pend);
581
582 for (c = 0; c < *p; c++)
583 {
584 unsigned bit;
585 unsigned char map_byte = p[1 + c];
Stefan Reinauer14e22772010-04-27 06:56:47 +0000586
Patrick Georgi26774f22009-11-21 19:54:02 +0000587 putchar ('/');
588
589 for (bit = 0; bit < BYTEWIDTH; bit++)
590 if (map_byte & (1 << bit))
591 printchar (c * BYTEWIDTH + bit);
592 }
593 p += 1 + *p;
594 break;
595 }
596
597 case begline:
598 printf ("/begline");
599 break;
600
601 case endline:
602 printf ("/endline");
603 break;
604
605 case on_failure_jump:
606 extract_number_and_incr (&mcnt, &p);
607 printf ("/on_failure_jump/0/%d", mcnt);
608 break;
609
610 case on_failure_keep_string_jump:
611 extract_number_and_incr (&mcnt, &p);
612 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
613 break;
614
615 case dummy_failure_jump:
616 extract_number_and_incr (&mcnt, &p);
617 printf ("/dummy_failure_jump/0/%d", mcnt);
618 break;
619
620 case push_dummy_failure:
621 printf ("/push_dummy_failure");
622 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000623
Patrick Georgi26774f22009-11-21 19:54:02 +0000624 case maybe_pop_jump:
625 extract_number_and_incr (&mcnt, &p);
626 printf ("/maybe_pop_jump/0/%d", mcnt);
627 break;
628
629 case pop_failure_jump:
630 extract_number_and_incr (&mcnt, &p);
631 printf ("/pop_failure_jump/0/%d", mcnt);
Stefan Reinauer14e22772010-04-27 06:56:47 +0000632 break;
633
Patrick Georgi26774f22009-11-21 19:54:02 +0000634 case jump_past_alt:
635 extract_number_and_incr (&mcnt, &p);
636 printf ("/jump_past_alt/0/%d", mcnt);
Stefan Reinauer14e22772010-04-27 06:56:47 +0000637 break;
638
Patrick Georgi26774f22009-11-21 19:54:02 +0000639 case jump:
640 extract_number_and_incr (&mcnt, &p);
641 printf ("/jump/0/%d", mcnt);
642 break;
643
Stefan Reinauer14e22772010-04-27 06:56:47 +0000644 case succeed_n:
Patrick Georgi26774f22009-11-21 19:54:02 +0000645 extract_number_and_incr (&mcnt, &p);
646 extract_number_and_incr (&mcnt2, &p);
647 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
648 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000649
650 case jump_n:
Patrick Georgi26774f22009-11-21 19:54:02 +0000651 extract_number_and_incr (&mcnt, &p);
652 extract_number_and_incr (&mcnt2, &p);
653 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
654 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000655
656 case set_number_at:
Patrick Georgi26774f22009-11-21 19:54:02 +0000657 extract_number_and_incr (&mcnt, &p);
658 extract_number_and_incr (&mcnt2, &p);
659 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
660 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000661
Patrick Georgi26774f22009-11-21 19:54:02 +0000662 case wordbound:
663 printf ("/wordbound");
664 break;
665
666 case notwordbound:
667 printf ("/notwordbound");
668 break;
669
670 case wordbeg:
671 printf ("/wordbeg");
672 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000673
Patrick Georgi26774f22009-11-21 19:54:02 +0000674 case wordend:
675 printf ("/wordend");
Stefan Reinauer14e22772010-04-27 06:56:47 +0000676
Patrick Georgi26774f22009-11-21 19:54:02 +0000677#ifdef emacs
678 case before_dot:
679 printf ("/before_dot");
680 break;
681
682 case at_dot:
683 printf ("/at_dot");
684 break;
685
686 case after_dot:
687 printf ("/after_dot");
688 break;
689
690 case syntaxspec:
691 printf ("/syntaxspec");
692 mcnt = *p++;
693 printf ("/%d", mcnt);
694 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000695
Patrick Georgi26774f22009-11-21 19:54:02 +0000696 case notsyntaxspec:
697 printf ("/notsyntaxspec");
698 mcnt = *p++;
699 printf ("/%d", mcnt);
700 break;
701#endif /* emacs */
702
703 case wordchar:
704 printf ("/wordchar");
705 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000706
Patrick Georgi26774f22009-11-21 19:54:02 +0000707 case notwordchar:
708 printf ("/notwordchar");
709 break;
710
711 case begbuf:
712 printf ("/begbuf");
713 break;
714
715 case endbuf:
716 printf ("/endbuf");
717 break;
718
719 default:
720 printf ("?%d", *(p-1));
721 }
722 }
723 printf ("/\n");
724}
725
726
727void
728print_compiled_pattern (bufp)
729 struct re_pattern_buffer *bufp;
730{
731 unsigned char *buffer = bufp->buffer;
732
733 print_partial_compiled_pattern (buffer, buffer + bufp->used);
734 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
735
736 if (bufp->fastmap_accurate && bufp->fastmap)
737 {
738 printf ("fastmap: ");
739 print_fastmap (bufp->fastmap);
740 }
741
742 printf ("re_nsub: %d\t", bufp->re_nsub);
743 printf ("regs_alloc: %d\t", bufp->regs_allocated);
744 printf ("can_be_null: %d\t", bufp->can_be_null);
745 printf ("newline_anchor: %d\n", bufp->newline_anchor);
746 printf ("no_sub: %d\t", bufp->no_sub);
747 printf ("not_bol: %d\t", bufp->not_bol);
748 printf ("not_eol: %d\t", bufp->not_eol);
749 printf ("syntax: %d\n", bufp->syntax);
750 /* Perhaps we should print the translate table? */
751}
752
753
754void
755print_double_string (where, string1, size1, string2, size2)
756 const char *where;
757 const char *string1;
758 const char *string2;
759 int size1;
760 int size2;
761{
762 unsigned this_char;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000763
Patrick Georgi26774f22009-11-21 19:54:02 +0000764 if (where == NULL)
765 printf ("(null)");
766 else
767 {
768 if (FIRST_STRING_P (where))
769 {
770 for (this_char = where - string1; this_char < size1; this_char++)
771 printchar (string1[this_char]);
772
Stefan Reinauer14e22772010-04-27 06:56:47 +0000773 where = string2;
Patrick Georgi26774f22009-11-21 19:54:02 +0000774 }
775
776 for (this_char = where - string2; this_char < size2; this_char++)
777 printchar (string2[this_char]);
778 }
779}
780
781#else /* not DEBUG */
782
783#undef assert
784#define assert(e)
785
786#define DEBUG_STATEMENT(e)
787#define DEBUG_PRINT1(x)
788#define DEBUG_PRINT2(x1, x2)
789#define DEBUG_PRINT3(x1, x2, x3)
790#define DEBUG_PRINT4(x1, x2, x3, x4)
791#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
792#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
793
794#endif /* not DEBUG */
Martin Roth0cd338e2016-07-29 14:07:30 -0600795
Patrick Georgi26774f22009-11-21 19:54:02 +0000796/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
797 also be assigned to arbitrarily: each pattern buffer stores its own
798 syntax, so it can be changed between regex compilations. */
799reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
800
801
802/* Specify the precise syntax of regexps for compilation. This provides
803 for compatibility for various utilities which historically have
804 different, incompatible syntaxes.
805
806 The argument SYNTAX is a bit mask comprised of the various bits
807 defined in regex.h. We return the old syntax. */
808
809reg_syntax_t
810re_set_syntax (syntax)
811 reg_syntax_t syntax;
812{
813 reg_syntax_t ret = re_syntax_options;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000814
Patrick Georgi26774f22009-11-21 19:54:02 +0000815 re_syntax_options = syntax;
816 return ret;
817}
Martin Roth0cd338e2016-07-29 14:07:30 -0600818
Patrick Georgi26774f22009-11-21 19:54:02 +0000819/* This table gives an error message for each of the error codes listed
820 in regex.h. Obviously the order here has to be same as there. */
821
822static const char *re_error_msg[] =
823 { NULL, /* REG_NOERROR */
824 "No match", /* REG_NOMATCH */
825 "Invalid regular expression", /* REG_BADPAT */
826 "Invalid collation character", /* REG_ECOLLATE */
827 "Invalid character class name", /* REG_ECTYPE */
828 "Trailing backslash", /* REG_EESCAPE */
829 "Invalid back reference", /* REG_ESUBREG */
830 "Unmatched [ or [^", /* REG_EBRACK */
831 "Unmatched ( or \\(", /* REG_EPAREN */
832 "Unmatched \\{", /* REG_EBRACE */
833 "Invalid content of \\{\\}", /* REG_BADBR */
834 "Invalid range end", /* REG_ERANGE */
835 "Memory exhausted", /* REG_ESPACE */
836 "Invalid preceding regular expression", /* REG_BADRPT */
837 "Premature end of regular expression", /* REG_EEND */
838 "Regular expression too big", /* REG_ESIZE */
839 "Unmatched ) or \\)", /* REG_ERPAREN */
840 };
Martin Roth0cd338e2016-07-29 14:07:30 -0600841
Patrick Georgi26774f22009-11-21 19:54:02 +0000842/* Subroutine declarations and macros for regex_compile. */
843
844static void store_op1 (), store_op2 ();
845static void insert_op1 (), insert_op2 ();
846static boolean at_begline_loc_p (), at_endline_loc_p ();
847static boolean group_in_compile_stack ();
848static reg_errcode_t compile_range ();
849
Stefan Reinauer14e22772010-04-27 06:56:47 +0000850/* Fetch the next character in the uncompiled pattern---translating it
Patrick Georgi26774f22009-11-21 19:54:02 +0000851 if necessary. Also cast from a signed character in the constant
852 string passed to us by the user to an unsigned char that we can use
853 as an array index (in, e.g., `translate'). */
854#define PATFETCH(c) \
855 do {if (p == pend) return REG_EEND; \
856 c = (unsigned char) *p++; \
857 if (translate) c = translate[c]; \
858 } while (0)
859
860/* Fetch the next character in the uncompiled pattern, with no
861 translation. */
862#define PATFETCH_RAW(c) \
863 do {if (p == pend) return REG_EEND; \
864 c = (unsigned char) *p++; \
865 } while (0)
866
867/* Go backwards one character in the pattern. */
868#define PATUNFETCH p--
869
870
871/* If `translate' is non-null, return translate[D], else just D. We
872 cast the subscript to translate because some data is declared as
873 `char *', to avoid warnings when a string constant is passed. But
874 when we use a character as a subscript we must make it unsigned. */
875#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
876
877
878/* Macros for outputting the compiled pattern into `buffer'. */
879
880/* If the buffer isn't allocated when it comes in, use this. */
881#define INIT_BUF_SIZE 32
882
883/* Make sure we have at least N more bytes of space in buffer. */
884#define GET_BUFFER_SPACE(n) \
885 while (b - bufp->buffer + (n) > bufp->allocated) \
886 EXTEND_BUFFER ()
887
888/* Make sure we have one more byte of buffer space and then add C to it. */
889#define BUF_PUSH(c) \
890 do { \
891 GET_BUFFER_SPACE (1); \
892 *b++ = (unsigned char) (c); \
893 } while (0)
894
895
896/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
897#define BUF_PUSH_2(c1, c2) \
898 do { \
899 GET_BUFFER_SPACE (2); \
900 *b++ = (unsigned char) (c1); \
901 *b++ = (unsigned char) (c2); \
902 } while (0)
903
904
905/* As with BUF_PUSH_2, except for three bytes. */
906#define BUF_PUSH_3(c1, c2, c3) \
907 do { \
908 GET_BUFFER_SPACE (3); \
909 *b++ = (unsigned char) (c1); \
910 *b++ = (unsigned char) (c2); \
911 *b++ = (unsigned char) (c3); \
912 } while (0)
913
914
915/* Store a jump with opcode OP at LOC to location TO. We store a
916 relative address offset by the three bytes the jump itself occupies. */
917#define STORE_JUMP(op, loc, to) \
918 store_op1 (op, loc, (to) - (loc) - 3)
919
920/* Likewise, for a two-argument jump. */
921#define STORE_JUMP2(op, loc, to, arg) \
922 store_op2 (op, loc, (to) - (loc) - 3, arg)
923
924/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
925#define INSERT_JUMP(op, loc, to) \
926 insert_op1 (op, loc, (to) - (loc) - 3, b)
927
928/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
929#define INSERT_JUMP2(op, loc, to, arg) \
930 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
931
932
933/* This is not an arbitrary limit: the arguments which represent offsets
934 into the pattern are two bytes long. So if 2^16 bytes turns out to
935 be too small, many things would have to change. */
936#define MAX_BUF_SIZE (1L << 16)
937
938
939/* Extend the buffer by twice its current size via realloc and
940 reset the pointers that pointed into the old block to point to the
941 correct places in the new one. If extending the buffer results in it
942 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
943#define EXTEND_BUFFER() \
944 do { \
945 unsigned char *old_buffer = bufp->buffer; \
946 if (bufp->allocated == MAX_BUF_SIZE) \
947 return REG_ESIZE; \
948 bufp->allocated <<= 1; \
949 if (bufp->allocated > MAX_BUF_SIZE) \
950 bufp->allocated = MAX_BUF_SIZE; \
951 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
952 if (bufp->buffer == NULL) \
953 return REG_ESPACE; \
954 /* If the buffer moved, move all the pointers into it. */ \
955 if (old_buffer != bufp->buffer) \
956 { \
957 b = (b - old_buffer) + bufp->buffer; \
958 begalt = (begalt - old_buffer) + bufp->buffer; \
959 if (fixup_alt_jump) \
960 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
961 if (laststart) \
962 laststart = (laststart - old_buffer) + bufp->buffer; \
963 if (pending_exact) \
964 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
965 } \
966 } while (0)
967
968
969/* Since we have one byte reserved for the register number argument to
970 {start,stop}_memory, the maximum number of groups we can report
971 things about is what fits in that byte. */
972#define MAX_REGNUM 255
973
974/* But patterns can have more than `MAX_REGNUM' registers. We just
975 ignore the excess. */
976typedef unsigned regnum_t;
977
978
979/* Macros for the compile stack. */
980
981/* Since offsets can go either forwards or backwards, this type needs to
982 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
983typedef int pattern_offset_t;
984
985typedef struct
986{
987 pattern_offset_t begalt_offset;
988 pattern_offset_t fixup_alt_jump;
989 pattern_offset_t inner_group_offset;
Stefan Reinauer14e22772010-04-27 06:56:47 +0000990 pattern_offset_t laststart_offset;
Patrick Georgi26774f22009-11-21 19:54:02 +0000991 regnum_t regnum;
992} compile_stack_elt_t;
993
994
995typedef struct
996{
997 compile_stack_elt_t *stack;
998 unsigned size;
999 unsigned avail; /* Offset of next open position. */
1000} compile_stack_type;
1001
1002
1003#define INIT_COMPILE_STACK_SIZE 32
1004
1005#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1006#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1007
1008/* The next available element. */
1009#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1010
1011
1012/* Set the bit for character C in a list. */
1013#define SET_LIST_BIT(c) \
1014 (b[((unsigned char) (c)) / BYTEWIDTH] \
1015 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1016
1017
1018/* Get the next unsigned number in the uncompiled pattern. */
1019#define GET_UNSIGNED_NUMBER(num) \
1020 { if (p != pend) \
1021 { \
1022 PATFETCH (c); \
1023 while (ISDIGIT (c)) \
1024 { \
1025 if (num < 0) \
1026 num = 0; \
1027 num = num * 10 + c - '0'; \
1028 if (p == pend) \
1029 break; \
1030 PATFETCH (c); \
1031 } \
1032 } \
Stefan Reinauer14e22772010-04-27 06:56:47 +00001033 }
Patrick Georgi26774f22009-11-21 19:54:02 +00001034
1035#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1036
1037#define IS_CHAR_CLASS(string) \
1038 (STREQ (string, "alpha") || STREQ (string, "upper") \
1039 || STREQ (string, "lower") || STREQ (string, "digit") \
1040 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1041 || STREQ (string, "space") || STREQ (string, "print") \
1042 || STREQ (string, "punct") || STREQ (string, "graph") \
1043 || STREQ (string, "cntrl") || STREQ (string, "blank"))
Martin Roth0cd338e2016-07-29 14:07:30 -06001044
Patrick Georgi26774f22009-11-21 19:54:02 +00001045/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1046 Returns one of error codes defined in `regex.h', or zero for success.
1047
1048 Assumes the `allocated' (and perhaps `buffer') and `translate'
1049 fields are set in BUFP on entry.
1050
1051 If it succeeds, results are put in BUFP (if it returns an error, the
1052 contents of BUFP are undefined):
1053 `buffer' is the compiled pattern;
1054 `syntax' is set to SYNTAX;
1055 `used' is set to the length of the compiled pattern;
1056 `fastmap_accurate' is zero;
1057 `re_nsub' is the number of subexpressions in PATTERN;
1058 `not_bol' and `not_eol' are zero;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001059
Patrick Georgi26774f22009-11-21 19:54:02 +00001060 The `fastmap' and `newline_anchor' fields are neither
1061 examined nor set. */
1062
1063static reg_errcode_t
1064regex_compile (pattern, size, syntax, bufp)
1065 const char *pattern;
1066 int size;
1067 reg_syntax_t syntax;
1068 struct re_pattern_buffer *bufp;
1069{
1070 /* We fetch characters from PATTERN here. Even though PATTERN is
1071 `char *' (i.e., signed), we declare these variables as unsigned, so
1072 they can be reliably used as array indices. */
1073 register unsigned char c, c1;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001074
Patrick Georgi26774f22009-11-21 19:54:02 +00001075 /* A random tempory spot in PATTERN. */
1076 const char *p1;
1077
1078 /* Points to the end of the buffer, where we should append. */
1079 register unsigned char *b;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001080
Patrick Georgi26774f22009-11-21 19:54:02 +00001081 /* Keeps track of unclosed groups. */
1082 compile_stack_type compile_stack;
1083
1084 /* Points to the current (ending) position in the pattern. */
1085 const char *p = pattern;
1086 const char *pend = pattern + size;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001087
Patrick Georgi26774f22009-11-21 19:54:02 +00001088 /* How to translate the characters in the pattern. */
1089 char *translate = bufp->translate;
1090
1091 /* Address of the count-byte of the most recently inserted `exactn'
1092 command. This makes it possible to tell if a new exact-match
1093 character can be added to that command or if the character requires
1094 a new `exactn' command. */
Elyes HAOUAS1d3fde42018-06-05 08:41:29 +02001095 unsigned char *pending_exact = NULL;
Patrick Georgi26774f22009-11-21 19:54:02 +00001096
1097 /* Address of start of the most recently finished expression.
1098 This tells, e.g., postfix * where to find the start of its
1099 operand. Reset at the beginning of groups and alternatives. */
Elyes HAOUAS1d3fde42018-06-05 08:41:29 +02001100 unsigned char *laststart = NULL;
Patrick Georgi26774f22009-11-21 19:54:02 +00001101
1102 /* Address of beginning of regexp, or inside of last group. */
1103 unsigned char *begalt;
1104
1105 /* Place in the uncompiled pattern (i.e., the {) to
1106 which to go back if the interval is invalid. */
1107 const char *beg_interval;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001108
Patrick Georgi26774f22009-11-21 19:54:02 +00001109 /* Address of the place where a forward jump should go to the end of
1110 the containing expression. Each alternative of an `or' -- except the
1111 last -- ends with a forward jump of this sort. */
Elyes HAOUAS1d3fde42018-06-05 08:41:29 +02001112 unsigned char *fixup_alt_jump = NULL;
Patrick Georgi26774f22009-11-21 19:54:02 +00001113
1114 /* Counts open-groups as they are encountered. Remembered for the
1115 matching close-group on the compile stack, so the same register
1116 number is put in the stop_memory as the start_memory. */
1117 regnum_t regnum = 0;
1118
1119#ifdef DEBUG
1120 DEBUG_PRINT1 ("\nCompiling pattern: ");
1121 if (debug)
1122 {
1123 unsigned debug_count;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001124
Patrick Georgi26774f22009-11-21 19:54:02 +00001125 for (debug_count = 0; debug_count < size; debug_count++)
1126 printchar (pattern[debug_count]);
1127 putchar ('\n');
1128 }
1129#endif /* DEBUG */
1130
1131 /* Initialize the compile stack. */
1132 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1133 if (compile_stack.stack == NULL)
1134 return REG_ESPACE;
1135
1136 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1137 compile_stack.avail = 0;
1138
1139 /* Initialize the pattern buffer. */
1140 bufp->syntax = syntax;
1141 bufp->fastmap_accurate = 0;
1142 bufp->not_bol = bufp->not_eol = 0;
1143
1144 /* Set `used' to zero, so that if we return an error, the pattern
1145 printer (for debugging) will think there's no pattern. We reset it
1146 at the end. */
1147 bufp->used = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001148
Patrick Georgi26774f22009-11-21 19:54:02 +00001149 /* Always count groups, whether or not bufp->no_sub is set. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001150 bufp->re_nsub = 0;
Patrick Georgi26774f22009-11-21 19:54:02 +00001151
1152#if !defined (emacs) && !defined (SYNTAX_TABLE)
1153 /* Initialize the syntax table. */
1154 init_syntax_once ();
1155#endif
1156
1157 if (bufp->allocated == 0)
1158 {
1159 if (bufp->buffer)
1160 { /* If zero allocated, but buffer is non-null, try to realloc
1161 enough space. This loses if buffer's address is bogus, but
1162 that is the user's responsibility. */
1163 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1164 }
1165 else
1166 { /* Caller did not allocate a buffer. Do it for them. */
1167 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1168 }
1169 if (!bufp->buffer) return REG_ESPACE;
1170
1171 bufp->allocated = INIT_BUF_SIZE;
1172 }
1173
1174 begalt = b = bufp->buffer;
1175
1176 /* Loop through the uncompiled pattern until we're at the end. */
1177 while (p != pend)
1178 {
1179 PATFETCH (c);
1180
1181 switch (c)
1182 {
1183 case '^':
1184 {
1185 if ( /* If at start of pattern, it's an operator. */
1186 p == pattern + 1
1187 /* If context independent, it's an operator. */
1188 || syntax & RE_CONTEXT_INDEP_ANCHORS
1189 /* Otherwise, depends on what's come before. */
1190 || at_begline_loc_p (pattern, p, syntax))
1191 BUF_PUSH (begline);
1192 else
1193 goto normal_char;
1194 }
1195 break;
1196
1197
1198 case '$':
1199 {
1200 if ( /* If at end of pattern, it's an operator. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001201 p == pend
Patrick Georgi26774f22009-11-21 19:54:02 +00001202 /* If context independent, it's an operator. */
1203 || syntax & RE_CONTEXT_INDEP_ANCHORS
1204 /* Otherwise, depends on what's next. */
1205 || at_endline_loc_p (p, pend, syntax))
1206 BUF_PUSH (endline);
1207 else
1208 goto normal_char;
1209 }
1210 break;
1211
1212
1213 case '+':
1214 case '?':
1215 if ((syntax & RE_BK_PLUS_QM)
1216 || (syntax & RE_LIMITED_OPS))
1217 goto normal_char;
1218 handle_plus:
1219 case '*':
1220 /* If there is no previous pattern... */
1221 if (!laststart)
1222 {
1223 if (syntax & RE_CONTEXT_INVALID_OPS)
1224 return REG_BADRPT;
1225 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1226 goto normal_char;
1227 }
1228
1229 {
1230 /* Are we optimizing this jump? */
1231 boolean keep_string_p = false;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001232
Patrick Georgi26774f22009-11-21 19:54:02 +00001233 /* 1 means zero (many) matches is allowed. */
1234 char zero_times_ok = 0, many_times_ok = 0;
1235
1236 /* If there is a sequence of repetition chars, collapse it
1237 down to just one (the right one). We can't combine
1238 interval operators with these because of, e.g., `a{2}*',
1239 which should only match an even number of `a's. */
1240
1241 for (;;)
1242 {
1243 zero_times_ok |= c != '+';
1244 many_times_ok |= c != '?';
1245
1246 if (p == pend)
1247 break;
1248
1249 PATFETCH (c);
1250
1251 if (c == '*'
1252 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1253 ;
1254
1255 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1256 {
1257 if (p == pend) return REG_EESCAPE;
1258
1259 PATFETCH (c1);
1260 if (!(c1 == '+' || c1 == '?'))
1261 {
1262 PATUNFETCH;
1263 PATUNFETCH;
1264 break;
1265 }
1266
1267 c = c1;
1268 }
1269 else
1270 {
1271 PATUNFETCH;
1272 break;
1273 }
1274
1275 /* If we get here, we found another repeat character. */
1276 }
1277
1278 /* Star, etc. applied to an empty pattern is equivalent
1279 to an empty pattern. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001280 if (!laststart)
Patrick Georgi26774f22009-11-21 19:54:02 +00001281 break;
1282
1283 /* Now we know whether or not zero matches is allowed
1284 and also whether or not two or more matches is allowed. */
1285 if (many_times_ok)
1286 { /* More than one repetition is allowed, so put in at the
1287 end a backward relative jump from `b' to before the next
1288 jump we're going to put in below (which jumps from
Stefan Reinauer14e22772010-04-27 06:56:47 +00001289 laststart to after this jump).
Patrick Georgi26774f22009-11-21 19:54:02 +00001290
1291 But if we are at the `*' in the exact sequence `.*\n',
1292 insert an unconditional jump backwards to the .,
1293 instead of the beginning of the loop. This way we only
1294 push a failure point once, instead of every time
1295 through the loop. */
1296 assert (p - 1 > pattern);
1297
1298 /* Allocate the space for the jump. */
1299 GET_BUFFER_SPACE (3);
1300
1301 /* We know we are not at the first character of the pattern,
1302 because laststart was nonzero. And we've already
1303 incremented `p', by the way, to be the character after
1304 the `*'. Do we have to do something analogous here
1305 for null bytes, because of RE_DOT_NOT_NULL? */
1306 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1307 && zero_times_ok
1308 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1309 && !(syntax & RE_DOT_NEWLINE))
1310 { /* We have .*\n. */
1311 STORE_JUMP (jump, b, laststart);
1312 keep_string_p = true;
1313 }
1314 else
1315 /* Anything else. */
1316 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1317
1318 /* We've added more stuff to the buffer. */
1319 b += 3;
1320 }
1321
1322 /* On failure, jump from laststart to b + 3, which will be the
1323 end of the buffer after this jump is inserted. */
1324 GET_BUFFER_SPACE (3);
1325 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1326 : on_failure_jump,
1327 laststart, b + 3);
1328 pending_exact = 0;
1329 b += 3;
1330
1331 if (!zero_times_ok)
1332 {
1333 /* At least one repetition is required, so insert a
1334 `dummy_failure_jump' before the initial
1335 `on_failure_jump' instruction of the loop. This
1336 effects a skip over that instruction the first time
1337 we hit that loop. */
1338 GET_BUFFER_SPACE (3);
1339 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1340 b += 3;
1341 }
1342 }
1343 break;
1344
1345
1346 case '.':
1347 laststart = b;
1348 BUF_PUSH (anychar);
1349 break;
1350
1351
1352 case '[':
1353 {
1354 boolean had_char_class = false;
1355
1356 if (p == pend) return REG_EBRACK;
1357
1358 /* Ensure that we have enough space to push a charset: the
1359 opcode, the length count, and the bitset; 34 bytes in all. */
1360 GET_BUFFER_SPACE (34);
1361
1362 laststart = b;
1363
1364 /* We test `*p == '^' twice, instead of using an if
1365 statement, so we only need one BUF_PUSH. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001366 BUF_PUSH (*p == '^' ? charset_not : charset);
Patrick Georgi26774f22009-11-21 19:54:02 +00001367 if (*p == '^')
1368 p++;
1369
1370 /* Remember the first position in the bracket expression. */
1371 p1 = p;
1372
1373 /* Push the number of bytes in the bitmap. */
1374 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1375
1376 /* Clear the whole map. */
1377 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1378
1379 /* charset_not matches newline according to a syntax bit. */
1380 if ((re_opcode_t) b[-2] == charset_not
1381 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1382 SET_LIST_BIT ('\n');
1383
1384 /* Read in characters and ranges, setting map bits. */
1385 for (;;)
1386 {
1387 if (p == pend) return REG_EBRACK;
1388
1389 PATFETCH (c);
1390
1391 /* \ might escape characters inside [...] and [^...]. */
1392 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1393 {
1394 if (p == pend) return REG_EESCAPE;
1395
1396 PATFETCH (c1);
1397 SET_LIST_BIT (c1);
1398 continue;
1399 }
1400
1401 /* Could be the end of the bracket expression. If it's
1402 not (i.e., when the bracket expression is `[]' so
1403 far), the ']' character bit gets set way below. */
1404 if (c == ']' && p != p1 + 1)
1405 break;
1406
1407 /* Look ahead to see if it's a range when the last thing
1408 was a character class. */
1409 if (had_char_class && c == '-' && *p != ']')
1410 return REG_ERANGE;
1411
1412 /* Look ahead to see if it's a range when the last thing
1413 was a character: if this is a hyphen not at the
1414 beginning or the end of a list, then it's the range
1415 operator. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001416 if (c == '-'
1417 && !(p - 2 >= pattern && p[-2] == '[')
Patrick Georgi26774f22009-11-21 19:54:02 +00001418 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1419 && *p != ']')
1420 {
1421 reg_errcode_t ret
1422 = compile_range (&p, pend, translate, syntax, b);
1423 if (ret != REG_NOERROR) return ret;
1424 }
1425
1426 else if (p[0] == '-' && p[1] != ']')
1427 { /* This handles ranges made up of characters only. */
1428 reg_errcode_t ret;
1429
1430 /* Move past the `-'. */
1431 PATFETCH (c1);
Stefan Reinauer14e22772010-04-27 06:56:47 +00001432
Patrick Georgi26774f22009-11-21 19:54:02 +00001433 ret = compile_range (&p, pend, translate, syntax, b);
1434 if (ret != REG_NOERROR) return ret;
1435 }
1436
1437 /* See if we're at the beginning of a possible character
1438 class. */
1439
1440 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1441 { /* Leave room for the null. */
1442 char str[CHAR_CLASS_MAX_LENGTH + 1];
1443
1444 PATFETCH (c);
1445 c1 = 0;
1446
1447 /* If pattern is `[[:'. */
1448 if (p == pend) return REG_EBRACK;
1449
1450 for (;;)
1451 {
1452 PATFETCH (c);
1453 if (c == ':' || c == ']' || p == pend
1454 || c1 == CHAR_CLASS_MAX_LENGTH)
1455 break;
1456 str[c1++] = c;
1457 }
1458 str[c1] = '\0';
1459
1460 /* If isn't a word bracketed by `[:' and:`]':
Stefan Reinauer14e22772010-04-27 06:56:47 +00001461 undo the ending character, the letters, and leave
Patrick Georgi26774f22009-11-21 19:54:02 +00001462 the leading `:' and `[' (but set bits for them). */
1463 if (c == ':' && *p == ']')
1464 {
1465 int ch;
1466 boolean is_alnum = STREQ (str, "alnum");
1467 boolean is_alpha = STREQ (str, "alpha");
1468 boolean is_blank = STREQ (str, "blank");
1469 boolean is_cntrl = STREQ (str, "cntrl");
1470 boolean is_digit = STREQ (str, "digit");
1471 boolean is_graph = STREQ (str, "graph");
1472 boolean is_lower = STREQ (str, "lower");
1473 boolean is_print = STREQ (str, "print");
1474 boolean is_punct = STREQ (str, "punct");
1475 boolean is_space = STREQ (str, "space");
1476 boolean is_upper = STREQ (str, "upper");
1477 boolean is_xdigit = STREQ (str, "xdigit");
Stefan Reinauer14e22772010-04-27 06:56:47 +00001478
Patrick Georgi26774f22009-11-21 19:54:02 +00001479 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1480
1481 /* Throw away the ] at the end of the character
1482 class. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001483 PATFETCH (c);
Patrick Georgi26774f22009-11-21 19:54:02 +00001484
1485 if (p == pend) return REG_EBRACK;
1486
1487 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1488 {
1489 if ( (is_alnum && ISALNUM (ch))
1490 || (is_alpha && ISALPHA (ch))
1491 || (is_blank && ISBLANK (ch))
1492 || (is_cntrl && ISCNTRL (ch))
1493 || (is_digit && ISDIGIT (ch))
1494 || (is_graph && ISGRAPH (ch))
1495 || (is_lower && ISLOWER (ch))
1496 || (is_print && ISPRINT (ch))
1497 || (is_punct && ISPUNCT (ch))
1498 || (is_space && ISSPACE (ch))
1499 || (is_upper && ISUPPER (ch))
1500 || (is_xdigit && ISXDIGIT (ch)))
1501 SET_LIST_BIT (ch);
1502 }
1503 had_char_class = true;
1504 }
1505 else
1506 {
1507 c1++;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001508 while (c1--)
Patrick Georgi26774f22009-11-21 19:54:02 +00001509 PATUNFETCH;
1510 SET_LIST_BIT ('[');
1511 SET_LIST_BIT (':');
1512 had_char_class = false;
1513 }
1514 }
1515 else
1516 {
1517 had_char_class = false;
1518 SET_LIST_BIT (c);
1519 }
1520 }
1521
1522 /* Discard any (non)matching list bytes that are all 0 at the
1523 end of the map. Decrease the map-length byte too. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001524 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1525 b[-1]--;
Patrick Georgi26774f22009-11-21 19:54:02 +00001526 b += b[-1];
1527 }
1528 break;
1529
1530
1531 case '(':
1532 if (syntax & RE_NO_BK_PARENS)
1533 goto handle_open;
1534 else
1535 goto normal_char;
1536
1537
1538 case ')':
1539 if (syntax & RE_NO_BK_PARENS)
1540 goto handle_close;
1541 else
1542 goto normal_char;
1543
1544
1545 case '\n':
1546 if (syntax & RE_NEWLINE_ALT)
1547 goto handle_alt;
1548 else
1549 goto normal_char;
1550
1551
1552 case '|':
1553 if (syntax & RE_NO_BK_VBAR)
1554 goto handle_alt;
1555 else
1556 goto normal_char;
1557
1558
1559 case '{':
1560 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1561 goto handle_interval;
1562 else
1563 goto normal_char;
1564
1565
1566 case '\\':
1567 if (p == pend) return REG_EESCAPE;
1568
1569 /* Do not translate the character after the \, so that we can
1570 distinguish, e.g., \B from \b, even if we normally would
1571 translate, e.g., B to b. */
1572 PATFETCH_RAW (c);
1573
1574 switch (c)
1575 {
1576 case '(':
1577 if (syntax & RE_NO_BK_PARENS)
1578 goto normal_backslash;
1579
1580 handle_open:
1581 bufp->re_nsub++;
1582 regnum++;
1583
1584 if (COMPILE_STACK_FULL)
Stefan Reinauer14e22772010-04-27 06:56:47 +00001585 {
Patrick Georgi26774f22009-11-21 19:54:02 +00001586 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1587 compile_stack_elt_t);
1588 if (compile_stack.stack == NULL) return REG_ESPACE;
1589
1590 compile_stack.size <<= 1;
1591 }
1592
1593 /* These are the values to restore when we hit end of this
1594 group. They are all relative offsets, so that if the
1595 whole pattern moves because of realloc, they will still
1596 be valid. */
1597 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001598 COMPILE_STACK_TOP.fixup_alt_jump
Patrick Georgi26774f22009-11-21 19:54:02 +00001599 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1600 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1601 COMPILE_STACK_TOP.regnum = regnum;
1602
1603 /* We will eventually replace the 0 with the number of
1604 groups inner to this one. But do not push a
1605 start_memory for groups beyond the last one we can
1606 represent in the compiled pattern. */
1607 if (regnum <= MAX_REGNUM)
1608 {
1609 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1610 BUF_PUSH_3 (start_memory, regnum, 0);
1611 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00001612
Patrick Georgi26774f22009-11-21 19:54:02 +00001613 compile_stack.avail++;
1614
1615 fixup_alt_jump = 0;
1616 laststart = 0;
1617 begalt = b;
1618 /* If we've reached MAX_REGNUM groups, then this open
1619 won't actually generate any code, so we'll have to
1620 clear pending_exact explicitly. */
1621 pending_exact = 0;
1622 break;
1623
1624
1625 case ')':
1626 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1627
1628 if (COMPILE_STACK_EMPTY)
1629 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1630 goto normal_backslash;
1631 else
1632 return REG_ERPAREN;
1633
1634 handle_close:
1635 if (fixup_alt_jump)
1636 { /* Push a dummy failure point at the end of the
1637 alternative for a possible future
1638 `pop_failure_jump' to pop. See comments at
1639 `push_dummy_failure' in `re_match_2'. */
1640 BUF_PUSH (push_dummy_failure);
Stefan Reinauer14e22772010-04-27 06:56:47 +00001641
Patrick Georgi26774f22009-11-21 19:54:02 +00001642 /* We allocated space for this jump when we assigned
1643 to `fixup_alt_jump', in the `handle_alt' case below. */
1644 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1645 }
1646
1647 /* See similar code for backslashed left paren above. */
1648 if (COMPILE_STACK_EMPTY)
1649 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1650 goto normal_char;
1651 else
1652 return REG_ERPAREN;
1653
1654 /* Since we just checked for an empty stack above, this
1655 ``can't happen''. */
1656 assert (compile_stack.avail != 0);
1657 {
1658 /* We don't just want to restore into `regnum', because
1659 later groups should continue to be numbered higher,
1660 as in `(ab)c(de)' -- the second group is #2. */
1661 regnum_t this_group_regnum;
1662
Stefan Reinauer14e22772010-04-27 06:56:47 +00001663 compile_stack.avail--;
Patrick Georgi26774f22009-11-21 19:54:02 +00001664 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1665 fixup_alt_jump
1666 = COMPILE_STACK_TOP.fixup_alt_jump
Stefan Reinauer14e22772010-04-27 06:56:47 +00001667 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
Patrick Georgi26774f22009-11-21 19:54:02 +00001668 : 0;
1669 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1670 this_group_regnum = COMPILE_STACK_TOP.regnum;
1671 /* If we've reached MAX_REGNUM groups, then this open
1672 won't actually generate any code, so we'll have to
1673 clear pending_exact explicitly. */
1674 pending_exact = 0;
1675
1676 /* We're at the end of the group, so now we know how many
1677 groups were inside this one. */
1678 if (this_group_regnum <= MAX_REGNUM)
1679 {
1680 unsigned char *inner_group_loc
1681 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001682
Patrick Georgi26774f22009-11-21 19:54:02 +00001683 *inner_group_loc = regnum - this_group_regnum;
1684 BUF_PUSH_3 (stop_memory, this_group_regnum,
1685 regnum - this_group_regnum);
1686 }
1687 }
1688 break;
1689
1690
1691 case '|': /* `\|'. */
1692 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1693 goto normal_backslash;
1694 handle_alt:
1695 if (syntax & RE_LIMITED_OPS)
1696 goto normal_char;
1697
1698 /* Insert before the previous alternative a jump which
1699 jumps to this alternative if the former fails. */
1700 GET_BUFFER_SPACE (3);
1701 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1702 pending_exact = 0;
1703 b += 3;
1704
1705 /* The alternative before this one has a jump after it
1706 which gets executed if it gets matched. Adjust that
1707 jump so it will jump to this alternative's analogous
1708 jump (put in below, which in turn will jump to the next
1709 (if any) alternative's such jump, etc.). The last such
1710 jump jumps to the correct final destination. A picture:
Stefan Reinauer14e22772010-04-27 06:56:47 +00001711 _____ _____
1712 | | | |
1713 | v | v
1714 a | b | c
Patrick Georgi26774f22009-11-21 19:54:02 +00001715
1716 If we are at `b', then fixup_alt_jump right now points to a
1717 three-byte space after `a'. We'll put in the jump, set
1718 fixup_alt_jump to right after `b', and leave behind three
1719 bytes which we'll fill in when we get to after `c'. */
1720
1721 if (fixup_alt_jump)
1722 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1723
1724 /* Mark and leave space for a jump after this alternative,
1725 to be filled in later either by next alternative or
1726 when know we're at the end of a series of alternatives. */
1727 fixup_alt_jump = b;
1728 GET_BUFFER_SPACE (3);
1729 b += 3;
1730
1731 laststart = 0;
1732 begalt = b;
1733 break;
1734
1735
Stefan Reinauer14e22772010-04-27 06:56:47 +00001736 case '{':
Patrick Georgi26774f22009-11-21 19:54:02 +00001737 /* If \{ is a literal. */
1738 if (!(syntax & RE_INTERVALS)
Stefan Reinauer14e22772010-04-27 06:56:47 +00001739 /* If we're at `\{' and it's not the open-interval
Patrick Georgi26774f22009-11-21 19:54:02 +00001740 operator. */
1741 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1742 || (p - 2 == pattern && p == pend))
1743 goto normal_backslash;
1744
1745 handle_interval:
1746 {
1747 /* If got here, then the syntax allows intervals. */
1748
1749 /* At least (most) this many matches must be made. */
1750 int lower_bound = -1, upper_bound = -1;
1751
1752 beg_interval = p - 1;
1753
1754 if (p == pend)
1755 {
1756 if (syntax & RE_NO_BK_BRACES)
1757 goto unfetch_interval;
1758 else
1759 return REG_EBRACE;
1760 }
1761
1762 GET_UNSIGNED_NUMBER (lower_bound);
1763
1764 if (c == ',')
1765 {
1766 GET_UNSIGNED_NUMBER (upper_bound);
1767 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1768 }
1769 else
1770 /* Interval such as `{1}' => match exactly once. */
1771 upper_bound = lower_bound;
1772
1773 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1774 || lower_bound > upper_bound)
1775 {
1776 if (syntax & RE_NO_BK_BRACES)
1777 goto unfetch_interval;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001778 else
Patrick Georgi26774f22009-11-21 19:54:02 +00001779 return REG_BADBR;
1780 }
1781
Stefan Reinauer14e22772010-04-27 06:56:47 +00001782 if (!(syntax & RE_NO_BK_BRACES))
Patrick Georgi26774f22009-11-21 19:54:02 +00001783 {
1784 if (c != '\\') return REG_EBRACE;
1785
1786 PATFETCH (c);
1787 }
1788
1789 if (c != '}')
1790 {
1791 if (syntax & RE_NO_BK_BRACES)
1792 goto unfetch_interval;
Stefan Reinauer14e22772010-04-27 06:56:47 +00001793 else
Patrick Georgi26774f22009-11-21 19:54:02 +00001794 return REG_BADBR;
1795 }
1796
1797 /* We just parsed a valid interval. */
1798
1799 /* If it's invalid to have no preceding re. */
1800 if (!laststart)
1801 {
1802 if (syntax & RE_CONTEXT_INVALID_OPS)
1803 return REG_BADRPT;
1804 else if (syntax & RE_CONTEXT_INDEP_OPS)
1805 laststart = b;
1806 else
1807 goto unfetch_interval;
1808 }
1809
1810 /* If the upper bound is zero, don't want to succeed at
1811 all; jump from `laststart' to `b + 3', which will be
1812 the end of the buffer after we insert the jump. */
1813 if (upper_bound == 0)
1814 {
1815 GET_BUFFER_SPACE (3);
1816 INSERT_JUMP (jump, laststart, b + 3);
1817 b += 3;
1818 }
1819
1820 /* Otherwise, we have a nontrivial interval. When
1821 we're all done, the pattern will look like:
1822 set_number_at <jump count> <upper bound>
1823 set_number_at <succeed_n count> <lower bound>
1824 succeed_n <after jump addr> <succed_n count>
1825 <body of loop>
1826 jump_n <succeed_n addr> <jump count>
1827 (The upper bound and `jump_n' are omitted if
1828 `upper_bound' is 1, though.) */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001829 else
Patrick Georgi26774f22009-11-21 19:54:02 +00001830 { /* If the upper bound is > 1, we need to insert
1831 more at the end of the loop. */
1832 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1833
1834 GET_BUFFER_SPACE (nbytes);
1835
1836 /* Initialize lower bound of the `succeed_n', even
1837 though it will be set during matching by its
1838 attendant `set_number_at' (inserted next),
1839 because `re_compile_fastmap' needs to know.
1840 Jump to the `jump_n' we might insert below. */
1841 INSERT_JUMP2 (succeed_n, laststart,
1842 b + 5 + (upper_bound > 1) * 5,
1843 lower_bound);
1844 b += 5;
1845
Stefan Reinauer14e22772010-04-27 06:56:47 +00001846 /* Code to initialize the lower bound. Insert
Patrick Georgi26774f22009-11-21 19:54:02 +00001847 before the `succeed_n'. The `5' is the last two
1848 bytes of this `set_number_at', plus 3 bytes of
1849 the following `succeed_n'. */
1850 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1851 b += 5;
1852
1853 if (upper_bound > 1)
1854 { /* More than one repetition is allowed, so
1855 append a backward jump to the `succeed_n'
1856 that starts this interval.
Stefan Reinauer14e22772010-04-27 06:56:47 +00001857
Patrick Georgi26774f22009-11-21 19:54:02 +00001858 When we've reached this during matching,
1859 we'll have matched the interval once, so
1860 jump back only `upper_bound - 1' times. */
1861 STORE_JUMP2 (jump_n, b, laststart + 5,
1862 upper_bound - 1);
1863 b += 5;
1864
1865 /* The location we want to set is the second
1866 parameter of the `jump_n'; that is `b-2' as
1867 an absolute address. `laststart' will be
1868 the `set_number_at' we're about to insert;
1869 `laststart+3' the number to set, the source
1870 for the relative address. But we are
1871 inserting into the middle of the pattern --
1872 so everything is getting moved up by 5.
1873 Conclusion: (b - 2) - (laststart + 3) + 5,
1874 i.e., b - laststart.
Stefan Reinauer14e22772010-04-27 06:56:47 +00001875
Patrick Georgi26774f22009-11-21 19:54:02 +00001876 We insert this at the beginning of the loop
1877 so that if we fail during matching, we'll
1878 reinitialize the bounds. */
1879 insert_op2 (set_number_at, laststart, b - laststart,
1880 upper_bound - 1, b);
1881 b += 5;
1882 }
1883 }
1884 pending_exact = 0;
1885 beg_interval = NULL;
1886 }
1887 break;
1888
1889 unfetch_interval:
1890 /* If an invalid interval, match the characters as literals. */
1891 assert (beg_interval);
1892 p = beg_interval;
1893 beg_interval = NULL;
1894
1895 /* normal_char and normal_backslash need `c'. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00001896 PATFETCH (c);
Patrick Georgi26774f22009-11-21 19:54:02 +00001897
1898 if (!(syntax & RE_NO_BK_BRACES))
1899 {
1900 if (p > pattern && p[-1] == '\\')
1901 goto normal_backslash;
1902 }
1903 goto normal_char;
1904
1905#ifdef emacs
1906 /* There is no way to specify the before_dot and after_dot
1907 operators. rms says this is ok. --karl */
1908 case '=':
1909 BUF_PUSH (at_dot);
1910 break;
1911
Stefan Reinauer14e22772010-04-27 06:56:47 +00001912 case 's':
Patrick Georgi26774f22009-11-21 19:54:02 +00001913 laststart = b;
1914 PATFETCH (c);
1915 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1916 break;
1917
1918 case 'S':
1919 laststart = b;
1920 PATFETCH (c);
1921 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1922 break;
1923#endif /* emacs */
1924
1925
1926 case 'w':
1927 laststart = b;
1928 BUF_PUSH (wordchar);
1929 break;
1930
1931
1932 case 'W':
1933 laststart = b;
1934 BUF_PUSH (notwordchar);
1935 break;
1936
1937
1938 case '<':
1939 BUF_PUSH (wordbeg);
1940 break;
1941
1942 case '>':
1943 BUF_PUSH (wordend);
1944 break;
1945
1946 case 'b':
1947 BUF_PUSH (wordbound);
1948 break;
1949
1950 case 'B':
1951 BUF_PUSH (notwordbound);
1952 break;
1953
1954 case '`':
1955 BUF_PUSH (begbuf);
1956 break;
1957
1958 case '\'':
1959 BUF_PUSH (endbuf);
1960 break;
1961
1962 case '1': case '2': case '3': case '4': case '5':
1963 case '6': case '7': case '8': case '9':
1964 if (syntax & RE_NO_BK_REFS)
1965 goto normal_char;
1966
1967 c1 = c - '0';
1968
1969 if (c1 > regnum)
1970 return REG_ESUBREG;
1971
1972 /* Can't back reference to a subexpression if inside of it. */
1973 if (group_in_compile_stack (compile_stack, c1))
1974 goto normal_char;
1975
1976 laststart = b;
1977 BUF_PUSH_2 (duplicate, c1);
1978 break;
1979
1980
1981 case '+':
1982 case '?':
1983 if (syntax & RE_BK_PLUS_QM)
1984 goto handle_plus;
1985 else
1986 goto normal_backslash;
1987
1988 default:
1989 normal_backslash:
1990 /* You might think it would be useful for \ to mean
1991 not to translate; but if we don't translate it
1992 it will never match anything. */
1993 c = TRANSLATE (c);
1994 goto normal_char;
1995 }
1996 break;
1997
1998
1999 default:
2000 /* Expects the character in `c'. */
2001 normal_char:
2002 /* If no exactn currently being built. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002003 if (!pending_exact
Patrick Georgi26774f22009-11-21 19:54:02 +00002004
2005 /* If last exactn not at current position. */
2006 || pending_exact + *pending_exact + 1 != b
Stefan Reinauer14e22772010-04-27 06:56:47 +00002007
Patrick Georgi26774f22009-11-21 19:54:02 +00002008 /* We have only one byte following the exactn for the count. */
2009 || *pending_exact == (1 << BYTEWIDTH) - 1
2010
2011 /* If followed by a repetition operator. */
2012 || *p == '*' || *p == '^'
2013 || ((syntax & RE_BK_PLUS_QM)
2014 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2015 : (*p == '+' || *p == '?'))
2016 || ((syntax & RE_INTERVALS)
2017 && ((syntax & RE_NO_BK_BRACES)
2018 ? *p == '{'
2019 : (p[0] == '\\' && p[1] == '{'))))
2020 {
2021 /* Start building a new exactn. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002022
Patrick Georgi26774f22009-11-21 19:54:02 +00002023 laststart = b;
2024
2025 BUF_PUSH_2 (exactn, 0);
2026 pending_exact = b - 1;
2027 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00002028
Patrick Georgi26774f22009-11-21 19:54:02 +00002029 BUF_PUSH (c);
2030 (*pending_exact)++;
2031 break;
2032 } /* switch (c) */
2033 } /* while p != pend */
2034
Stefan Reinauer14e22772010-04-27 06:56:47 +00002035
Patrick Georgi26774f22009-11-21 19:54:02 +00002036 /* Through the pattern now. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002037
Patrick Georgi26774f22009-11-21 19:54:02 +00002038 if (fixup_alt_jump)
2039 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2040
Stefan Reinauer14e22772010-04-27 06:56:47 +00002041 if (!COMPILE_STACK_EMPTY)
Patrick Georgi26774f22009-11-21 19:54:02 +00002042 return REG_EPAREN;
2043
2044 free (compile_stack.stack);
2045
2046 /* We have succeeded; set the length of the buffer. */
2047 bufp->used = b - bufp->buffer;
2048
2049#ifdef DEBUG
2050 if (debug)
2051 {
2052 DEBUG_PRINT1 ("\nCompiled pattern: ");
2053 print_compiled_pattern (bufp);
2054 }
2055#endif /* DEBUG */
2056
2057 return REG_NOERROR;
2058} /* regex_compile */
Martin Roth0cd338e2016-07-29 14:07:30 -06002059
Patrick Georgi26774f22009-11-21 19:54:02 +00002060/* Subroutines for `regex_compile'. */
2061
2062/* Store OP at LOC followed by two-byte integer parameter ARG. */
2063
2064static void
2065store_op1 (op, loc, arg)
2066 re_opcode_t op;
2067 unsigned char *loc;
2068 int arg;
2069{
2070 *loc = (unsigned char) op;
2071 STORE_NUMBER (loc + 1, arg);
2072}
2073
2074
2075/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2076
2077static void
2078store_op2 (op, loc, arg1, arg2)
2079 re_opcode_t op;
2080 unsigned char *loc;
2081 int arg1, arg2;
2082{
2083 *loc = (unsigned char) op;
2084 STORE_NUMBER (loc + 1, arg1);
2085 STORE_NUMBER (loc + 3, arg2);
2086}
2087
2088
2089/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2090 for OP followed by two-byte integer parameter ARG. */
2091
2092static void
2093insert_op1 (op, loc, arg, end)
2094 re_opcode_t op;
2095 unsigned char *loc;
2096 int arg;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002097 unsigned char *end;
Patrick Georgi26774f22009-11-21 19:54:02 +00002098{
2099 register unsigned char *pfrom = end;
2100 register unsigned char *pto = end + 3;
2101
2102 while (pfrom != loc)
2103 *--pto = *--pfrom;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002104
Patrick Georgi26774f22009-11-21 19:54:02 +00002105 store_op1 (op, loc, arg);
2106}
2107
2108
2109/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2110
2111static void
2112insert_op2 (op, loc, arg1, arg2, end)
2113 re_opcode_t op;
2114 unsigned char *loc;
2115 int arg1, arg2;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002116 unsigned char *end;
Patrick Georgi26774f22009-11-21 19:54:02 +00002117{
2118 register unsigned char *pfrom = end;
2119 register unsigned char *pto = end + 5;
2120
2121 while (pfrom != loc)
2122 *--pto = *--pfrom;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002123
Patrick Georgi26774f22009-11-21 19:54:02 +00002124 store_op2 (op, loc, arg1, arg2);
2125}
2126
2127
2128/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2129 after an alternative or a begin-subexpression. We assume there is at
2130 least one character before the ^. */
2131
2132static boolean
2133at_begline_loc_p (pattern, p, syntax)
2134 const char *pattern, *p;
2135 reg_syntax_t syntax;
2136{
2137 const char *prev = p - 2;
2138 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
Stefan Reinauer14e22772010-04-27 06:56:47 +00002139
Patrick Georgi26774f22009-11-21 19:54:02 +00002140 return
2141 /* After a subexpression? */
2142 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2143 /* After an alternative? */
2144 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2145}
2146
2147
2148/* The dual of at_begline_loc_p. This one is for $. We assume there is
2149 at least one character after the $, i.e., `P < PEND'. */
2150
2151static boolean
2152at_endline_loc_p (p, pend, syntax)
2153 const char *p, *pend;
2154 int syntax;
2155{
2156 const char *next = p;
2157 boolean next_backslash = *next == '\\';
2158 const char *next_next = p + 1 < pend ? p + 1 : NULL;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002159
Patrick Georgi26774f22009-11-21 19:54:02 +00002160 return
2161 /* Before a subexpression? */
2162 (syntax & RE_NO_BK_PARENS ? *next == ')'
2163 : next_backslash && next_next && *next_next == ')')
2164 /* Before an alternative? */
2165 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2166 : next_backslash && next_next && *next_next == '|');
2167}
2168
2169
Stefan Reinauer14e22772010-04-27 06:56:47 +00002170/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
Patrick Georgi26774f22009-11-21 19:54:02 +00002171 false if it's not. */
2172
2173static boolean
2174group_in_compile_stack (compile_stack, regnum)
2175 compile_stack_type compile_stack;
2176 regnum_t regnum;
2177{
2178 int this_element;
2179
Stefan Reinauer14e22772010-04-27 06:56:47 +00002180 for (this_element = compile_stack.avail - 1;
2181 this_element >= 0;
Patrick Georgi26774f22009-11-21 19:54:02 +00002182 this_element--)
2183 if (compile_stack.stack[this_element].regnum == regnum)
2184 return true;
2185
2186 return false;
2187}
2188
2189
2190/* Read the ending character of a range (in a bracket expression) from the
2191 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2192 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2193 Then we set the translation of all bits between the starting and
2194 ending characters (inclusive) in the compiled pattern B.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002195
Patrick Georgi26774f22009-11-21 19:54:02 +00002196 Return an error code.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002197
Patrick Georgi26774f22009-11-21 19:54:02 +00002198 We use these short variable names so we can use the same macros as
2199 `regex_compile' itself. */
2200
2201static reg_errcode_t
2202compile_range (p_ptr, pend, translate, syntax, b)
2203 const char **p_ptr, *pend;
2204 char *translate;
2205 reg_syntax_t syntax;
2206 unsigned char *b;
2207{
2208 unsigned this_char;
2209
2210 const char *p = *p_ptr;
2211 int range_start, range_end;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002212
Patrick Georgi26774f22009-11-21 19:54:02 +00002213 if (p == pend)
2214 return REG_ERANGE;
2215
2216 /* Even though the pattern is a signed `char *', we need to fetch
2217 with unsigned char *'s; if the high bit of the pattern character
2218 is set, the range endpoints will be negative if we fetch using a
2219 signed char *.
2220
Stefan Reinauer14e22772010-04-27 06:56:47 +00002221 We also want to fetch the endpoints without translating them; the
Patrick Georgi26774f22009-11-21 19:54:02 +00002222 appropriate translation is done in the bit-setting loop below. */
2223 range_start = ((unsigned char *) p)[-2];
2224 range_end = ((unsigned char *) p)[0];
2225
2226 /* Have to increment the pointer into the pattern string, so the
2227 caller isn't still at the ending character. */
2228 (*p_ptr)++;
2229
2230 /* If the start is after the end, the range is empty. */
2231 if (range_start > range_end)
2232 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2233
2234 /* Here we see why `this_char' has to be larger than an `unsigned
2235 char' -- the range is inclusive, so if `range_end' == 0xff
2236 (assuming 8-bit characters), we would otherwise go into an infinite
2237 loop, since all characters <= 0xff. */
2238 for (this_char = range_start; this_char <= range_end; this_char++)
2239 {
2240 SET_LIST_BIT (TRANSLATE (this_char));
2241 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00002242
Patrick Georgi26774f22009-11-21 19:54:02 +00002243 return REG_NOERROR;
2244}
Martin Roth0cd338e2016-07-29 14:07:30 -06002245
Patrick Georgi26774f22009-11-21 19:54:02 +00002246/* Failure stack declarations and macros; both re_compile_fastmap and
2247 re_match_2 use a failure stack. These have to be macros because of
2248 REGEX_ALLOCATE. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002249
Patrick Georgi26774f22009-11-21 19:54:02 +00002250
2251/* Number of failure points for which to initially allocate space
2252 when matching. If this number is exceeded, we allocate more
2253 space, so it is not a hard limit. */
2254#ifndef INIT_FAILURE_ALLOC
2255#define INIT_FAILURE_ALLOC 5
2256#endif
2257
2258/* Roughly the maximum number of failure points on the stack. Would be
2259 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2260 This is a variable only so users of regex can assign to it; we never
2261 change it ourselves. */
2262int re_max_failures = 2000;
2263
2264typedef const unsigned char *fail_stack_elt_t;
2265
2266typedef struct
2267{
2268 fail_stack_elt_t *stack;
2269 unsigned size;
2270 unsigned avail; /* Offset of next open position. */
2271} fail_stack_type;
2272
2273#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2274#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2275#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2276#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2277
2278
2279/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2280
2281#define INIT_FAIL_STACK() \
2282 do { \
2283 fail_stack.stack = (fail_stack_elt_t *) \
2284 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2285 \
2286 if (fail_stack.stack == NULL) \
2287 return -2; \
2288 \
2289 fail_stack.size = INIT_FAILURE_ALLOC; \
2290 fail_stack.avail = 0; \
2291 } while (0)
2292
2293
2294/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2295
2296 Return 1 if succeeds, and 0 if either ran out of memory
Stefan Reinauer14e22772010-04-27 06:56:47 +00002297 allocating space for it or it was already too large.
2298
Patrick Georgi26774f22009-11-21 19:54:02 +00002299 REGEX_REALLOCATE requires `destination' be declared. */
2300
2301#define DOUBLE_FAIL_STACK(fail_stack) \
2302 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2303 ? 0 \
2304 : ((fail_stack).stack = (fail_stack_elt_t *) \
2305 REGEX_REALLOCATE ((fail_stack).stack, \
2306 (fail_stack).size * sizeof (fail_stack_elt_t), \
2307 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2308 \
2309 (fail_stack).stack == NULL \
2310 ? 0 \
2311 : ((fail_stack).size <<= 1, \
2312 1)))
2313
2314
Stefan Reinauer14e22772010-04-27 06:56:47 +00002315/* Push PATTERN_OP on FAIL_STACK.
Patrick Georgi26774f22009-11-21 19:54:02 +00002316
2317 Return 1 if was able to do so and 0 if ran out of memory allocating
2318 space to do so. */
2319#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2320 ((FAIL_STACK_FULL () \
2321 && !DOUBLE_FAIL_STACK (fail_stack)) \
2322 ? 0 \
2323 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2324 1))
2325
2326/* This pushes an item onto the failure stack. Must be a four-byte
2327 value. Assumes the variable `fail_stack'. Probably should only
2328 be called from within `PUSH_FAILURE_POINT'. */
2329#define PUSH_FAILURE_ITEM(item) \
2330 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2331
2332/* The complement operation. Assumes `fail_stack' is nonempty. */
2333#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2334
2335/* Used to omit pushing failure point id's when we're not debugging. */
2336#ifdef DEBUG
2337#define DEBUG_PUSH PUSH_FAILURE_ITEM
2338#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2339#else
2340#define DEBUG_PUSH(item)
2341#define DEBUG_POP(item_addr)
2342#endif
2343
2344
2345/* Push the information about the state we will need
Stefan Reinauer14e22772010-04-27 06:56:47 +00002346 if we ever fail back to it.
2347
Patrick Georgi26774f22009-11-21 19:54:02 +00002348 Requires variables fail_stack, regstart, regend, reg_info, and
2349 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2350 declared.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002351
Patrick Georgi26774f22009-11-21 19:54:02 +00002352 Does `return FAILURE_CODE' if runs out of memory. */
2353
2354#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2355 do { \
2356 char *destination; \
2357 /* Must be int, so when we don't save any registers, the arithmetic \
2358 of 0 + -1 isn't done as unsigned. */ \
2359 int this_reg; \
2360 \
2361 DEBUG_STATEMENT (failure_id++); \
2362 DEBUG_STATEMENT (nfailure_points_pushed++); \
2363 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2364 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2365 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2366 \
2367 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2368 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2369 \
2370 /* Ensure we have enough space allocated for what we will push. */ \
2371 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2372 { \
2373 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2374 return failure_code; \
2375 \
2376 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2377 (fail_stack).size); \
2378 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2379 } \
2380 \
2381 /* Push the info, starting with the registers. */ \
2382 DEBUG_PRINT1 ("\n"); \
2383 \
2384 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2385 this_reg++) \
2386 { \
2387 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2388 DEBUG_STATEMENT (num_regs_pushed++); \
2389 \
2390 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2391 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2392 \
2393 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2394 PUSH_FAILURE_ITEM (regend[this_reg]); \
2395 \
2396 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2397 DEBUG_PRINT2 (" match_null=%d", \
2398 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2399 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2400 DEBUG_PRINT2 (" matched_something=%d", \
2401 MATCHED_SOMETHING (reg_info[this_reg])); \
2402 DEBUG_PRINT2 (" ever_matched=%d", \
2403 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2404 DEBUG_PRINT1 ("\n"); \
2405 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2406 } \
2407 \
2408 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2409 PUSH_FAILURE_ITEM (lowest_active_reg); \
2410 \
2411 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2412 PUSH_FAILURE_ITEM (highest_active_reg); \
2413 \
2414 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2415 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2416 PUSH_FAILURE_ITEM (pattern_place); \
2417 \
2418 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2419 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2420 size2); \
2421 DEBUG_PRINT1 ("'\n"); \
2422 PUSH_FAILURE_ITEM (string_place); \
2423 \
2424 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2425 DEBUG_PUSH (failure_id); \
2426 } while (0)
2427
2428/* This is the number of items that are pushed and popped on the stack
2429 for each register. */
2430#define NUM_REG_ITEMS 3
2431
2432/* Individual items aside from the registers. */
2433#ifdef DEBUG
2434#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2435#else
2436#define NUM_NONREG_ITEMS 4
2437#endif
2438
2439/* We push at most this many items on the stack. */
2440#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2441
2442/* We actually push this many items. */
2443#define NUM_FAILURE_ITEMS \
2444 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2445 + NUM_NONREG_ITEMS)
2446
2447/* How many items can still be added to the stack without overflowing it. */
2448#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2449
2450
2451/* Pops what PUSH_FAIL_STACK pushes.
2452
2453 We restore into the parameters, all of which should be lvalues:
2454 STR -- the saved data position.
2455 PAT -- the saved pattern position.
2456 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2457 REGSTART, REGEND -- arrays of string positions.
2458 REG_INFO -- array of information about each subexpression.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002459
Patrick Georgi26774f22009-11-21 19:54:02 +00002460 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2461 `pend', `string1', `size1', `string2', and `size2'. */
2462
2463#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2464{ \
2465 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2466 int this_reg; \
2467 const unsigned char *string_temp; \
2468 \
2469 assert (!FAIL_STACK_EMPTY ()); \
2470 \
2471 /* Remove failure points and point to how many regs pushed. */ \
2472 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2473 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2474 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2475 \
2476 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2477 \
2478 DEBUG_POP (&failure_id); \
2479 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2480 \
2481 /* If the saved string location is NULL, it came from an \
2482 on_failure_keep_string_jump opcode, and we want to throw away the \
2483 saved NULL, thus retaining our current position in the string. */ \
2484 string_temp = POP_FAILURE_ITEM (); \
2485 if (string_temp != NULL) \
2486 str = (const char *) string_temp; \
2487 \
2488 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2489 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2490 DEBUG_PRINT1 ("'\n"); \
2491 \
2492 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2493 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2494 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2495 \
2496 /* Restore register info. */ \
2497 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2498 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2499 \
2500 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2501 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2502 \
2503 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2504 { \
2505 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2506 \
2507 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2508 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2509 \
2510 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2511 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2512 \
2513 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2514 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2515 } \
2516 \
2517 DEBUG_STATEMENT (nfailure_points_popped++); \
2518} /* POP_FAILURE_POINT */
Martin Roth0cd338e2016-07-29 14:07:30 -06002519
Patrick Georgi26774f22009-11-21 19:54:02 +00002520/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2521 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2522 characters can start a string that matches the pattern. This fastmap
2523 is used by re_search to skip quickly over impossible starting points.
2524
2525 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2526 area as BUFP->fastmap.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002527
Patrick Georgi26774f22009-11-21 19:54:02 +00002528 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2529 the pattern buffer.
2530
2531 Returns 0 if we succeed, -2 if an internal error. */
2532
2533int
2534re_compile_fastmap (bufp)
2535 struct re_pattern_buffer *bufp;
2536{
2537 int j, k;
2538 fail_stack_type fail_stack;
2539#ifndef REGEX_MALLOC
2540 char *destination;
2541#endif
2542 /* We don't push any register information onto the failure stack. */
2543 unsigned num_regs = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002544
Patrick Georgi26774f22009-11-21 19:54:02 +00002545 register char *fastmap = bufp->fastmap;
2546 unsigned char *pattern = bufp->buffer;
2547 unsigned long size = bufp->used;
2548 const unsigned char *p = pattern;
2549 register unsigned char *pend = pattern + size;
2550
2551 /* Assume that each path through the pattern can be null until
2552 proven otherwise. We set this false at the bottom of switch
2553 statement, to which we get only if a particular path doesn't
2554 match the empty string. */
2555 boolean path_can_be_null = true;
2556
2557 /* We aren't doing a `succeed_n' to begin with. */
2558 boolean succeed_n_p = false;
2559
2560 assert (fastmap != NULL && p != NULL);
Stefan Reinauer14e22772010-04-27 06:56:47 +00002561
Patrick Georgi26774f22009-11-21 19:54:02 +00002562 INIT_FAIL_STACK ();
2563 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2564 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2565 bufp->can_be_null = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002566
Patrick Georgi26774f22009-11-21 19:54:02 +00002567 while (p != pend || !FAIL_STACK_EMPTY ())
2568 {
2569 if (p == pend)
2570 {
2571 bufp->can_be_null |= path_can_be_null;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002572
Patrick Georgi26774f22009-11-21 19:54:02 +00002573 /* Reset for next path. */
2574 path_can_be_null = true;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002575
Patrick Georgi26774f22009-11-21 19:54:02 +00002576 p = fail_stack.stack[--fail_stack.avail];
2577 }
2578
2579 /* We should never be about to go beyond the end of the pattern. */
2580 assert (p < pend);
Stefan Reinauer14e22772010-04-27 06:56:47 +00002581
Patrick Georgi26774f22009-11-21 19:54:02 +00002582#ifdef SWITCH_ENUM_BUG
2583 switch ((int) ((re_opcode_t) *p++))
2584#else
2585 switch ((re_opcode_t) *p++)
2586#endif
2587 {
2588
2589 /* I guess the idea here is to simply not bother with a fastmap
2590 if a backreference is used, since it's too hard to figure out
2591 the fastmap for the corresponding group. Setting
2592 `can_be_null' stops `re_search_2' from using the fastmap, so
2593 that is all we do. */
2594 case duplicate:
2595 bufp->can_be_null = 1;
2596 return 0;
2597
2598
2599 /* Following are the cases which match a character. These end
2600 with `break'. */
2601
2602 case exactn:
2603 fastmap[p[1]] = 1;
2604 break;
2605
2606
2607 case charset:
2608 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2609 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2610 fastmap[j] = 1;
2611 break;
2612
2613
2614 case charset_not:
2615 /* Chars beyond end of map must be allowed. */
2616 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2617 fastmap[j] = 1;
2618
2619 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2620 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2621 fastmap[j] = 1;
2622 break;
2623
2624
2625 case wordchar:
2626 for (j = 0; j < (1 << BYTEWIDTH); j++)
2627 if (SYNTAX (j) == Sword)
2628 fastmap[j] = 1;
2629 break;
2630
2631
2632 case notwordchar:
2633 for (j = 0; j < (1 << BYTEWIDTH); j++)
2634 if (SYNTAX (j) != Sword)
2635 fastmap[j] = 1;
2636 break;
2637
2638
2639 case anychar:
2640 /* `.' matches anything ... */
2641 for (j = 0; j < (1 << BYTEWIDTH); j++)
2642 fastmap[j] = 1;
2643
2644 /* ... except perhaps newline. */
2645 if (!(bufp->syntax & RE_DOT_NEWLINE))
2646 fastmap['\n'] = 0;
2647
2648 /* Return if we have already set `can_be_null'; if we have,
2649 then the fastmap is irrelevant. Something's wrong here. */
2650 else if (bufp->can_be_null)
2651 return 0;
2652
2653 /* Otherwise, have to check alternative paths. */
2654 break;
2655
2656
2657#ifdef emacs
2658 case syntaxspec:
2659 k = *p++;
2660 for (j = 0; j < (1 << BYTEWIDTH); j++)
2661 if (SYNTAX (j) == (enum syntaxcode) k)
2662 fastmap[j] = 1;
2663 break;
2664
2665
2666 case notsyntaxspec:
2667 k = *p++;
2668 for (j = 0; j < (1 << BYTEWIDTH); j++)
2669 if (SYNTAX (j) != (enum syntaxcode) k)
2670 fastmap[j] = 1;
2671 break;
2672
2673
2674 /* All cases after this match the empty string. These end with
2675 `continue'. */
2676
2677
2678 case before_dot:
2679 case at_dot:
2680 case after_dot:
2681 continue;
2682#endif /* not emacs */
2683
2684
2685 case no_op:
2686 case begline:
2687 case endline:
2688 case begbuf:
2689 case endbuf:
2690 case wordbound:
2691 case notwordbound:
2692 case wordbeg:
2693 case wordend:
2694 case push_dummy_failure:
2695 continue;
2696
2697
2698 case jump_n:
2699 case pop_failure_jump:
2700 case maybe_pop_jump:
2701 case jump:
2702 case jump_past_alt:
2703 case dummy_failure_jump:
2704 EXTRACT_NUMBER_AND_INCR (j, p);
Stefan Reinauer14e22772010-04-27 06:56:47 +00002705 p += j;
Patrick Georgi26774f22009-11-21 19:54:02 +00002706 if (j > 0)
2707 continue;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002708
Patrick Georgi26774f22009-11-21 19:54:02 +00002709 /* Jump backward implies we just went through the body of a
2710 loop and matched nothing. Opcode jumped to should be
2711 `on_failure_jump' or `succeed_n'. Just treat it like an
2712 ordinary jump. For a * loop, it has pushed its failure
2713 point already; if so, discard that as redundant. */
2714 if ((re_opcode_t) *p != on_failure_jump
2715 && (re_opcode_t) *p != succeed_n)
2716 continue;
2717
2718 p++;
2719 EXTRACT_NUMBER_AND_INCR (j, p);
Stefan Reinauer14e22772010-04-27 06:56:47 +00002720 p += j;
2721
Patrick Georgi26774f22009-11-21 19:54:02 +00002722 /* If what's on the stack is where we are now, pop it. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002723 if (!FAIL_STACK_EMPTY ()
Patrick Georgi26774f22009-11-21 19:54:02 +00002724 && fail_stack.stack[fail_stack.avail - 1] == p)
2725 fail_stack.avail--;
2726
2727 continue;
2728
2729
2730 case on_failure_jump:
2731 case on_failure_keep_string_jump:
2732 handle_on_failure_jump:
2733 EXTRACT_NUMBER_AND_INCR (j, p);
2734
2735 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2736 end of the pattern. We don't want to push such a point,
2737 since when we restore it above, entering the switch will
2738 increment `p' past the end of the pattern. We don't need
2739 to push such a point since we obviously won't find any more
2740 fastmap entries beyond `pend'. Such a pattern can match
2741 the null string, though. */
2742 if (p + j < pend)
2743 {
2744 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2745 return -2;
2746 }
2747 else
2748 bufp->can_be_null = 1;
2749
2750 if (succeed_n_p)
2751 {
2752 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2753 succeed_n_p = false;
2754 }
2755
2756 continue;
2757
2758
2759 case succeed_n:
2760 /* Get to the number of times to succeed. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00002761 p += 2;
Patrick Georgi26774f22009-11-21 19:54:02 +00002762
2763 /* Increment p past the n for when k != 0. */
2764 EXTRACT_NUMBER_AND_INCR (k, p);
2765 if (k == 0)
2766 {
2767 p -= 4;
2768 succeed_n_p = true; /* Spaghetti code alert. */
2769 goto handle_on_failure_jump;
2770 }
2771 continue;
2772
2773
2774 case set_number_at:
2775 p += 4;
2776 continue;
2777
2778
2779 case start_memory:
2780 case stop_memory:
2781 p += 2;
2782 continue;
2783
2784
2785 default:
2786 abort (); /* We have listed all the cases. */
2787 } /* switch *p++ */
2788
2789 /* Getting here means we have found the possible starting
2790 characters for one path of the pattern -- and that the empty
2791 string does not match. We need not follow this path further.
2792 Instead, look at the next alternative (remembered on the
2793 stack), or quit if no more. The test at the top of the loop
2794 does these things. */
2795 path_can_be_null = false;
2796 p = pend;
2797 } /* while p */
2798
2799 /* Set `can_be_null' for the last path (also the first path, if the
2800 pattern is empty). */
2801 bufp->can_be_null |= path_can_be_null;
2802 return 0;
2803} /* re_compile_fastmap */
Martin Roth0cd338e2016-07-29 14:07:30 -06002804
Patrick Georgi26774f22009-11-21 19:54:02 +00002805/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2806 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2807 this memory for recording register information. STARTS and ENDS
2808 must be allocated using the malloc library routine, and must each
2809 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2810
2811 If NUM_REGS == 0, then subsequent matches should allocate their own
2812 register data.
2813
2814 Unless this function is called, the first search or match using
2815 PATTERN_BUFFER will allocate its own register data, without
2816 freeing the old data. */
2817
2818void
2819re_set_registers (bufp, regs, num_regs, starts, ends)
2820 struct re_pattern_buffer *bufp;
2821 struct re_registers *regs;
2822 unsigned num_regs;
2823 regoff_t *starts, *ends;
2824{
2825 if (num_regs)
2826 {
2827 bufp->regs_allocated = REGS_REALLOCATE;
2828 regs->num_regs = num_regs;
2829 regs->start = starts;
2830 regs->end = ends;
2831 }
2832 else
2833 {
2834 bufp->regs_allocated = REGS_UNALLOCATED;
2835 regs->num_regs = 0;
2836 regs->start = regs->end = (regoff_t) 0;
2837 }
2838}
Martin Roth0cd338e2016-07-29 14:07:30 -06002839
Patrick Georgi26774f22009-11-21 19:54:02 +00002840/* Searching routines. */
2841
2842/* Like re_search_2, below, but only one string is specified, and
2843 doesn't let you say where to stop matching. */
2844
2845int
2846re_search (bufp, string, size, startpos, range, regs)
2847 struct re_pattern_buffer *bufp;
2848 const char *string;
2849 int size, startpos, range;
2850 struct re_registers *regs;
2851{
Stefan Reinauer14e22772010-04-27 06:56:47 +00002852 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
Patrick Georgi26774f22009-11-21 19:54:02 +00002853 regs, size);
2854}
2855
2856
2857/* Using the compiled pattern in BUFP->buffer, first tries to match the
2858 virtual concatenation of STRING1 and STRING2, starting first at index
2859 STARTPOS, then at STARTPOS + 1, and so on.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002860
Patrick Georgi26774f22009-11-21 19:54:02 +00002861 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002862
Patrick Georgi26774f22009-11-21 19:54:02 +00002863 RANGE is how far to scan while trying to match. RANGE = 0 means try
2864 only at STARTPOS; in general, the last start tried is STARTPOS +
2865 RANGE.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002866
Patrick Georgi26774f22009-11-21 19:54:02 +00002867 In REGS, return the indices of the virtual concatenation of STRING1
2868 and STRING2 that matched the entire BUFP->buffer and its contained
2869 subexpressions.
Stefan Reinauer14e22772010-04-27 06:56:47 +00002870
Patrick Georgi26774f22009-11-21 19:54:02 +00002871 Do not consider matching one past the index STOP in the virtual
2872 concatenation of STRING1 and STRING2.
2873
2874 We return either the position in the strings at which the match was
2875 found, -1 if no match, or -2 if error (such as failure
2876 stack overflow). */
2877
2878int
2879re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2880 struct re_pattern_buffer *bufp;
2881 const char *string1, *string2;
2882 int size1, size2;
2883 int startpos;
2884 int range;
2885 struct re_registers *regs;
2886 int stop;
2887{
2888 int val;
2889 register char *fastmap = bufp->fastmap;
2890 register char *translate = bufp->translate;
2891 int total_size = size1 + size2;
2892 int endpos = startpos + range;
2893
2894 /* Check for out-of-range STARTPOS. */
2895 if (startpos < 0 || startpos > total_size)
2896 return -1;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002897
Patrick Georgi26774f22009-11-21 19:54:02 +00002898 /* Fix up RANGE if it might eventually take us outside
2899 the virtual concatenation of STRING1 and STRING2. */
2900 if (endpos < -1)
2901 range = -1 - startpos;
2902 else if (endpos > total_size)
2903 range = total_size - startpos;
2904
2905 /* If the search isn't to be a backwards one, don't waste time in a
2906 search for a pattern that must be anchored. */
2907 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2908 {
2909 if (startpos > 0)
2910 return -1;
2911 else
2912 range = 1;
2913 }
2914
2915 /* Update the fastmap now if not correct already. */
2916 if (fastmap && !bufp->fastmap_accurate)
2917 if (re_compile_fastmap (bufp) == -2)
2918 return -2;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002919
Patrick Georgi26774f22009-11-21 19:54:02 +00002920 /* Loop through the string, looking for a place to start matching. */
2921 for (;;)
Stefan Reinauer14e22772010-04-27 06:56:47 +00002922 {
Patrick Georgi26774f22009-11-21 19:54:02 +00002923 /* If a fastmap is supplied, skip quickly over characters that
2924 cannot be the start of a match. If the pattern can match the
2925 null string, however, we don't need to skip characters; we want
2926 the first null string. */
2927 if (fastmap && startpos < total_size && !bufp->can_be_null)
2928 {
2929 if (range > 0) /* Searching forwards. */
2930 {
2931 register const char *d;
2932 register int lim = 0;
2933 int irange = range;
2934
2935 if (startpos < size1 && startpos + range >= size1)
2936 lim = range - (size1 - startpos);
2937
2938 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002939
Patrick Georgi26774f22009-11-21 19:54:02 +00002940 /* Written out as an if-else to avoid testing `translate'
2941 inside the loop. */
2942 if (translate)
2943 while (range > lim
2944 && !fastmap[(unsigned char)
2945 translate[(unsigned char) *d++]])
2946 range--;
2947 else
2948 while (range > lim && !fastmap[(unsigned char) *d++])
2949 range--;
2950
2951 startpos += irange - range;
2952 }
2953 else /* Searching backwards. */
2954 {
2955 register char c = (size1 == 0 || startpos >= size1
Stefan Reinauer14e22772010-04-27 06:56:47 +00002956 ? string2[startpos - size1]
Patrick Georgi26774f22009-11-21 19:54:02 +00002957 : string1[startpos]);
2958
2959 if (!fastmap[(unsigned char) TRANSLATE (c)])
2960 goto advance;
2961 }
2962 }
2963
2964 /* If can't match the null string, and that's all we have left, fail. */
2965 if (range >= 0 && startpos == total_size && fastmap
2966 && !bufp->can_be_null)
2967 return -1;
2968
2969 val = re_match_2 (bufp, string1, size1, string2, size2,
2970 startpos, regs, stop);
2971 if (val >= 0)
2972 return startpos;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002973
Patrick Georgi26774f22009-11-21 19:54:02 +00002974 if (val == -2)
2975 return -2;
2976
2977 advance:
Stefan Reinauer14e22772010-04-27 06:56:47 +00002978 if (!range)
Patrick Georgi26774f22009-11-21 19:54:02 +00002979 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00002980 else if (range > 0)
Patrick Georgi26774f22009-11-21 19:54:02 +00002981 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00002982 range--;
Patrick Georgi26774f22009-11-21 19:54:02 +00002983 startpos++;
2984 }
2985 else
2986 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00002987 range++;
Patrick Georgi26774f22009-11-21 19:54:02 +00002988 startpos--;
2989 }
2990 }
2991 return -1;
2992} /* re_search_2 */
Martin Roth0cd338e2016-07-29 14:07:30 -06002993
Patrick Georgi26774f22009-11-21 19:54:02 +00002994/* Declarations and macros for re_match_2. */
2995
2996static int bcmp_translate ();
2997static boolean alt_match_null_string_p (),
2998 common_op_match_null_string_p (),
2999 group_match_null_string_p ();
3000
3001/* Structure for per-register (a.k.a. per-group) information.
3002 This must not be longer than one word, because we push this value
3003 onto the failure stack. Other register information, such as the
3004 starting and ending positions (which are addresses), and the list of
3005 inner groups (which is a bits list) are maintained in separate
Stefan Reinauer14e22772010-04-27 06:56:47 +00003006 variables.
3007
Patrick Georgi26774f22009-11-21 19:54:02 +00003008 We are making a (strictly speaking) nonportable assumption here: that
3009 the compiler will pack our bit fields into something that fits into
3010 the type of `word', i.e., is something that fits into one item on the
3011 failure stack. */
3012typedef union
3013{
3014 fail_stack_elt_t word;
3015 struct
3016 {
3017 /* This field is one if this group can match the empty string,
3018 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3019#define MATCH_NULL_UNSET_VALUE 3
3020 unsigned match_null_string_p : 2;
3021 unsigned is_active : 1;
3022 unsigned matched_something : 1;
3023 unsigned ever_matched_something : 1;
3024 } bits;
3025} register_info_type;
3026
3027#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3028#define IS_ACTIVE(R) ((R).bits.is_active)
3029#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3030#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3031
3032
3033/* Call this when have matched a real character; it sets `matched' flags
3034 for the subexpressions which we are currently inside. Also records
3035 that those subexprs have matched. */
3036#define SET_REGS_MATCHED() \
3037 do \
3038 { \
3039 unsigned r; \
3040 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3041 { \
3042 MATCHED_SOMETHING (reg_info[r]) \
3043 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3044 = 1; \
3045 } \
3046 } \
3047 while (0)
3048
3049
3050/* This converts PTR, a pointer into one of the search strings `string1'
3051 and `string2' into an offset from the beginning of that string. */
3052#define POINTER_TO_OFFSET(ptr) \
3053 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3054
3055/* Registers are set to a sentinel when they haven't yet matched. */
3056#define REG_UNSET_VALUE ((char *) -1)
3057#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3058
3059
3060/* Macros for dealing with the split strings in re_match_2. */
3061
3062#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3063
3064/* Call before fetching a character with *d. This switches over to
3065 string2 if necessary. */
3066#define PREFETCH() \
3067 while (d == dend) \
3068 { \
3069 /* End of string2 => fail. */ \
3070 if (dend == end_match_2) \
3071 goto fail; \
3072 /* End of string1 => advance to string2. */ \
3073 d = string2; \
3074 dend = end_match_2; \
3075 }
3076
3077
3078/* Test if at very beginning or at very end of the virtual concatenation
3079 of `string1' and `string2'. If only one string, it's `string2'. */
3080#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
Stefan Reinauer14e22772010-04-27 06:56:47 +00003081#define AT_STRINGS_END(d) ((d) == end2)
Patrick Georgi26774f22009-11-21 19:54:02 +00003082
3083
3084/* Test if D points to a character which is word-constituent. We have
3085 two special cases to check for: if past the end of string1, look at
3086 the first character in string2; and if before the beginning of
3087 string2, look at the last character in string1. */
3088#define WORDCHAR_P(d) \
3089 (SYNTAX ((d) == end1 ? *string2 \
3090 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3091 == Sword)
3092
3093/* Test if the character before D and the one at D differ with respect
3094 to being word-constituent. */
3095#define AT_WORD_BOUNDARY(d) \
3096 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3097 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3098
3099
3100/* Free everything we malloc. */
3101#ifdef REGEX_MALLOC
3102#define FREE_VAR(var) if (var) free (var); var = NULL
3103#define FREE_VARIABLES() \
3104 do { \
3105 FREE_VAR (fail_stack.stack); \
3106 FREE_VAR (regstart); \
3107 FREE_VAR (regend); \
3108 FREE_VAR (old_regstart); \
3109 FREE_VAR (old_regend); \
3110 FREE_VAR (best_regstart); \
3111 FREE_VAR (best_regend); \
3112 FREE_VAR (reg_info); \
3113 FREE_VAR (reg_dummy); \
3114 FREE_VAR (reg_info_dummy); \
3115 } while (0)
3116#else /* not REGEX_MALLOC */
3117/* Some MIPS systems (at least) want this to free alloca'd storage. */
3118#define FREE_VARIABLES() alloca (0)
3119#endif /* not REGEX_MALLOC */
3120
3121
3122/* These values must meet several constraints. They must not be valid
3123 register values; since we have a limit of 255 registers (because
3124 we use only one byte in the pattern for the register number), we can
3125 use numbers larger than 255. They must differ by 1, because of
3126 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3127 be larger than the value for the highest register, so we do not try
3128 to actually save any registers when none are active. */
3129#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3130#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
Martin Roth0cd338e2016-07-29 14:07:30 -06003131
Patrick Georgi26774f22009-11-21 19:54:02 +00003132/* Matching routines. */
3133
3134#ifndef emacs /* Emacs never uses this. */
3135/* re_match is like re_match_2 except it takes only a single string. */
3136
3137int
3138re_match (bufp, string, size, pos, regs)
3139 struct re_pattern_buffer *bufp;
3140 const char *string;
3141 int size, pos;
3142 struct re_registers *regs;
3143 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00003144 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
Patrick Georgi26774f22009-11-21 19:54:02 +00003145}
3146#endif /* not emacs */
3147
3148
3149/* re_match_2 matches the compiled pattern in BUFP against the
3150 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3151 and SIZE2, respectively). We start matching at POS, and stop
3152 matching at STOP.
Stefan Reinauer14e22772010-04-27 06:56:47 +00003153
Patrick Georgi26774f22009-11-21 19:54:02 +00003154 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3155 store offsets for the substring each group matched in REGS. See the
3156 documentation for exactly how many groups we fill.
3157
3158 We return -1 if no match, -2 if an internal error (such as the
3159 failure stack overflowing). Otherwise, we return the length of the
3160 matched substring. */
3161
3162int
3163re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3164 struct re_pattern_buffer *bufp;
3165 const char *string1, *string2;
3166 int size1, size2;
3167 int pos;
3168 struct re_registers *regs;
3169 int stop;
3170{
3171 /* General temporaries. */
3172 int mcnt;
3173 unsigned char *p1;
3174
3175 /* Just past the end of the corresponding string. */
3176 const char *end1, *end2;
3177
3178 /* Pointers into string1 and string2, just past the last characters in
3179 each to consider matching. */
3180 const char *end_match_1, *end_match_2;
3181
3182 /* Where we are in the data, and the end of the current string. */
3183 const char *d, *dend;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003184
Patrick Georgi26774f22009-11-21 19:54:02 +00003185 /* Where we are in the pattern, and the end of the pattern. */
3186 unsigned char *p = bufp->buffer;
3187 register unsigned char *pend = p + bufp->used;
3188
3189 /* We use this to map every character in the string. */
3190 char *translate = bufp->translate;
3191
3192 /* Failure point stack. Each place that can handle a failure further
3193 down the line pushes a failure point on this stack. It consists of
3194 restart, regend, and reg_info for all registers corresponding to
3195 the subexpressions we're currently inside, plus the number of such
3196 registers, and, finally, two char *'s. The first char * is where
3197 to resume scanning the pattern; the second one is where to resume
3198 scanning the strings. If the latter is zero, the failure point is
3199 a ``dummy''; if a failure happens and the failure point is a dummy,
3200 it gets discarded and the next next one is tried. */
3201 fail_stack_type fail_stack;
3202#ifdef DEBUG
3203 static unsigned failure_id = 0;
3204 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3205#endif
3206
3207 /* We fill all the registers internally, independent of what we
3208 return, for use in backreferences. The number here includes
3209 an element for register zero. */
3210 unsigned num_regs = bufp->re_nsub + 1;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003211
Patrick Georgi26774f22009-11-21 19:54:02 +00003212 /* The currently active registers. */
3213 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3214 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3215
3216 /* Information on the contents of registers. These are pointers into
3217 the input strings; they record just what was matched (on this
3218 attempt) by a subexpression part of the pattern, that is, the
3219 regnum-th regstart pointer points to where in the pattern we began
3220 matching and the regnum-th regend points to right after where we
3221 stopped matching the regnum-th subexpression. (The zeroth register
3222 keeps track of what the whole pattern matches.) */
3223 const char **regstart, **regend;
3224
3225 /* If a group that's operated upon by a repetition operator fails to
3226 match anything, then the register for its start will need to be
3227 restored because it will have been set to wherever in the string we
3228 are when we last see its open-group operator. Similarly for a
3229 register's end. */
3230 const char **old_regstart, **old_regend;
3231
3232 /* The is_active field of reg_info helps us keep track of which (possibly
3233 nested) subexpressions we are currently in. The matched_something
3234 field of reg_info[reg_num] helps us tell whether or not we have
3235 matched any of the pattern so far this time through the reg_num-th
3236 subexpression. These two fields get reset each time through any
3237 loop their register is in. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003238 register_info_type *reg_info;
Patrick Georgi26774f22009-11-21 19:54:02 +00003239
3240 /* The following record the register info as found in the above
Stefan Reinauer14e22772010-04-27 06:56:47 +00003241 variables when we find a match better than any we've seen before.
Patrick Georgi26774f22009-11-21 19:54:02 +00003242 This happens as we backtrack through the failure points, which in
3243 turn happens only if we have not yet matched the entire string. */
3244 unsigned best_regs_set = false;
3245 const char **best_regstart, **best_regend;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003246
Patrick Georgi26774f22009-11-21 19:54:02 +00003247 /* Logically, this is `best_regend[0]'. But we don't want to have to
3248 allocate space for that if we're not allocating space for anything
3249 else (see below). Also, we never need info about register 0 for
3250 any of the other register vectors, and it seems rather a kludge to
3251 treat `best_regend' differently than the rest. So we keep track of
3252 the end of the best match so far in a separate variable. We
3253 initialize this to NULL so that when we backtrack the first time
3254 and need to test it, it's not garbage. */
3255 const char *match_end = NULL;
3256
3257 /* Used when we pop values we don't care about. */
3258 const char **reg_dummy;
3259 register_info_type *reg_info_dummy;
3260
3261#ifdef DEBUG
3262 /* Counts the total number of registers pushed. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003263 unsigned num_regs_pushed = 0;
Patrick Georgi26774f22009-11-21 19:54:02 +00003264#endif
3265
3266 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003267
Patrick Georgi26774f22009-11-21 19:54:02 +00003268 INIT_FAIL_STACK ();
Stefan Reinauer14e22772010-04-27 06:56:47 +00003269
Patrick Georgi26774f22009-11-21 19:54:02 +00003270 /* Do not bother to initialize all the register variables if there are
3271 no groups in the pattern, as it takes a fair amount of time. If
3272 there are groups, we include space for register 0 (the whole
3273 pattern), even though we never use it, since it simplifies the
3274 array indexing. We should fix this. */
3275 if (bufp->re_nsub)
3276 {
3277 regstart = REGEX_TALLOC (num_regs, const char *);
3278 regend = REGEX_TALLOC (num_regs, const char *);
3279 old_regstart = REGEX_TALLOC (num_regs, const char *);
3280 old_regend = REGEX_TALLOC (num_regs, const char *);
3281 best_regstart = REGEX_TALLOC (num_regs, const char *);
3282 best_regend = REGEX_TALLOC (num_regs, const char *);
3283 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3284 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3285 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3286
Stefan Reinauer14e22772010-04-27 06:56:47 +00003287 if (!(regstart && regend && old_regstart && old_regend && reg_info
3288 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
Patrick Georgi26774f22009-11-21 19:54:02 +00003289 {
3290 FREE_VARIABLES ();
3291 return -2;
3292 }
3293 }
3294#ifdef REGEX_MALLOC
3295 else
3296 {
3297 /* We must initialize all our variables to NULL, so that
3298 `FREE_VARIABLES' doesn't try to free them. */
3299 regstart = regend = old_regstart = old_regend = best_regstart
3300 = best_regend = reg_dummy = NULL;
3301 reg_info = reg_info_dummy = (register_info_type *) NULL;
3302 }
3303#endif /* REGEX_MALLOC */
3304
3305 /* The starting position is bogus. */
3306 if (pos < 0 || pos > size1 + size2)
3307 {
3308 FREE_VARIABLES ();
3309 return -1;
3310 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003311
Patrick Georgi26774f22009-11-21 19:54:02 +00003312 /* Initialize subexpression text positions to -1 to mark ones that no
3313 start_memory/stop_memory has been seen for. Also initialize the
3314 register information struct. */
3315 for (mcnt = 1; mcnt < num_regs; mcnt++)
3316 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00003317 regstart[mcnt] = regend[mcnt]
Patrick Georgi26774f22009-11-21 19:54:02 +00003318 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003319
Patrick Georgi26774f22009-11-21 19:54:02 +00003320 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3321 IS_ACTIVE (reg_info[mcnt]) = 0;
3322 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3323 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3324 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003325
Patrick Georgi26774f22009-11-21 19:54:02 +00003326 /* We move `string1' into `string2' if the latter's empty -- but not if
3327 `string1' is null. */
3328 if (size2 == 0 && string1 != NULL)
3329 {
3330 string2 = string1;
3331 size2 = size1;
3332 string1 = 0;
3333 size1 = 0;
3334 }
3335 end1 = string1 + size1;
3336 end2 = string2 + size2;
3337
3338 /* Compute where to stop matching, within the two strings. */
3339 if (stop <= size1)
3340 {
3341 end_match_1 = string1 + stop;
3342 end_match_2 = string2;
3343 }
3344 else
3345 {
3346 end_match_1 = end1;
3347 end_match_2 = string2 + stop - size1;
3348 }
3349
Stefan Reinauer14e22772010-04-27 06:56:47 +00003350 /* `p' scans through the pattern as `d' scans through the data.
Patrick Georgi26774f22009-11-21 19:54:02 +00003351 `dend' is the end of the input string that `d' points within. `d'
3352 is advanced into the following input string whenever necessary, but
3353 this happens before fetching; therefore, at the beginning of the
3354 loop, `d' can be pointing at the end of a string, but it cannot
3355 equal `string2'. */
3356 if (size1 > 0 && pos <= size1)
3357 {
3358 d = string1 + pos;
3359 dend = end_match_1;
3360 }
3361 else
3362 {
3363 d = string2 + pos - size1;
3364 dend = end_match_2;
3365 }
3366
3367 DEBUG_PRINT1 ("The compiled pattern is: ");
3368 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3369 DEBUG_PRINT1 ("The string to match is: `");
3370 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3371 DEBUG_PRINT1 ("'\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003372
Patrick Georgi26774f22009-11-21 19:54:02 +00003373 /* This loops over pattern commands. It exits by returning from the
3374 function if the match is complete, or it drops through if the match
3375 fails at this starting point in the input data. */
3376 for (;;)
3377 {
3378 DEBUG_PRINT2 ("\n0x%x: ", p);
3379
3380 if (p == pend)
3381 { /* End of pattern means we might have succeeded. */
3382 DEBUG_PRINT1 ("end of pattern ... ");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003383
Patrick Georgi26774f22009-11-21 19:54:02 +00003384 /* If we haven't matched the entire string, and we want the
3385 longest match, try backtracking. */
3386 if (d != end_match_2)
3387 {
3388 DEBUG_PRINT1 ("backtracking.\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003389
Patrick Georgi26774f22009-11-21 19:54:02 +00003390 if (!FAIL_STACK_EMPTY ())
3391 { /* More failure points to try. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003392 boolean same_str_p = (FIRST_STRING_P (match_end)
Patrick Georgi26774f22009-11-21 19:54:02 +00003393 == MATCHING_IN_FIRST_STRING);
3394
3395 /* If exceeds best match so far, save it. */
3396 if (!best_regs_set
3397 || (same_str_p && d > match_end)
3398 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3399 {
3400 best_regs_set = true;
3401 match_end = d;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003402
Patrick Georgi26774f22009-11-21 19:54:02 +00003403 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003404
Patrick Georgi26774f22009-11-21 19:54:02 +00003405 for (mcnt = 1; mcnt < num_regs; mcnt++)
3406 {
3407 best_regstart[mcnt] = regstart[mcnt];
3408 best_regend[mcnt] = regend[mcnt];
3409 }
3410 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003411 goto fail;
Patrick Georgi26774f22009-11-21 19:54:02 +00003412 }
3413
3414 /* If no failure points, don't restore garbage. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003415 else if (best_regs_set)
Patrick Georgi26774f22009-11-21 19:54:02 +00003416 {
3417 restore_best_regs:
3418 /* Restore best match. It may happen that `dend ==
3419 end_match_1' while the restored d is in string2.
3420 For example, the pattern `x.*y.*z' against the
3421 strings `x-' and `y-z-', if the two strings are
3422 not consecutive in memory. */
3423 DEBUG_PRINT1 ("Restoring best registers.\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003424
Patrick Georgi26774f22009-11-21 19:54:02 +00003425 d = match_end;
3426 dend = ((d >= string1 && d <= end1)
3427 ? end_match_1 : end_match_2);
3428
3429 for (mcnt = 1; mcnt < num_regs; mcnt++)
3430 {
3431 regstart[mcnt] = best_regstart[mcnt];
3432 regend[mcnt] = best_regend[mcnt];
3433 }
3434 }
3435 } /* d != end_match_2 */
3436
3437 DEBUG_PRINT1 ("Accepting match.\n");
3438
3439 /* If caller wants register contents data back, do it. */
3440 if (regs && !bufp->no_sub)
3441 {
3442 /* Have the register data arrays been allocated? */
3443 if (bufp->regs_allocated == REGS_UNALLOCATED)
3444 { /* No. So allocate them with malloc. We need one
3445 extra element beyond `num_regs' for the `-1' marker
3446 GNU code uses. */
3447 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3448 regs->start = TALLOC (regs->num_regs, regoff_t);
3449 regs->end = TALLOC (regs->num_regs, regoff_t);
3450 if (regs->start == NULL || regs->end == NULL)
3451 return -2;
3452 bufp->regs_allocated = REGS_REALLOCATE;
3453 }
3454 else if (bufp->regs_allocated == REGS_REALLOCATE)
3455 { /* Yes. If we need more elements than were already
3456 allocated, reallocate them. If we need fewer, just
3457 leave it alone. */
3458 if (regs->num_regs < num_regs + 1)
3459 {
3460 regs->num_regs = num_regs + 1;
3461 RETALLOC (regs->start, regs->num_regs, regoff_t);
3462 RETALLOC (regs->end, regs->num_regs, regoff_t);
3463 if (regs->start == NULL || regs->end == NULL)
3464 return -2;
3465 }
3466 }
3467 else
3468 assert (bufp->regs_allocated == REGS_FIXED);
3469
3470 /* Convert the pointer data in `regstart' and `regend' to
3471 indices. Register zero has to be set differently,
3472 since we haven't kept track of any info for it. */
3473 if (regs->num_regs > 0)
3474 {
3475 regs->start[0] = pos;
3476 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3477 : d - string2 + size1);
3478 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003479
Patrick Georgi26774f22009-11-21 19:54:02 +00003480 /* Go through the first `min (num_regs, regs->num_regs)'
3481 registers, since that is all we initialized. */
3482 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3483 {
3484 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3485 regs->start[mcnt] = regs->end[mcnt] = -1;
3486 else
3487 {
3488 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3489 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3490 }
3491 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003492
Patrick Georgi26774f22009-11-21 19:54:02 +00003493 /* If the regs structure we return has more elements than
3494 were in the pattern, set the extra elements to -1. If
3495 we (re)allocated the registers, this is the case,
3496 because we always allocate enough to have at least one
3497 -1 at the end. */
3498 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3499 regs->start[mcnt] = regs->end[mcnt] = -1;
3500 } /* regs && !bufp->no_sub */
3501
3502 FREE_VARIABLES ();
3503 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3504 nfailure_points_pushed, nfailure_points_popped,
3505 nfailure_points_pushed - nfailure_points_popped);
3506 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3507
Stefan Reinauer14e22772010-04-27 06:56:47 +00003508 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3509 ? string1
Patrick Georgi26774f22009-11-21 19:54:02 +00003510 : string2 - size1);
3511
3512 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3513
3514 return mcnt;
3515 }
3516
3517 /* Otherwise match next pattern command. */
3518#ifdef SWITCH_ENUM_BUG
3519 switch ((int) ((re_opcode_t) *p++))
3520#else
3521 switch ((re_opcode_t) *p++)
3522#endif
3523 {
3524 /* Ignore these. Used to ignore the n of succeed_n's which
3525 currently have n == 0. */
3526 case no_op:
3527 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3528 break;
3529
3530
3531 /* Match the next n pattern characters exactly. The following
3532 byte in the pattern defines n, and the n bytes after that
3533 are the characters to match. */
3534 case exactn:
3535 mcnt = *p++;
3536 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3537
3538 /* This is written out as an if-else so we don't waste time
3539 testing `translate' inside the loop. */
3540 if (translate)
3541 {
3542 do
3543 {
3544 PREFETCH ();
3545 if (translate[(unsigned char) *d++] != (char) *p++)
3546 goto fail;
3547 }
3548 while (--mcnt);
3549 }
3550 else
3551 {
3552 do
3553 {
3554 PREFETCH ();
3555 if (*d++ != (char) *p++) goto fail;
3556 }
3557 while (--mcnt);
3558 }
3559 SET_REGS_MATCHED ();
3560 break;
3561
3562
3563 /* Match any character except possibly a newline or a null. */
3564 case anychar:
3565 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3566
3567 PREFETCH ();
3568
3569 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3570 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3571 goto fail;
3572
3573 SET_REGS_MATCHED ();
3574 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3575 d++;
3576 break;
3577
3578
3579 case charset:
3580 case charset_not:
3581 {
3582 register unsigned char c;
3583 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3584
3585 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3586
3587 PREFETCH ();
3588 c = TRANSLATE (*d); /* The character to match. */
3589
3590 /* Cast to `unsigned' instead of `unsigned char' in case the
3591 bit list is a full 32 bytes long. */
3592 if (c < (unsigned) (*p * BYTEWIDTH)
3593 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3594 not = !not;
3595
3596 p += 1 + *p;
3597
3598 if (!not) goto fail;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003599
Patrick Georgi26774f22009-11-21 19:54:02 +00003600 SET_REGS_MATCHED ();
3601 d++;
3602 break;
3603 }
3604
3605
3606 /* The beginning of a group is represented by start_memory.
3607 The arguments are the register number in the next byte, and the
3608 number of groups inner to this one in the next. The text
3609 matched within the group is recorded (in the internal
3610 registers data structure) under the register number. */
3611 case start_memory:
3612 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3613
3614 /* Find out if this group can match the empty string. */
3615 p1 = p; /* To send to group_match_null_string_p. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003616
Patrick Georgi26774f22009-11-21 19:54:02 +00003617 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
Stefan Reinauer14e22772010-04-27 06:56:47 +00003618 REG_MATCH_NULL_STRING_P (reg_info[*p])
Patrick Georgi26774f22009-11-21 19:54:02 +00003619 = group_match_null_string_p (&p1, pend, reg_info);
3620
3621 /* Save the position in the string where we were the last time
3622 we were at this open-group operator in case the group is
3623 operated upon by a repetition operator, e.g., with `(a*)*b'
3624 against `ab'; then we want to ignore where we are now in
3625 the string in case this attempt to match fails. */
3626 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3627 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3628 : regstart[*p];
Stefan Reinauer14e22772010-04-27 06:56:47 +00003629 DEBUG_PRINT2 (" old_regstart: %d\n",
Patrick Georgi26774f22009-11-21 19:54:02 +00003630 POINTER_TO_OFFSET (old_regstart[*p]));
3631
3632 regstart[*p] = d;
3633 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3634
3635 IS_ACTIVE (reg_info[*p]) = 1;
3636 MATCHED_SOMETHING (reg_info[*p]) = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003637
Patrick Georgi26774f22009-11-21 19:54:02 +00003638 /* This is the new highest active register. */
3639 highest_active_reg = *p;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003640
Patrick Georgi26774f22009-11-21 19:54:02 +00003641 /* If nothing was active before, this is the new lowest active
3642 register. */
3643 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3644 lowest_active_reg = *p;
3645
3646 /* Move past the register number and inner group count. */
3647 p += 2;
3648 break;
3649
3650
3651 /* The stop_memory opcode represents the end of a group. Its
3652 arguments are the same as start_memory's: the register
3653 number, and the number of inner groups. */
3654 case stop_memory:
3655 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
Stefan Reinauer14e22772010-04-27 06:56:47 +00003656
Patrick Georgi26774f22009-11-21 19:54:02 +00003657 /* We need to save the string position the last time we were at
3658 this close-group operator in case the group is operated
3659 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3660 against `aba'; then we want to ignore where we are now in
3661 the string in case this attempt to match fails. */
3662 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3663 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3664 : regend[*p];
Stefan Reinauer14e22772010-04-27 06:56:47 +00003665 DEBUG_PRINT2 (" old_regend: %d\n",
Patrick Georgi26774f22009-11-21 19:54:02 +00003666 POINTER_TO_OFFSET (old_regend[*p]));
3667
3668 regend[*p] = d;
3669 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3670
3671 /* This register isn't active anymore. */
3672 IS_ACTIVE (reg_info[*p]) = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003673
Patrick Georgi26774f22009-11-21 19:54:02 +00003674 /* If this was the only register active, nothing is active
3675 anymore. */
3676 if (lowest_active_reg == highest_active_reg)
3677 {
3678 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3679 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3680 }
3681 else
3682 { /* We must scan for the new highest active register, since
3683 it isn't necessarily one less than now: consider
3684 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3685 new highest active register is 1. */
3686 unsigned char r = *p - 1;
3687 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3688 r--;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003689
Patrick Georgi26774f22009-11-21 19:54:02 +00003690 /* If we end up at register zero, that means that we saved
3691 the registers as the result of an `on_failure_jump', not
3692 a `start_memory', and we jumped to past the innermost
3693 `stop_memory'. For example, in ((.)*) we save
3694 registers 1 and 2 as a result of the *, but when we pop
3695 back to the second ), we are at the stop_memory 1.
3696 Thus, nothing is active. */
3697 if (r == 0)
3698 {
3699 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3700 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3701 }
3702 else
3703 highest_active_reg = r;
3704 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003705
Patrick Georgi26774f22009-11-21 19:54:02 +00003706 /* If just failed to match something this time around with a
3707 group that's operated on by a repetition operator, try to
3708 force exit from the ``loop'', and restore the register
3709 information for this group that we had before trying this
3710 last match. */
3711 if ((!MATCHED_SOMETHING (reg_info[*p])
3712 || (re_opcode_t) p[-3] == start_memory)
Stefan Reinauer14e22772010-04-27 06:56:47 +00003713 && (p + 2) < pend)
Patrick Georgi26774f22009-11-21 19:54:02 +00003714 {
3715 boolean is_a_jump_n = false;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003716
Patrick Georgi26774f22009-11-21 19:54:02 +00003717 p1 = p + 2;
3718 mcnt = 0;
3719 switch ((re_opcode_t) *p1++)
3720 {
3721 case jump_n:
3722 is_a_jump_n = true;
3723 case pop_failure_jump:
3724 case maybe_pop_jump:
3725 case jump:
3726 case dummy_failure_jump:
3727 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3728 if (is_a_jump_n)
3729 p1 += 2;
3730 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003731
Patrick Georgi26774f22009-11-21 19:54:02 +00003732 default:
3733 /* do nothing */ ;
3734 }
3735 p1 += mcnt;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003736
Patrick Georgi26774f22009-11-21 19:54:02 +00003737 /* If the next operation is a jump backwards in the pattern
3738 to an on_failure_jump right before the start_memory
3739 corresponding to this stop_memory, exit from the loop
3740 by forcing a failure after pushing on the stack the
3741 on_failure_jump's jump in the pattern, and d. */
3742 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3743 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3744 {
3745 /* If this group ever matched anything, then restore
3746 what its registers were before trying this last
3747 failed match, e.g., with `(a*)*b' against `ab' for
3748 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3749 against `aba' for regend[3].
Stefan Reinauer14e22772010-04-27 06:56:47 +00003750
Patrick Georgi26774f22009-11-21 19:54:02 +00003751 Also restore the registers for inner groups for,
3752 e.g., `((a*)(b*))*' against `aba' (register 3 would
3753 otherwise get trashed). */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003754
Patrick Georgi26774f22009-11-21 19:54:02 +00003755 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3756 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00003757 unsigned r;
3758
Patrick Georgi26774f22009-11-21 19:54:02 +00003759 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003760
Patrick Georgi26774f22009-11-21 19:54:02 +00003761 /* Restore this and inner groups' (if any) registers. */
3762 for (r = *p; r < *p + *(p + 1); r++)
3763 {
3764 regstart[r] = old_regstart[r];
3765
3766 /* xx why this test? */
3767 if ((int) old_regend[r] >= (int) regstart[r])
3768 regend[r] = old_regend[r];
Stefan Reinauer14e22772010-04-27 06:56:47 +00003769 }
Patrick Georgi26774f22009-11-21 19:54:02 +00003770 }
3771 p1++;
3772 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3773 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3774
3775 goto fail;
3776 }
3777 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003778
Patrick Georgi26774f22009-11-21 19:54:02 +00003779 /* Move past the register number and the inner group count. */
3780 p += 2;
3781 break;
3782
3783
3784 /* \<digit> has been turned into a `duplicate' command which is
3785 followed by the numeric value of <digit> as the register number. */
3786 case duplicate:
3787 {
3788 register const char *d2, *dend2;
3789 int regno = *p++; /* Get which register to match against. */
3790 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3791
3792 /* Can't back reference a group which we've never matched. */
3793 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3794 goto fail;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003795
Patrick Georgi26774f22009-11-21 19:54:02 +00003796 /* Where in input to try to start matching. */
3797 d2 = regstart[regno];
Stefan Reinauer14e22772010-04-27 06:56:47 +00003798
Patrick Georgi26774f22009-11-21 19:54:02 +00003799 /* Where to stop matching; if both the place to start and
3800 the place to stop matching are in the same string, then
3801 set to the place to stop, otherwise, for now have to use
3802 the end of the first string. */
3803
Stefan Reinauer14e22772010-04-27 06:56:47 +00003804 dend2 = ((FIRST_STRING_P (regstart[regno])
Patrick Georgi26774f22009-11-21 19:54:02 +00003805 == FIRST_STRING_P (regend[regno]))
3806 ? regend[regno] : end_match_1);
3807 for (;;)
3808 {
3809 /* If necessary, advance to next segment in register
3810 contents. */
3811 while (d2 == dend2)
3812 {
3813 if (dend2 == end_match_2) break;
3814 if (dend2 == regend[regno]) break;
3815
3816 /* End of string1 => advance to string2. */
3817 d2 = string2;
3818 dend2 = regend[regno];
3819 }
3820 /* At end of register contents => success */
3821 if (d2 == dend2) break;
3822
3823 /* If necessary, advance to next segment in data. */
3824 PREFETCH ();
3825
3826 /* How many characters left in this segment to match. */
3827 mcnt = dend - d;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003828
Patrick Georgi26774f22009-11-21 19:54:02 +00003829 /* Want how many consecutive characters we can match in
3830 one shot, so, if necessary, adjust the count. */
3831 if (mcnt > dend2 - d2)
3832 mcnt = dend2 - d2;
Stefan Reinauer14e22772010-04-27 06:56:47 +00003833
Patrick Georgi26774f22009-11-21 19:54:02 +00003834 /* Compare that many; failure if mismatch, else move
3835 past them. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00003836 if (translate
3837 ? bcmp_translate (d, d2, mcnt, translate)
Patrick Georgi26774f22009-11-21 19:54:02 +00003838 : bcmp (d, d2, mcnt))
3839 goto fail;
3840 d += mcnt, d2 += mcnt;
3841 }
3842 }
3843 break;
3844
3845
3846 /* begline matches the empty string at the beginning of the string
3847 (unless `not_bol' is set in `bufp'), and, if
3848 `newline_anchor' is set, after newlines. */
3849 case begline:
3850 DEBUG_PRINT1 ("EXECUTING begline.\n");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003851
Patrick Georgi26774f22009-11-21 19:54:02 +00003852 if (AT_STRINGS_BEG (d))
3853 {
3854 if (!bufp->not_bol) break;
3855 }
3856 else if (d[-1] == '\n' && bufp->newline_anchor)
3857 {
3858 break;
3859 }
3860 /* In all other cases, we fail. */
3861 goto fail;
3862
3863
3864 /* endline is the dual of begline. */
3865 case endline:
3866 DEBUG_PRINT1 ("EXECUTING endline.\n");
3867
3868 if (AT_STRINGS_END (d))
3869 {
3870 if (!bufp->not_eol) break;
3871 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00003872
Patrick Georgi26774f22009-11-21 19:54:02 +00003873 /* We have to ``prefetch'' the next character. */
3874 else if ((d == end1 ? *string2 : *d) == '\n'
3875 && bufp->newline_anchor)
3876 {
3877 break;
3878 }
3879 goto fail;
3880
3881
3882 /* Match at the very beginning of the data. */
3883 case begbuf:
3884 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3885 if (AT_STRINGS_BEG (d))
3886 break;
3887 goto fail;
3888
3889
3890 /* Match at the very end of the data. */
3891 case endbuf:
3892 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3893 if (AT_STRINGS_END (d))
3894 break;
3895 goto fail;
3896
3897
3898 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3899 pushes NULL as the value for the string on the stack. Then
3900 `pop_failure_point' will keep the current value for the
3901 string, instead of restoring it. To see why, consider
3902 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3903 then the . fails against the \n. But the next thing we want
3904 to do is match the \n against the \n; if we restored the
3905 string value, we would be back at the foo.
Stefan Reinauer14e22772010-04-27 06:56:47 +00003906
Patrick Georgi26774f22009-11-21 19:54:02 +00003907 Because this is used only in specific cases, we don't need to
3908 check all the things that `on_failure_jump' does, to make
3909 sure the right things get saved on the stack. Hence we don't
3910 share its code. The only reason to push anything on the
3911 stack at all is that otherwise we would have to change
3912 `anychar's code to do something besides goto fail in this
3913 case; that seems worse than this. */
3914 case on_failure_keep_string_jump:
3915 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
Stefan Reinauer14e22772010-04-27 06:56:47 +00003916
Patrick Georgi26774f22009-11-21 19:54:02 +00003917 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3918 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3919
3920 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3921 break;
3922
3923
3924 /* Uses of on_failure_jump:
Stefan Reinauer14e22772010-04-27 06:56:47 +00003925
Patrick Georgi26774f22009-11-21 19:54:02 +00003926 Each alternative starts with an on_failure_jump that points
3927 to the beginning of the next alternative. Each alternative
3928 except the last ends with a jump that in effect jumps past
3929 the rest of the alternatives. (They really jump to the
3930 ending jump of the following alternative, because tensioning
3931 these jumps is a hassle.)
3932
3933 Repeats start with an on_failure_jump that points past both
3934 the repetition text and either the following jump or
3935 pop_failure_jump back to this on_failure_jump. */
3936 case on_failure_jump:
3937 on_failure:
3938 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3939
3940 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3941 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3942
3943 /* If this on_failure_jump comes right before a group (i.e.,
3944 the original * applied to a group), save the information
3945 for that group and all inner ones, so that if we fail back
3946 to this point, the group's information will be correct.
3947 For example, in \(a*\)*\1, we need the preceding group,
3948 and in \(\(a*\)b*\)\2, we need the inner group. */
3949
3950 /* We can't use `p' to check ahead because we push
3951 a failure point to `p + mcnt' after we do this. */
3952 p1 = p;
3953
3954 /* We need to skip no_op's before we look for the
3955 start_memory in case this on_failure_jump is happening as
3956 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3957 against aba. */
3958 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3959 p1++;
3960
3961 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3962 {
3963 /* We have a new highest active register now. This will
3964 get reset at the start_memory we are about to get to,
3965 but we will have saved all the registers relevant to
3966 this repetition op, as described above. */
3967 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3968 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3969 lowest_active_reg = *(p1 + 1);
3970 }
3971
3972 DEBUG_PRINT1 (":\n");
3973 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3974 break;
3975
3976
3977 /* A smart repeat ends with `maybe_pop_jump'.
3978 We change it to either `pop_failure_jump' or `jump'. */
3979 case maybe_pop_jump:
3980 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3981 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3982 {
3983 register unsigned char *p2 = p;
3984
3985 /* Compare the beginning of the repeat with what in the
3986 pattern follows its end. If we can establish that there
3987 is nothing that they would both match, i.e., that we
3988 would have to backtrack because of (as in, e.g., `a*a')
3989 then we can change to pop_failure_jump, because we'll
3990 never have to backtrack.
Stefan Reinauer14e22772010-04-27 06:56:47 +00003991
Patrick Georgi26774f22009-11-21 19:54:02 +00003992 This is not true in the case of alternatives: in
3993 `(a|ab)*' we do need to backtrack to the `ab' alternative
3994 (e.g., if the string was `ab'). But instead of trying to
3995 detect that here, the alternative has put on a dummy
3996 failure point which is what we will end up popping. */
3997
3998 /* Skip over open/close-group commands. */
3999 while (p2 + 2 < pend
4000 && ((re_opcode_t) *p2 == stop_memory
4001 || (re_opcode_t) *p2 == start_memory))
4002 p2 += 3; /* Skip over args, too. */
4003
4004 /* If we're at the end of the pattern, we can change. */
4005 if (p2 == pend)
4006 {
4007 /* Consider what happens when matching ":\(.*\)"
4008 against ":/". I don't really understand this code
4009 yet. */
4010 p[-3] = (unsigned char) pop_failure_jump;
4011 DEBUG_PRINT1
4012 (" End of pattern: change to `pop_failure_jump'.\n");
4013 }
4014
4015 else if ((re_opcode_t) *p2 == exactn
4016 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4017 {
4018 register unsigned char c
4019 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4020 p1 = p + mcnt;
4021
4022 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
Stefan Reinauer14e22772010-04-27 06:56:47 +00004023 to the `maybe_finalize_jump' of this case. Examine what
Patrick Georgi26774f22009-11-21 19:54:02 +00004024 follows. */
4025 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4026 {
4027 p[-3] = (unsigned char) pop_failure_jump;
4028 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4029 c, p1[5]);
4030 }
Stefan Reinauer14e22772010-04-27 06:56:47 +00004031
Patrick Georgi26774f22009-11-21 19:54:02 +00004032 else if ((re_opcode_t) p1[3] == charset
4033 || (re_opcode_t) p1[3] == charset_not)
4034 {
4035 int not = (re_opcode_t) p1[3] == charset_not;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004036
Patrick Georgi26774f22009-11-21 19:54:02 +00004037 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4038 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4039 not = !not;
4040
4041 /* `not' is equal to 1 if c would match, which means
4042 that we can't change to pop_failure_jump. */
4043 if (!not)
4044 {
4045 p[-3] = (unsigned char) pop_failure_jump;
4046 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4047 }
4048 }
4049 }
4050 }
4051 p -= 2; /* Point at relative address again. */
4052 if ((re_opcode_t) p[-1] != pop_failure_jump)
4053 {
4054 p[-1] = (unsigned char) jump;
4055 DEBUG_PRINT1 (" Match => jump.\n");
4056 goto unconditional_jump;
4057 }
4058 /* Note fall through. */
4059
4060
4061 /* The end of a simple repeat has a pop_failure_jump back to
4062 its matching on_failure_jump, where the latter will push a
4063 failure point. The pop_failure_jump takes off failure
4064 points put on by this pop_failure_jump's matching
4065 on_failure_jump; we got through the pattern to here from the
4066 matching on_failure_jump, so didn't fail. */
4067 case pop_failure_jump:
4068 {
4069 /* We need to pass separate storage for the lowest and
4070 highest registers, even though we don't care about the
4071 actual values. Otherwise, we will restore only one
4072 register from the stack, since lowest will == highest in
4073 `pop_failure_point'. */
4074 unsigned dummy_low_reg, dummy_high_reg;
4075 unsigned char *pdummy;
4076 const char *sdummy;
4077
4078 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4079 POP_FAILURE_POINT (sdummy, pdummy,
4080 dummy_low_reg, dummy_high_reg,
4081 reg_dummy, reg_dummy, reg_info_dummy);
4082 }
4083 /* Note fall through. */
4084
Stefan Reinauer14e22772010-04-27 06:56:47 +00004085
Patrick Georgi26774f22009-11-21 19:54:02 +00004086 /* Unconditionally jump (without popping any failure points). */
4087 case jump:
4088 unconditional_jump:
4089 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4090 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4091 p += mcnt; /* Do the jump. */
4092 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4093 break;
4094
Stefan Reinauer14e22772010-04-27 06:56:47 +00004095
Patrick Georgi26774f22009-11-21 19:54:02 +00004096 /* We need this opcode so we can detect where alternatives end
4097 in `group_match_null_string_p' et al. */
4098 case jump_past_alt:
4099 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4100 goto unconditional_jump;
4101
4102
4103 /* Normally, the on_failure_jump pushes a failure point, which
4104 then gets popped at pop_failure_jump. We will end up at
4105 pop_failure_jump, also, and with a pattern of, say, `a+', we
4106 are skipping over the on_failure_jump, so we have to push
4107 something meaningless for pop_failure_jump to pop. */
4108 case dummy_failure_jump:
4109 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4110 /* It doesn't matter what we push for the string here. What
4111 the code at `fail' tests is the value for the pattern. */
4112 PUSH_FAILURE_POINT (0, 0, -2);
4113 goto unconditional_jump;
4114
4115
4116 /* At the end of an alternative, we need to push a dummy failure
4117 point in case we are followed by a `pop_failure_jump', because
4118 we don't want the failure point for the alternative to be
4119 popped. For example, matching `(a|ab)*' against `aab'
4120 requires that we match the `ab' alternative. */
4121 case push_dummy_failure:
4122 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4123 /* See comments just above at `dummy_failure_jump' about the
4124 two zeroes. */
4125 PUSH_FAILURE_POINT (0, 0, -2);
4126 break;
4127
4128 /* Have to succeed matching what follows at least n times.
4129 After that, handle like `on_failure_jump'. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004130 case succeed_n:
Patrick Georgi26774f22009-11-21 19:54:02 +00004131 EXTRACT_NUMBER (mcnt, p + 2);
4132 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4133
4134 assert (mcnt >= 0);
4135 /* Originally, this is how many times we HAVE to succeed. */
4136 if (mcnt > 0)
4137 {
4138 mcnt--;
4139 p += 2;
4140 STORE_NUMBER_AND_INCR (p, mcnt);
4141 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4142 }
4143 else if (mcnt == 0)
4144 {
4145 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4146 p[2] = (unsigned char) no_op;
4147 p[3] = (unsigned char) no_op;
4148 goto on_failure;
4149 }
4150 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004151
4152 case jump_n:
Patrick Georgi26774f22009-11-21 19:54:02 +00004153 EXTRACT_NUMBER (mcnt, p + 2);
4154 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4155
4156 /* Originally, this is how many times we CAN jump. */
4157 if (mcnt)
4158 {
4159 mcnt--;
4160 STORE_NUMBER (p + 2, mcnt);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004161 goto unconditional_jump;
Patrick Georgi26774f22009-11-21 19:54:02 +00004162 }
4163 /* If don't have to jump any more, skip over the rest of command. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004164 else
4165 p += 4;
Patrick Georgi26774f22009-11-21 19:54:02 +00004166 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004167
Patrick Georgi26774f22009-11-21 19:54:02 +00004168 case set_number_at:
4169 {
4170 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4171
4172 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4173 p1 = p + mcnt;
4174 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4175 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4176 STORE_NUMBER (p1, mcnt);
4177 break;
4178 }
4179
4180 case wordbound:
4181 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4182 if (AT_WORD_BOUNDARY (d))
4183 break;
4184 goto fail;
4185
4186 case notwordbound:
4187 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4188 if (AT_WORD_BOUNDARY (d))
4189 goto fail;
4190 break;
4191
4192 case wordbeg:
4193 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4194 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4195 break;
4196 goto fail;
4197
4198 case wordend:
4199 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4200 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4201 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4202 break;
4203 goto fail;
4204
4205#ifdef emacs
4206#ifdef emacs19
4207 case before_dot:
4208 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4209 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4210 goto fail;
4211 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004212
Patrick Georgi26774f22009-11-21 19:54:02 +00004213 case at_dot:
4214 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4215 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4216 goto fail;
4217 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004218
Patrick Georgi26774f22009-11-21 19:54:02 +00004219 case after_dot:
4220 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4221 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4222 goto fail;
4223 break;
4224#else /* not emacs19 */
4225 case at_dot:
4226 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4227 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4228 goto fail;
4229 break;
4230#endif /* not emacs19 */
4231
4232 case syntaxspec:
4233 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4234 mcnt = *p++;
4235 goto matchsyntax;
4236
4237 case wordchar:
4238 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4239 mcnt = (int) Sword;
4240 matchsyntax:
4241 PREFETCH ();
4242 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4243 goto fail;
4244 SET_REGS_MATCHED ();
4245 break;
4246
4247 case notsyntaxspec:
4248 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4249 mcnt = *p++;
4250 goto matchnotsyntax;
4251
4252 case notwordchar:
4253 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4254 mcnt = (int) Sword;
4255 matchnotsyntax:
4256 PREFETCH ();
4257 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4258 goto fail;
4259 SET_REGS_MATCHED ();
4260 break;
4261
4262#else /* not emacs */
4263 case wordchar:
4264 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4265 PREFETCH ();
4266 if (!WORDCHAR_P (d))
4267 goto fail;
4268 SET_REGS_MATCHED ();
4269 d++;
4270 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004271
Patrick Georgi26774f22009-11-21 19:54:02 +00004272 case notwordchar:
4273 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4274 PREFETCH ();
4275 if (WORDCHAR_P (d))
4276 goto fail;
4277 SET_REGS_MATCHED ();
4278 d++;
4279 break;
4280#endif /* not emacs */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004281
Patrick Georgi26774f22009-11-21 19:54:02 +00004282 default:
4283 abort ();
4284 }
4285 continue; /* Successfully executed one pattern command; keep going. */
4286
4287
4288 /* We goto here if a matching operation fails. */
4289 fail:
4290 if (!FAIL_STACK_EMPTY ())
4291 { /* A restart point is known. Restore to that state. */
4292 DEBUG_PRINT1 ("\nFAIL:\n");
4293 POP_FAILURE_POINT (d, p,
4294 lowest_active_reg, highest_active_reg,
4295 regstart, regend, reg_info);
4296
4297 /* If this failure point is a dummy, try the next one. */
4298 if (!p)
4299 goto fail;
4300
4301 /* If we failed to the end of the pattern, don't examine *p. */
4302 assert (p <= pend);
4303 if (p < pend)
4304 {
4305 boolean is_a_jump_n = false;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004306
Patrick Georgi26774f22009-11-21 19:54:02 +00004307 /* If failed to a backwards jump that's part of a repetition
4308 loop, need to pop this failure point and use the next one. */
4309 switch ((re_opcode_t) *p)
4310 {
4311 case jump_n:
4312 is_a_jump_n = true;
4313 case maybe_pop_jump:
4314 case pop_failure_jump:
4315 case jump:
4316 p1 = p + 1;
4317 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004318 p1 += mcnt;
Patrick Georgi26774f22009-11-21 19:54:02 +00004319
4320 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4321 || (!is_a_jump_n
4322 && (re_opcode_t) *p1 == on_failure_jump))
4323 goto fail;
4324 break;
4325 default:
4326 /* do nothing */ ;
4327 }
4328 }
4329
4330 if (d >= string1 && d <= end1)
4331 dend = end_match_1;
4332 }
4333 else
4334 break; /* Matching at this starting point really fails. */
4335 } /* for (;;) */
4336
4337 if (best_regs_set)
4338 goto restore_best_regs;
4339
4340 FREE_VARIABLES ();
4341
4342 return -1; /* Failure to match. */
4343} /* re_match_2 */
Martin Roth0cd338e2016-07-29 14:07:30 -06004344
Patrick Georgi26774f22009-11-21 19:54:02 +00004345/* Subroutine definitions for re_match_2. */
4346
4347
4348/* We are passed P pointing to a register number after a start_memory.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004349
Patrick Georgi26774f22009-11-21 19:54:02 +00004350 Return true if the pattern up to the corresponding stop_memory can
4351 match the empty string, and false otherwise.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004352
Patrick Georgi26774f22009-11-21 19:54:02 +00004353 If we find the matching stop_memory, sets P to point to one past its number.
4354 Otherwise, sets P to an undefined byte less than or equal to END.
4355
4356 We don't handle duplicates properly (yet). */
4357
4358static boolean
4359group_match_null_string_p (p, end, reg_info)
4360 unsigned char **p, *end;
4361 register_info_type *reg_info;
4362{
4363 int mcnt;
4364 /* Point to after the args to the start_memory. */
4365 unsigned char *p1 = *p + 2;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004366
Patrick Georgi26774f22009-11-21 19:54:02 +00004367 while (p1 < end)
4368 {
4369 /* Skip over opcodes that can match nothing, and return true or
4370 false, as appropriate, when we get to one that can't, or to the
4371 matching stop_memory. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004372
Patrick Georgi26774f22009-11-21 19:54:02 +00004373 switch ((re_opcode_t) *p1)
4374 {
4375 /* Could be either a loop or a series of alternatives. */
4376 case on_failure_jump:
4377 p1++;
4378 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004379
Patrick Georgi26774f22009-11-21 19:54:02 +00004380 /* If the next operation is not a jump backwards in the
4381 pattern. */
4382
4383 if (mcnt >= 0)
4384 {
4385 /* Go through the on_failure_jumps of the alternatives,
4386 seeing if any of the alternatives cannot match nothing.
4387 The last alternative starts with only a jump,
4388 whereas the rest start with on_failure_jump and end
4389 with a jump, e.g., here is the pattern for `a|b|c':
4390
4391 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4392 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
Stefan Reinauer14e22772010-04-27 06:56:47 +00004393 /exactn/1/c
Patrick Georgi26774f22009-11-21 19:54:02 +00004394
4395 So, we have to first go through the first (n-1)
4396 alternatives and then deal with the last one separately. */
4397
4398
4399 /* Deal with the first (n-1) alternatives, which start
4400 with an on_failure_jump (see above) that jumps to right
4401 past a jump_past_alt. */
4402
4403 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4404 {
4405 /* `mcnt' holds how many bytes long the alternative
4406 is, including the ending `jump_past_alt' and
4407 its number. */
4408
Stefan Reinauer14e22772010-04-27 06:56:47 +00004409 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
Patrick Georgi26774f22009-11-21 19:54:02 +00004410 reg_info))
4411 return false;
4412
4413 /* Move to right after this alternative, including the
4414 jump_past_alt. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004415 p1 += mcnt;
Patrick Georgi26774f22009-11-21 19:54:02 +00004416
4417 /* Break if it's the beginning of an n-th alternative
4418 that doesn't begin with an on_failure_jump. */
4419 if ((re_opcode_t) *p1 != on_failure_jump)
4420 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004421
Patrick Georgi26774f22009-11-21 19:54:02 +00004422 /* Still have to check that it's not an n-th
4423 alternative that starts with an on_failure_jump. */
4424 p1++;
4425 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4426 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4427 {
4428 /* Get to the beginning of the n-th alternative. */
4429 p1 -= 3;
4430 break;
4431 }
4432 }
4433
4434 /* Deal with the last alternative: go back and get number
4435 of the `jump_past_alt' just before it. `mcnt' contains
4436 the length of the alternative. */
4437 EXTRACT_NUMBER (mcnt, p1 - 2);
4438
4439 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4440 return false;
4441
4442 p1 += mcnt; /* Get past the n-th alternative. */
4443 } /* if mcnt > 0 */
4444 break;
4445
Stefan Reinauer14e22772010-04-27 06:56:47 +00004446
Patrick Georgi26774f22009-11-21 19:54:02 +00004447 case stop_memory:
4448 assert (p1[1] == **p);
4449 *p = p1 + 2;
4450 return true;
4451
Stefan Reinauer14e22772010-04-27 06:56:47 +00004452
4453 default:
Patrick Georgi26774f22009-11-21 19:54:02 +00004454 if (!common_op_match_null_string_p (&p1, end, reg_info))
4455 return false;
4456 }
4457 } /* while p1 < end */
4458
4459 return false;
4460} /* group_match_null_string_p */
4461
4462
4463/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4464 It expects P to be the first byte of a single alternative and END one
4465 byte past the last. The alternative can contain groups. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004466
Patrick Georgi26774f22009-11-21 19:54:02 +00004467static boolean
4468alt_match_null_string_p (p, end, reg_info)
4469 unsigned char *p, *end;
4470 register_info_type *reg_info;
4471{
4472 int mcnt;
4473 unsigned char *p1 = p;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004474
Patrick Georgi26774f22009-11-21 19:54:02 +00004475 while (p1 < end)
4476 {
Stefan Reinauer14e22772010-04-27 06:56:47 +00004477 /* Skip over opcodes that can match nothing, and break when we get
Patrick Georgi26774f22009-11-21 19:54:02 +00004478 to one that can't. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004479
Patrick Georgi26774f22009-11-21 19:54:02 +00004480 switch ((re_opcode_t) *p1)
4481 {
4482 /* It's a loop. */
4483 case on_failure_jump:
4484 p1++;
4485 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4486 p1 += mcnt;
4487 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004488
4489 default:
Patrick Georgi26774f22009-11-21 19:54:02 +00004490 if (!common_op_match_null_string_p (&p1, end, reg_info))
4491 return false;
4492 }
4493 } /* while p1 < end */
4494
4495 return true;
4496} /* alt_match_null_string_p */
4497
4498
4499/* Deals with the ops common to group_match_null_string_p and
Stefan Reinauer14e22772010-04-27 06:56:47 +00004500 alt_match_null_string_p.
4501
Patrick Georgi26774f22009-11-21 19:54:02 +00004502 Sets P to one after the op and its arguments, if any. */
4503
4504static boolean
4505common_op_match_null_string_p (p, end, reg_info)
4506 unsigned char **p, *end;
4507 register_info_type *reg_info;
4508{
4509 int mcnt;
4510 boolean ret;
4511 int reg_no;
4512 unsigned char *p1 = *p;
4513
4514 switch ((re_opcode_t) *p1++)
4515 {
4516 case no_op:
4517 case begline:
4518 case endline:
4519 case begbuf:
4520 case endbuf:
4521 case wordbeg:
4522 case wordend:
4523 case wordbound:
4524 case notwordbound:
4525#ifdef emacs
4526 case before_dot:
4527 case at_dot:
4528 case after_dot:
4529#endif
4530 break;
4531
4532 case start_memory:
4533 reg_no = *p1;
4534 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4535 ret = group_match_null_string_p (&p1, end, reg_info);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004536
Patrick Georgi26774f22009-11-21 19:54:02 +00004537 /* Have to set this here in case we're checking a group which
4538 contains a group and a back reference to it. */
4539
4540 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4541 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4542
4543 if (!ret)
4544 return false;
4545 break;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004546
Patrick Georgi26774f22009-11-21 19:54:02 +00004547 /* If this is an optimized succeed_n for zero times, make the jump. */
4548 case jump:
4549 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4550 if (mcnt >= 0)
4551 p1 += mcnt;
4552 else
4553 return false;
4554 break;
4555
4556 case succeed_n:
4557 /* Get to the number of times to succeed. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004558 p1 += 2;
Patrick Georgi26774f22009-11-21 19:54:02 +00004559 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4560
4561 if (mcnt == 0)
4562 {
4563 p1 -= 4;
4564 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4565 p1 += mcnt;
4566 }
4567 else
4568 return false;
4569 break;
4570
Stefan Reinauer14e22772010-04-27 06:56:47 +00004571 case duplicate:
Patrick Georgi26774f22009-11-21 19:54:02 +00004572 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4573 return false;
4574 break;
4575
4576 case set_number_at:
4577 p1 += 4;
4578
4579 default:
4580 /* All other opcodes mean we cannot match the empty string. */
4581 return false;
4582 }
4583
4584 *p = p1;
4585 return true;
4586} /* common_op_match_null_string_p */
4587
4588
4589/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4590 bytes; nonzero otherwise. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004591
Patrick Georgi26774f22009-11-21 19:54:02 +00004592static int
4593bcmp_translate (s1, s2, len, translate)
4594 unsigned char *s1, *s2;
4595 register int len;
4596 char *translate;
4597{
4598 register unsigned char *p1 = s1, *p2 = s2;
4599 while (len)
4600 {
4601 if (translate[*p1++] != translate[*p2++]) return 1;
4602 len--;
4603 }
4604 return 0;
4605}
Martin Roth0cd338e2016-07-29 14:07:30 -06004606
Patrick Georgi26774f22009-11-21 19:54:02 +00004607/* Entry points for GNU code. */
4608
4609/* re_compile_pattern is the GNU regular expression compiler: it
4610 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4611 Returns 0 if the pattern was valid, otherwise an error string.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004612
Patrick Georgi26774f22009-11-21 19:54:02 +00004613 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4614 are set in BUFP on entry.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004615
Patrick Georgi26774f22009-11-21 19:54:02 +00004616 We call regex_compile to do the actual compilation. */
4617
4618const char *
4619re_compile_pattern (pattern, length, bufp)
4620 const char *pattern;
4621 int length;
4622 struct re_pattern_buffer *bufp;
4623{
4624 reg_errcode_t ret;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004625
Patrick Georgi26774f22009-11-21 19:54:02 +00004626 /* GNU code is written to assume at least RE_NREGS registers will be set
4627 (and at least one extra will be -1). */
4628 bufp->regs_allocated = REGS_UNALLOCATED;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004629
Patrick Georgi26774f22009-11-21 19:54:02 +00004630 /* And GNU code determines whether or not to get register information
4631 by passing null for the REGS argument to re_match, etc., not by
4632 setting no_sub. */
4633 bufp->no_sub = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004634
Patrick Georgi26774f22009-11-21 19:54:02 +00004635 /* Match anchors at newline. */
4636 bufp->newline_anchor = 1;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004637
Patrick Georgi26774f22009-11-21 19:54:02 +00004638 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4639
4640 return re_error_msg[(int) ret];
Stefan Reinauer14e22772010-04-27 06:56:47 +00004641}
Martin Roth0cd338e2016-07-29 14:07:30 -06004642
Patrick Georgi26774f22009-11-21 19:54:02 +00004643/* Entry points compatible with 4.2 BSD regex library. We don't define
4644 them if this is an Emacs or POSIX compilation. */
4645
4646#if !defined (emacs) && !defined (_POSIX_SOURCE)
4647
4648/* BSD has one and only one pattern buffer. */
4649static struct re_pattern_buffer re_comp_buf;
4650
4651char *
4652re_comp (s)
4653 const char *s;
4654{
4655 reg_errcode_t ret;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004656
Patrick Georgi26774f22009-11-21 19:54:02 +00004657 if (!s)
4658 {
4659 if (!re_comp_buf.buffer)
4660 return "No previous regular expression";
4661 return 0;
4662 }
4663
4664 if (!re_comp_buf.buffer)
4665 {
4666 re_comp_buf.buffer = (unsigned char *) malloc (200);
4667 if (re_comp_buf.buffer == NULL)
4668 return "Memory exhausted";
4669 re_comp_buf.allocated = 200;
4670
4671 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4672 if (re_comp_buf.fastmap == NULL)
4673 return "Memory exhausted";
4674 }
4675
4676 /* Since `re_exec' always passes NULL for the `regs' argument, we
4677 don't need to initialize the pattern buffer fields which affect it. */
4678
4679 /* Match anchors at newlines. */
4680 re_comp_buf.newline_anchor = 1;
4681
4682 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004683
Patrick Georgi26774f22009-11-21 19:54:02 +00004684 /* Yes, we're discarding `const' here. */
4685 return (char *) re_error_msg[(int) ret];
4686}
4687
4688
4689int
4690re_exec (s)
4691 const char *s;
4692{
4693 const int len = strlen (s);
4694 return
4695 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4696}
4697#endif /* not emacs and not _POSIX_SOURCE */
Martin Roth0cd338e2016-07-29 14:07:30 -06004698
Patrick Georgi26774f22009-11-21 19:54:02 +00004699/* POSIX.2 functions. Don't define these for Emacs. */
4700
4701#ifndef emacs
4702
4703/* regcomp takes a regular expression as a string and compiles it.
4704
4705 PREG is a regex_t *. We do not expect any fields to be initialized,
4706 since POSIX says we shouldn't. Thus, we set
4707
4708 `buffer' to the compiled pattern;
4709 `used' to the length of the compiled pattern;
4710 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4711 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4712 RE_SYNTAX_POSIX_BASIC;
4713 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4714 `fastmap' and `fastmap_accurate' to zero;
4715 `re_nsub' to the number of subexpressions in PATTERN.
4716
4717 PATTERN is the address of the pattern string.
4718
4719 CFLAGS is a series of bits which affect compilation.
4720
4721 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4722 use POSIX basic syntax.
4723
4724 If REG_NEWLINE is set, then . and [^...] don't match newline.
4725 Also, regexec will try a match beginning after every newline.
4726
4727 If REG_ICASE is set, then we considers upper- and lowercase
4728 versions of letters to be equivalent when matching.
4729
4730 If REG_NOSUB is set, then when PREG is passed to regexec, that
4731 routine will report only success or failure, and nothing about the
4732 registers.
4733
4734 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4735 the return codes and their meanings.) */
4736
4737int
4738regcomp (preg, pattern, cflags)
4739 regex_t *preg;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004740 const char *pattern;
Patrick Georgi26774f22009-11-21 19:54:02 +00004741 int cflags;
4742{
4743 reg_errcode_t ret;
4744 unsigned syntax
4745 = (cflags & REG_EXTENDED) ?
4746 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4747
4748 /* regex_compile will allocate the space for the compiled pattern. */
4749 preg->buffer = 0;
4750 preg->allocated = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004751
Patrick Georgi26774f22009-11-21 19:54:02 +00004752 /* Don't bother to use a fastmap when searching. This simplifies the
4753 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4754 characters after newlines into the fastmap. This way, we just try
4755 every character. */
4756 preg->fastmap = 0;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004757
Patrick Georgi26774f22009-11-21 19:54:02 +00004758 if (cflags & REG_ICASE)
4759 {
4760 unsigned i;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004761
Patrick Georgi26774f22009-11-21 19:54:02 +00004762 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4763 if (preg->translate == NULL)
4764 return (int) REG_ESPACE;
4765
4766 /* Map uppercase characters to corresponding lowercase ones. */
4767 for (i = 0; i < CHAR_SET_SIZE; i++)
4768 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4769 }
4770 else
4771 preg->translate = NULL;
4772
4773 /* If REG_NEWLINE is set, newlines are treated differently. */
4774 if (cflags & REG_NEWLINE)
4775 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4776 syntax &= ~RE_DOT_NEWLINE;
4777 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4778 /* It also changes the matching behavior. */
4779 preg->newline_anchor = 1;
4780 }
4781 else
4782 preg->newline_anchor = 0;
4783
4784 preg->no_sub = !!(cflags & REG_NOSUB);
4785
Stefan Reinauer14e22772010-04-27 06:56:47 +00004786 /* POSIX says a null character in the pattern terminates it, so we
Patrick Georgi26774f22009-11-21 19:54:02 +00004787 can use strlen here in compiling the pattern. */
4788 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004789
Patrick Georgi26774f22009-11-21 19:54:02 +00004790 /* POSIX doesn't distinguish between an unmatched open-group and an
4791 unmatched close-group: both are REG_EPAREN. */
4792 if (ret == REG_ERPAREN) ret = REG_EPAREN;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004793
Patrick Georgi26774f22009-11-21 19:54:02 +00004794 return (int) ret;
4795}
4796
4797
4798/* regexec searches for a given pattern, specified by PREG, in the
4799 string STRING.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004800
Patrick Georgi26774f22009-11-21 19:54:02 +00004801 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4802 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4803 least NMATCH elements, and we set them to the offsets of the
4804 corresponding matched substrings.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004805
Patrick Georgi26774f22009-11-21 19:54:02 +00004806 EFLAGS specifies `execution flags' which affect matching: if
4807 REG_NOTBOL is set, then ^ does not match at the beginning of the
4808 string; if REG_NOTEOL is set, then $ does not match at the end.
Stefan Reinauer14e22772010-04-27 06:56:47 +00004809
Patrick Georgi26774f22009-11-21 19:54:02 +00004810 We return 0 if we find a match and REG_NOMATCH if not. */
4811
4812int
4813regexec (preg, string, nmatch, pmatch, eflags)
4814 const regex_t *preg;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004815 const char *string;
4816 size_t nmatch;
4817 regmatch_t pmatch[];
Patrick Georgi26774f22009-11-21 19:54:02 +00004818 int eflags;
4819{
4820 int ret;
4821 struct re_registers regs;
4822 regex_t private_preg;
4823 int len = strlen (string);
4824 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4825
4826 private_preg = *preg;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004827
Patrick Georgi26774f22009-11-21 19:54:02 +00004828 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4829 private_preg.not_eol = !!(eflags & REG_NOTEOL);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004830
Patrick Georgi26774f22009-11-21 19:54:02 +00004831 /* The user has told us exactly how many registers to return
4832 information about, via `nmatch'. We have to pass that on to the
4833 matching routines. */
4834 private_preg.regs_allocated = REGS_FIXED;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004835
Patrick Georgi26774f22009-11-21 19:54:02 +00004836 if (want_reg_info)
4837 {
4838 regs.num_regs = nmatch;
4839 regs.start = TALLOC (nmatch, regoff_t);
4840 regs.end = TALLOC (nmatch, regoff_t);
4841 if (regs.start == NULL || regs.end == NULL)
4842 return (int) REG_NOMATCH;
4843 }
4844
4845 /* Perform the searching operation. */
4846 ret = re_search (&private_preg, string, len,
4847 /* start: */ 0, /* range: */ len,
4848 want_reg_info ? &regs : (struct re_registers *) 0);
Stefan Reinauer14e22772010-04-27 06:56:47 +00004849
Patrick Georgi26774f22009-11-21 19:54:02 +00004850 /* Copy the register information to the POSIX structure. */
4851 if (want_reg_info)
4852 {
4853 if (ret >= 0)
4854 {
4855 unsigned r;
4856
4857 for (r = 0; r < nmatch; r++)
4858 {
4859 pmatch[r].rm_so = regs.start[r];
4860 pmatch[r].rm_eo = regs.end[r];
4861 }
4862 }
4863
4864 /* If we needed the temporary register info, free the space now. */
4865 free (regs.start);
4866 free (regs.end);
4867 }
4868
4869 /* We want zero return to mean success, unlike `re_search'. */
4870 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4871}
4872
4873
4874/* Returns a message corresponding to an error code, ERRCODE, returned
4875 from either regcomp or regexec. We don't use PREG here. */
4876
4877size_t
4878regerror (errcode, preg, errbuf, errbuf_size)
4879 int errcode;
4880 const regex_t *preg;
4881 char *errbuf;
4882 size_t errbuf_size;
4883{
4884 const char *msg;
4885 size_t msg_size;
4886
4887 if (errcode < 0
4888 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
Stefan Reinauer14e22772010-04-27 06:56:47 +00004889 /* Only error codes returned by the rest of the code should be passed
Patrick Georgi26774f22009-11-21 19:54:02 +00004890 to this routine. If we are given anything else, or if other regex
4891 code generates an invalid error code, then the program has a bug.
4892 Dump core so we can fix it. */
4893 abort ();
4894
4895 msg = re_error_msg[errcode];
4896
4897 /* POSIX doesn't require that we do anything in this case, but why
4898 not be nice. */
4899 if (! msg)
4900 msg = "Success";
4901
4902 msg_size = strlen (msg) + 1; /* Includes the null. */
Stefan Reinauer14e22772010-04-27 06:56:47 +00004903
Patrick Georgi26774f22009-11-21 19:54:02 +00004904 if (errbuf_size != 0)
4905 {
4906 if (msg_size > errbuf_size)
4907 {
4908 strncpy (errbuf, msg, errbuf_size - 1);
4909 errbuf[errbuf_size - 1] = 0;
4910 }
4911 else
4912 strcpy (errbuf, msg);
4913 }
4914
4915 return msg_size;
4916}
4917
4918
4919/* Free dynamically allocated space used by PREG. */
4920
4921void
4922regfree (preg)
4923 regex_t *preg;
4924{
4925 if (preg->buffer != NULL)
4926 free (preg->buffer);
4927 preg->buffer = NULL;
Stefan Reinauer14e22772010-04-27 06:56:47 +00004928
Patrick Georgi26774f22009-11-21 19:54:02 +00004929 preg->allocated = 0;
4930 preg->used = 0;
4931
4932 if (preg->fastmap != NULL)
4933 free (preg->fastmap);
4934 preg->fastmap = NULL;
4935 preg->fastmap_accurate = 0;
4936
4937 if (preg->translate != NULL)
4938 free (preg->translate);
4939 preg->translate = NULL;
4940}
4941
4942#endif /* not emacs */
Martin Roth0cd338e2016-07-29 14:07:30 -06004943
Patrick Georgi26774f22009-11-21 19:54:02 +00004944/*
4945Local variables:
4946make-backup-files: t
4947version-control: t
4948trim-versions-without-asking: nil
4949End:
4950*/