blob: 32bbde5364c0ed0b4b525f70bb0724ad266178c3 [file] [log] [blame]
Felix Held3c44c622022-01-10 20:57:29 +01001/* SPDX-License-Identifier: GPL-2.0-only */
2
3/* TODO: Check if this is still correct */
4
5/* ACPI - create the Fixed ACPI Description Tables (FADT) */
6
7#include <acpi/acpi.h>
8#include <acpi/acpigen.h>
9#include <amdblocks/acpi.h>
10#include <amdblocks/cpu.h>
11#include <amdblocks/acpimmio.h>
12#include <amdblocks/ioapic.h>
13#include <arch/ioapic.h>
14#include <arch/smp/mpspec.h>
15#include <console/console.h>
16#include <cpu/amd/cpuid.h>
17#include <cpu/amd/msr.h>
18#include <cpu/x86/smm.h>
19#include <soc/acpi.h>
20#include <soc/iomap.h>
21#include <soc/msr.h>
22#include <types.h>
23#include "chip.h"
Felix Held3c44c622022-01-10 20:57:29 +010024
25unsigned long acpi_fill_madt(unsigned long current)
26{
27 /* create all subtables for processors */
28 current = acpi_create_madt_lapics(current);
29
30 current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
31 FCH_IOAPIC_ID, IO_APIC_ADDR, 0);
32
33 current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
34 GNB_IOAPIC_ID, GNB_IO_APIC_ADDR, IO_APIC_INTERRUPTS);
35
36 /* PIT is connected to legacy IRQ 0, but IOAPIC GSI 2 */
37 current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
38 MP_BUS_ISA, 0, 2,
39 MP_IRQ_TRIGGER_DEFAULT | MP_IRQ_POLARITY_DEFAULT);
40 /* SCI IRQ type override */
41 current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
42 MP_BUS_ISA, ACPI_SCI_IRQ, ACPI_SCI_IRQ,
43 MP_IRQ_TRIGGER_LEVEL | MP_IRQ_POLARITY_LOW);
44 current = acpi_fill_madt_irqoverride(current);
45
46 /* create all subtables for processors */
47 current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *)current,
48 ACPI_MADT_LAPIC_NMI_ALL_PROCESSORS,
49 MP_IRQ_TRIGGER_EDGE | MP_IRQ_POLARITY_HIGH,
50 1 /* 1: LINT1 connect to NMI */);
51
52 return current;
53}
54
55/*
56 * Reference section 5.2.9 Fixed ACPI Description Table (FADT)
57 * in the ACPI 3.0b specification.
58 */
59void acpi_fill_fadt(acpi_fadt_t *fadt)
60{
61 const struct soc_amd_sabrina_config *cfg = config_of_soc();
62
63 printk(BIOS_DEBUG, "pm_base: 0x%04x\n", ACPI_IO_BASE);
64
65 fadt->sci_int = ACPI_SCI_IRQ;
66
67 if (permanent_smi_handler()) {
68 fadt->smi_cmd = APM_CNT;
69 fadt->acpi_enable = APM_CNT_ACPI_ENABLE;
70 fadt->acpi_disable = APM_CNT_ACPI_DISABLE;
71 }
72
73 fadt->pstate_cnt = 0;
74
75 fadt->pm1a_evt_blk = ACPI_PM_EVT_BLK;
76 fadt->pm1a_cnt_blk = ACPI_PM1_CNT_BLK;
77 fadt->pm_tmr_blk = ACPI_PM_TMR_BLK;
78 fadt->gpe0_blk = ACPI_GPE0_BLK;
79
80 fadt->pm1_evt_len = 4; /* 32 bits */
81 fadt->pm1_cnt_len = 2; /* 16 bits */
82 fadt->pm_tmr_len = 4; /* 32 bits */
83 fadt->gpe0_blk_len = 8; /* 64 bits */
84
85 fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED;
86 fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED;
87 fadt->duty_offset = 0; /* Not supported */
88 fadt->duty_width = 0; /* Not supported */
89 fadt->day_alrm = RTC_DATE_ALARM;
90 fadt->mon_alrm = 0;
91 fadt->century = RTC_ALT_CENTURY;
92 fadt->iapc_boot_arch = cfg->common_config.fadt_boot_arch; /* legacy free default */
93 fadt->flags |= ACPI_FADT_WBINVD | /* See table 5-34 ACPI 6.3 spec */
94 ACPI_FADT_C1_SUPPORTED |
95 ACPI_FADT_S4_RTC_WAKE |
96 ACPI_FADT_32BIT_TIMER |
97 ACPI_FADT_PCI_EXPRESS_WAKE |
98 ACPI_FADT_PLATFORM_CLOCK |
99 ACPI_FADT_S4_RTC_VALID |
100 ACPI_FADT_REMOTE_POWER_ON;
101 if (cfg->s0ix_enable)
102 fadt->flags |= ACPI_FADT_LOW_PWR_IDLE_S0;
103
104 fadt->flags |= cfg->common_config.fadt_flags; /* additional board-specific flags */
105
106 fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
107 fadt->x_pm1a_evt_blk.bit_width = 32;
108 fadt->x_pm1a_evt_blk.bit_offset = 0;
109 fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
110 fadt->x_pm1a_evt_blk.addrl = ACPI_PM_EVT_BLK;
111 fadt->x_pm1a_evt_blk.addrh = 0x0;
112
113 fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
114 fadt->x_pm1a_cnt_blk.bit_width = 16;
115 fadt->x_pm1a_cnt_blk.bit_offset = 0;
116 fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
117 fadt->x_pm1a_cnt_blk.addrl = ACPI_PM1_CNT_BLK;
118 fadt->x_pm1a_cnt_blk.addrh = 0x0;
119
120 fadt->x_pm_tmr_blk.space_id = ACPI_ADDRESS_SPACE_IO;
121 fadt->x_pm_tmr_blk.bit_width = 32;
122 fadt->x_pm_tmr_blk.bit_offset = 0;
123 fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
124 fadt->x_pm_tmr_blk.addrl = ACPI_PM_TMR_BLK;
125 fadt->x_pm_tmr_blk.addrh = 0x0;
126
127 fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO;
128 fadt->x_gpe0_blk.bit_width = 64;
129 fadt->x_gpe0_blk.bit_offset = 0;
130 fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS;
131 fadt->x_gpe0_blk.addrl = ACPI_GPE0_BLK;
132 fadt->x_gpe0_blk.addrh = 0x0;
133}
134
135static uint32_t get_pstate_core_freq(msr_t pstate_def)
136{
137 uint32_t core_freq, core_freq_mul, core_freq_div;
138 bool valid_freq_divisor;
139
140 /* Core frequency multiplier */
141 core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK;
142
143 /* Core frequency divisor ID */
144 core_freq_div =
145 (pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT;
146
147 if (core_freq_div == 0) {
148 return 0;
149 } else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN)
150 && (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) {
151 /* Allow 1/8 integer steps for this range */
152 valid_freq_divisor = 1;
153 } else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX)
154 && (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) {
155 /* Only allow 1/4 integer steps for this range */
156 valid_freq_divisor = 1;
157 } else {
158 valid_freq_divisor = 0;
159 }
160
161 if (valid_freq_divisor) {
162 /* 25 * core_freq_mul / (core_freq_div / 8) */
163 core_freq =
164 ((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div));
165 } else {
166 printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n",
167 core_freq_div);
168 core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul);
169 }
170 return core_freq;
171}
172
173static uint32_t get_pstate_core_power(msr_t pstate_def)
174{
175 uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw;
176
177 /* Core voltage ID */
178 core_vid =
179 (pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT;
180
181 /* Current value in amps */
182 current_value_amps =
183 (pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT;
184
185 /* Current divisor */
186 current_divisor =
187 (pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT;
188
189 /* Voltage */
Fred Reitberger8d2bfbc2022-06-07 11:34:28 -0400190 if (core_vid == 0x00) {
191 /* Voltage off for VID code 0x00 */
Felix Held3c44c622022-01-10 20:57:29 +0100192 voltage_in_uvolts = 0;
193 } else {
194 voltage_in_uvolts =
Fred Reitberger8d2bfbc2022-06-07 11:34:28 -0400195 SERIAL_VID_BASE_MICROVOLTS + (SERIAL_VID_DECODE_MICROVOLTS * core_vid);
Felix Held3c44c622022-01-10 20:57:29 +0100196 }
197
198 /* Power in mW */
199 power_in_mw = (voltage_in_uvolts) / 1000 * current_value_amps;
200
201 switch (current_divisor) {
202 case 0:
203 break;
204 case 1:
205 power_in_mw = power_in_mw / 10L;
206 break;
207 case 2:
208 power_in_mw = power_in_mw / 100L;
209 break;
210 case 3:
211 /* current_divisor is set to an undefined value.*/
212 printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
213 power_in_mw = 0;
214 break;
215 }
216
217 return power_in_mw;
218}
219
220/*
221 * Populate structure describing enabled p-states and return count of enabled p-states.
222 */
223static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
224 struct acpi_xpss_sw_pstate *pstate_xpss_values)
225{
226 msr_t pstate_def;
227 size_t pstate_count, pstate;
228 uint32_t pstate_enable, max_pstate;
229
230 pstate_count = 0;
231 max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;
232
233 for (pstate = 0; pstate <= max_pstate; pstate++) {
234 pstate_def = rdmsr(PSTATE_0_MSR + pstate);
235
236 pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK)
237 >> PSTATE_DEF_HI_ENABLE_SHIFT;
238 if (!pstate_enable)
239 continue;
240
241 pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def);
242 pstate_values[pstate_count].power = get_pstate_core_power(pstate_def);
243 pstate_values[pstate_count].transition_latency = 0;
244 pstate_values[pstate_count].bus_master_latency = 0;
245 pstate_values[pstate_count].control_value = pstate;
246 pstate_values[pstate_count].status_value = pstate;
247
248 pstate_xpss_values[pstate_count].core_freq =
249 (uint64_t)pstate_values[pstate_count].core_freq;
250 pstate_xpss_values[pstate_count].power =
251 (uint64_t)pstate_values[pstate_count].power;
252 pstate_xpss_values[pstate_count].transition_latency = 0;
253 pstate_xpss_values[pstate_count].bus_master_latency = 0;
254 pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
255 pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
256 pstate_count++;
257 }
258
259 return pstate_count;
260}
261
262void generate_cpu_entries(const struct device *device)
263{
264 int logical_cores;
265 size_t pstate_count, cpu, proc_blk_len;
266 struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
267 struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
268 uint32_t threads_per_core, proc_blk_addr;
269 uint32_t cstate_base_address =
270 rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;
271
272 const acpi_addr_t perf_ctrl = {
273 .space_id = ACPI_ADDRESS_SPACE_FIXED,
274 .bit_width = 64,
275 .addrl = PS_CTL_REG,
276 };
277 const acpi_addr_t perf_sts = {
278 .space_id = ACPI_ADDRESS_SPACE_FIXED,
279 .bit_width = 64,
280 .addrl = PS_STS_REG,
281 };
282
283 const acpi_cstate_t cstate_info[] = {
284 [0] = {
285 .ctype = 1,
286 .latency = 1,
287 .power = 0,
288 .resource = {
289 .space_id = ACPI_ADDRESS_SPACE_FIXED,
290 .bit_width = 2,
291 .bit_offset = 2,
292 .addrl = 0,
293 .addrh = 0,
294 },
295 },
296 [1] = {
297 .ctype = 2,
298 .latency = 0x12,
299 .power = 0,
300 .resource = {
301 .space_id = ACPI_ADDRESS_SPACE_IO,
302 .bit_width = 8,
303 .bit_offset = 0,
304 .addrl = cstate_base_address + 1,
305 .addrh = 0,
306 .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
307 },
308 },
309 [2] = {
310 .ctype = 3,
311 .latency = 350,
312 .power = 0,
313 .resource = {
314 .space_id = ACPI_ADDRESS_SPACE_IO,
315 .bit_width = 8,
316 .bit_offset = 0,
317 .addrl = cstate_base_address + 2,
318 .addrh = 0,
319 .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
320 },
321 },
322 };
323
Felix Heldd4b5ad02022-01-25 04:14:05 +0100324 threads_per_core = get_threads_per_core();
Felix Held3c44c622022-01-10 20:57:29 +0100325 pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
326 logical_cores = get_cpu_count();
327
328 for (cpu = 0; cpu < logical_cores; cpu++) {
329
330 if (cpu == 0) {
331 /* BSP values for \_SB.Pxxx */
332 proc_blk_len = 6;
333 proc_blk_addr = ACPI_GPE0_BLK;
334 } else {
335 /* AP values for \_SB.Pxxx */
336 proc_blk_addr = 0;
337 proc_blk_len = 0;
338 }
339
340 acpigen_write_processor(cpu, proc_blk_addr, proc_blk_len);
341
342 acpigen_write_pct_package(&perf_ctrl, &perf_sts);
343
344 acpigen_write_pss_object(pstate_values, pstate_count);
345
346 acpigen_write_xpss_object(pstate_xpss_values, pstate_count);
347
348 if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
349 acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
350 HW_ALL);
351 else
352 acpigen_write_PSD_package(0, logical_cores, SW_ALL);
353
354 acpigen_write_PPC(0);
355
356 acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info));
357
358 acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core,
359 CSD_HW_ALL, 0);
360
Felix Held3c44c622022-01-10 20:57:29 +0100361 acpigen_pop_len();
362 }
363
364 acpigen_write_processor_package("PPKG", 0, logical_cores);
365}