blob: f3825f0419558d151f75122af68be72a9c5ce9e6 [file] [log] [blame]
Martin Roth1a3de8e2022-10-06 15:57:21 -06001/* SPDX-License-Identifier: GPL-2.0-only */
2
3/* TODO: Update for Morgana */
4/* TODO: See what can be made common */
5
6/* ACPI - create the Fixed ACPI Description Tables (FADT) */
7
8#include <acpi/acpi.h>
9#include <acpi/acpigen.h>
10#include <amdblocks/acpi.h>
11#include <amdblocks/cppc.h>
12#include <amdblocks/cpu.h>
13#include <amdblocks/acpimmio.h>
14#include <amdblocks/ioapic.h>
15#include <arch/ioapic.h>
16#include <arch/smp/mpspec.h>
17#include <console/console.h>
18#include <cpu/amd/cpuid.h>
19#include <cpu/amd/msr.h>
20#include <cpu/x86/smm.h>
21#include <soc/acpi.h>
22#include <soc/iomap.h>
23#include <soc/msr.h>
24#include <types.h>
25#include "chip.h"
26
27unsigned long acpi_fill_madt(unsigned long current)
28{
29 /* create all subtables for processors */
30 current = acpi_create_madt_lapics(current);
31
32 current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
33 FCH_IOAPIC_ID, IO_APIC_ADDR, 0);
34
35 current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
36 GNB_IOAPIC_ID, GNB_IO_APIC_ADDR, IO_APIC_INTERRUPTS);
37
38 /* PIT is connected to legacy IRQ 0, but IOAPIC GSI 2 */
39 current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
40 MP_BUS_ISA, 0, 2,
41 MP_IRQ_TRIGGER_DEFAULT | MP_IRQ_POLARITY_DEFAULT);
42 /* SCI IRQ type override */
43 current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
44 MP_BUS_ISA, ACPI_SCI_IRQ, ACPI_SCI_IRQ,
45 MP_IRQ_TRIGGER_LEVEL | MP_IRQ_POLARITY_LOW);
46 current = acpi_fill_madt_irqoverride(current);
47
48 /* create all subtables for processors */
49 current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *)current,
50 ACPI_MADT_LAPIC_NMI_ALL_PROCESSORS,
51 MP_IRQ_TRIGGER_EDGE | MP_IRQ_POLARITY_HIGH,
52 1 /* 1: LINT1 connect to NMI */);
53
54 return current;
55}
56
57/*
58 * Reference section 5.2.9 Fixed ACPI Description Table (FADT)
59 * in the ACPI 3.0b specification.
60 */
61void acpi_fill_fadt(acpi_fadt_t *fadt)
62{
63 const struct soc_amd_morgana_config *cfg = config_of_soc();
64
65 printk(BIOS_DEBUG, "pm_base: 0x%04x\n", ACPI_IO_BASE);
66
67 fadt->sci_int = ACPI_SCI_IRQ;
68
69 if (permanent_smi_handler()) {
70 fadt->smi_cmd = APM_CNT;
71 fadt->acpi_enable = APM_CNT_ACPI_ENABLE;
72 fadt->acpi_disable = APM_CNT_ACPI_DISABLE;
73 }
74
75 fadt->pstate_cnt = 0;
76
77 fadt->pm1a_evt_blk = ACPI_PM_EVT_BLK;
78 fadt->pm1a_cnt_blk = ACPI_PM1_CNT_BLK;
79 fadt->pm_tmr_blk = ACPI_PM_TMR_BLK;
80 fadt->gpe0_blk = ACPI_GPE0_BLK;
81
82 fadt->pm1_evt_len = 4; /* 32 bits */
83 fadt->pm1_cnt_len = 2; /* 16 bits */
84 fadt->pm_tmr_len = 4; /* 32 bits */
85 fadt->gpe0_blk_len = 8; /* 64 bits */
86
87 fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED;
88 fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED;
89 fadt->duty_offset = 0; /* Not supported */
90 fadt->duty_width = 0; /* Not supported */
91 fadt->day_alrm = RTC_DATE_ALARM;
92 fadt->mon_alrm = 0;
93 fadt->century = RTC_ALT_CENTURY;
94 fadt->iapc_boot_arch = cfg->common_config.fadt_boot_arch; /* legacy free default */
95 fadt->flags |= ACPI_FADT_WBINVD | /* See table 5-34 ACPI 6.3 spec */
96 ACPI_FADT_C1_SUPPORTED |
97 ACPI_FADT_S4_RTC_WAKE |
98 ACPI_FADT_32BIT_TIMER |
99 ACPI_FADT_PCI_EXPRESS_WAKE |
100 ACPI_FADT_PLATFORM_CLOCK |
101 ACPI_FADT_S4_RTC_VALID |
102 ACPI_FADT_REMOTE_POWER_ON;
103 if (cfg->s0ix_enable)
104 fadt->flags |= ACPI_FADT_LOW_PWR_IDLE_S0;
105
106 fadt->flags |= cfg->common_config.fadt_flags; /* additional board-specific flags */
107
108 fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
109 fadt->x_pm1a_evt_blk.bit_width = 32;
110 fadt->x_pm1a_evt_blk.bit_offset = 0;
111 fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
112 fadt->x_pm1a_evt_blk.addrl = ACPI_PM_EVT_BLK;
113 fadt->x_pm1a_evt_blk.addrh = 0x0;
114
115 fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
116 fadt->x_pm1a_cnt_blk.bit_width = 16;
117 fadt->x_pm1a_cnt_blk.bit_offset = 0;
118 fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
119 fadt->x_pm1a_cnt_blk.addrl = ACPI_PM1_CNT_BLK;
120 fadt->x_pm1a_cnt_blk.addrh = 0x0;
121
122 fadt->x_pm_tmr_blk.space_id = ACPI_ADDRESS_SPACE_IO;
123 fadt->x_pm_tmr_blk.bit_width = 32;
124 fadt->x_pm_tmr_blk.bit_offset = 0;
125 fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
126 fadt->x_pm_tmr_blk.addrl = ACPI_PM_TMR_BLK;
127 fadt->x_pm_tmr_blk.addrh = 0x0;
128
129 fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO;
130 fadt->x_gpe0_blk.bit_width = 64;
131 fadt->x_gpe0_blk.bit_offset = 0;
132 fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS;
133 fadt->x_gpe0_blk.addrl = ACPI_GPE0_BLK;
134 fadt->x_gpe0_blk.addrh = 0x0;
135}
136
137static uint32_t get_pstate_core_freq(msr_t pstate_def)
138{
139 uint32_t core_freq, core_freq_mul, core_freq_div;
140 bool valid_freq_divisor;
141
142 /* Core frequency multiplier */
143 core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK;
144
145 /* Core frequency divisor ID */
146 core_freq_div =
147 (pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT;
148
149 if (core_freq_div == 0) {
150 return 0;
151 } else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN)
152 && (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) {
153 /* Allow 1/8 integer steps for this range */
154 valid_freq_divisor = 1;
155 } else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX)
156 && (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) {
157 /* Only allow 1/4 integer steps for this range */
158 valid_freq_divisor = 1;
159 } else {
160 valid_freq_divisor = 0;
161 }
162
163 if (valid_freq_divisor) {
164 /* 25 * core_freq_mul / (core_freq_div / 8) */
165 core_freq =
166 ((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div));
167 } else {
168 printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n",
169 core_freq_div);
170 core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul);
171 }
172 return core_freq;
173}
174
175static uint32_t get_pstate_core_power(msr_t pstate_def)
176{
177 uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw;
178
179 /* Core voltage ID */
180 core_vid =
181 (pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT;
182
183 /* Current value in amps */
184 current_value_amps =
185 (pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT;
186
187 /* Current divisor */
188 current_divisor =
189 (pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT;
190
191 /* Voltage */
192 if (core_vid == 0x00) {
193 /* Voltage off for VID code 0x00 */
194 voltage_in_uvolts = 0;
195 } else {
196 voltage_in_uvolts =
197 SERIAL_VID_BASE_MICROVOLTS + (SERIAL_VID_DECODE_MICROVOLTS * core_vid);
198 }
199
200 /* Power in mW */
201 power_in_mw = (voltage_in_uvolts) / 10 * current_value_amps;
202
203 switch (current_divisor) {
204 case 0:
205 power_in_mw = power_in_mw / 100L;
206 break;
207 case 1:
208 power_in_mw = power_in_mw / 1000L;
209 break;
210 case 2:
211 power_in_mw = power_in_mw / 10000L;
212 break;
213 case 3:
214 /* current_divisor is set to an undefined value.*/
215 printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
216 power_in_mw = 0;
217 break;
218 }
219
220 return power_in_mw;
221}
222
223/*
224 * Populate structure describing enabled p-states and return count of enabled p-states.
225 */
226static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
227 struct acpi_xpss_sw_pstate *pstate_xpss_values)
228{
229 msr_t pstate_def;
230 size_t pstate_count, pstate;
231 uint32_t pstate_enable, max_pstate;
232
233 pstate_count = 0;
234 max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;
235
236 for (pstate = 0; pstate <= max_pstate; pstate++) {
237 pstate_def = rdmsr(PSTATE_0_MSR + pstate);
238
239 pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK)
240 >> PSTATE_DEF_HI_ENABLE_SHIFT;
241 if (!pstate_enable)
242 continue;
243
244 pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def);
245 pstate_values[pstate_count].power = get_pstate_core_power(pstate_def);
246 pstate_values[pstate_count].transition_latency = 0;
247 pstate_values[pstate_count].bus_master_latency = 0;
248 pstate_values[pstate_count].control_value = pstate;
249 pstate_values[pstate_count].status_value = pstate;
250
251 pstate_xpss_values[pstate_count].core_freq =
252 (uint64_t)pstate_values[pstate_count].core_freq;
253 pstate_xpss_values[pstate_count].power =
254 (uint64_t)pstate_values[pstate_count].power;
255 pstate_xpss_values[pstate_count].transition_latency = 0;
256 pstate_xpss_values[pstate_count].bus_master_latency = 0;
257 pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
258 pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
259 pstate_count++;
260 }
261
262 return pstate_count;
263}
264
265void generate_cpu_entries(const struct device *device)
266{
267 int logical_cores;
268 size_t pstate_count, cpu, proc_blk_len;
269 struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
270 struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
271 uint32_t threads_per_core, proc_blk_addr;
272 uint32_t cstate_base_address =
273 rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;
274
275 const acpi_addr_t perf_ctrl = {
276 .space_id = ACPI_ADDRESS_SPACE_FIXED,
277 .bit_width = 64,
278 .addrl = PS_CTL_REG,
279 };
280 const acpi_addr_t perf_sts = {
281 .space_id = ACPI_ADDRESS_SPACE_FIXED,
282 .bit_width = 64,
283 .addrl = PS_STS_REG,
284 };
285
286 const acpi_cstate_t cstate_info[] = {
287 [0] = {
288 .ctype = 1,
289 .latency = 1,
290 .power = 0,
291 .resource = {
292 .space_id = ACPI_ADDRESS_SPACE_FIXED,
293 .bit_width = 2,
294 .bit_offset = 2,
295 .addrl = 0,
296 .addrh = 0,
297 },
298 },
299 [1] = {
300 .ctype = 2,
301 .latency = 0x12,
302 .power = 0,
303 .resource = {
304 .space_id = ACPI_ADDRESS_SPACE_IO,
305 .bit_width = 8,
306 .bit_offset = 0,
307 .addrl = cstate_base_address + 1,
308 .addrh = 0,
309 .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
310 },
311 },
312 [2] = {
313 .ctype = 3,
314 .latency = 350,
315 .power = 0,
316 .resource = {
317 .space_id = ACPI_ADDRESS_SPACE_IO,
318 .bit_width = 8,
319 .bit_offset = 0,
320 .addrl = cstate_base_address + 2,
321 .addrh = 0,
322 .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
323 },
324 },
325 };
326
327 threads_per_core = get_threads_per_core();
328 pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
329 logical_cores = get_cpu_count();
330
331 for (cpu = 0; cpu < logical_cores; cpu++) {
332
333 if (cpu == 0) {
334 /* BSP values for \_SB.Pxxx */
335 proc_blk_len = 6;
336 proc_blk_addr = ACPI_GPE0_BLK;
337 } else {
338 /* AP values for \_SB.Pxxx */
339 proc_blk_addr = 0;
340 proc_blk_len = 0;
341 }
342
343 acpigen_write_processor(cpu, proc_blk_addr, proc_blk_len);
344
345 acpigen_write_pct_package(&perf_ctrl, &perf_sts);
346
347 acpigen_write_pss_object(pstate_values, pstate_count);
348
349 acpigen_write_xpss_object(pstate_xpss_values, pstate_count);
350
351 if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
352 acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
353 HW_ALL);
354 else
355 acpigen_write_PSD_package(0, logical_cores, SW_ALL);
356
357 acpigen_write_PPC(0);
358
359 acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info));
360
361 acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core,
362 CSD_HW_ALL, 0);
363
364 generate_cppc_entries(cpu);
365
366 acpigen_pop_len();
367 }
368
369 acpigen_write_processor_package("PPKG", 0, logical_cores);
370}