blob: ecae91be08cfe2244424ca9e70cb82ecae5f1f4a [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/bsd/clamp.h>
#include <console/console.h>
#include <console/usb.h>
#include <cpu/intel/model_206ax/model_206ax.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <northbridge/intel/sandybridge/chip.h>
#include <stdbool.h>
#include <stdint.h>
#include "sandybridge.h"
#include "raminit_common.h"
#include "raminit_tables.h"
#define SNB_MIN_DCLK_133_MULT 3
#define SNB_MAX_DCLK_133_MULT 8
#define IVB_MIN_DCLK_133_MULT 3
#define IVB_MAX_DCLK_133_MULT 10
#define IVB_MIN_DCLK_100_MULT 7
#define IVB_MAX_DCLK_100_MULT 12
/* Frequency multiplier */
static u32 get_FRQ(const ramctr_timing *ctrl)
{
const u32 FRQ = 256000 / (ctrl->tCK * ctrl->base_freq);
if (IS_IVY_CPU(ctrl->cpu)) {
if (ctrl->base_freq == 100)
return clamp_u32(IVB_MIN_DCLK_100_MULT, FRQ, IVB_MAX_DCLK_100_MULT);
if (ctrl->base_freq == 133)
return clamp_u32(IVB_MIN_DCLK_133_MULT, FRQ, IVB_MAX_DCLK_133_MULT);
} else if (IS_SANDY_CPU(ctrl->cpu)) {
if (ctrl->base_freq == 133)
return clamp_u32(SNB_MIN_DCLK_133_MULT, FRQ, SNB_MAX_DCLK_133_MULT);
}
die("Unsupported CPU or base frequency.");
}
/* CAS write latency. To be programmed in MR2. See DDR3 SPEC for MR2 documentation. */
static u8 get_CWL(u32 tCK)
{
/* Get CWL based on tCK using the following rule */
switch (tCK) {
case TCK_1333MHZ:
return 12;
case TCK_1200MHZ:
case TCK_1100MHZ:
return 11;
case TCK_1066MHZ:
case TCK_1000MHZ:
return 10;
case TCK_933MHZ:
case TCK_900MHZ:
return 9;
case TCK_800MHZ:
case TCK_700MHZ:
return 8;
case TCK_666MHZ:
return 7;
case TCK_533MHZ:
return 6;
default:
return 5;
}
}
/* Get REFI based on frequency index, tREFI = 7.8usec */
static u32 get_REFI(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_refi_map[1][FRQ - 7];
else
return frq_refi_map[0][FRQ - 3];
}
/* Get XSOffset based on frequency index, tXS-Offset: tXS = tRFC + 10ns */
static u8 get_XSOffset(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_xs_map[1][FRQ - 7];
else
return frq_xs_map[0][FRQ - 3];
}
/* Get MOD based on frequency index */
static u8 get_MOD(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_mod_map[1][FRQ - 7];
else
return frq_mod_map[0][FRQ - 3];
}
/* Get Write Leveling Output delay based on frequency index */
static u8 get_WLO(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_wlo_map[1][FRQ - 7];
else
return frq_wlo_map[0][FRQ - 3];
}
/* Get CKE based on frequency index */
static u8 get_CKE(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_cke_map[1][FRQ - 7];
else
return frq_cke_map[0][FRQ - 3];
}
/* Get XPDLL based on frequency index */
static u8 get_XPDLL(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_xpdll_map[1][FRQ - 7];
else
return frq_xpdll_map[0][FRQ - 3];
}
/* Get XP based on frequency index */
static u8 get_XP(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_xp_map[1][FRQ - 7];
else
return frq_xp_map[0][FRQ - 3];
}
/* Get AONPD based on frequency index */
static u8 get_AONPD(u32 FRQ, u8 base_freq)
{
if (base_freq == 100)
return frq_aonpd_map[1][FRQ - 7];
else
return frq_aonpd_map[0][FRQ - 3];
}
/* Get COMP2 based on CPU generation and clock speed */
static u32 get_COMP2(const ramctr_timing *ctrl)
{
const bool is_ivybridge = IS_IVY_CPU(ctrl->cpu);
if (ctrl->tCK <= TCK_1066MHZ)
return is_ivybridge ? 0x0C235924 : 0x0C21410C;
else if (ctrl->tCK <= TCK_933MHZ)
return is_ivybridge ? 0x0C446964 : 0x0C42514C;
else if (ctrl->tCK <= TCK_800MHZ)
return is_ivybridge ? 0x0C6671E4 : 0x0C6369CC;
else if (ctrl->tCK <= TCK_666MHZ)
return is_ivybridge ? 0x0CA8C264 : 0x0CA57A4C;
else if (ctrl->tCK <= TCK_533MHZ)
return is_ivybridge ? 0x0CEBDB64 : 0x0CE7C34C;
else
return is_ivybridge ? 0x0D6FF5E4 : 0x0D6BEDCC;
}
/* Get updated COMP1 based on CPU generation and stepping */
static u32 get_COMP1(ramctr_timing *ctrl, const int channel)
{
const union comp_ofst_1_reg orig_comp = {
.raw = mchbar_read32(CRCOMPOFST1_ch(channel)),
};
if (IS_SANDY_CPU(ctrl->cpu) && !IS_SANDY_CPU_D2(ctrl->cpu)) {
union comp_ofst_1_reg comp_ofst_1 = orig_comp;
comp_ofst_1.clk_odt_up = 1;
comp_ofst_1.clk_drv_up = 1;
comp_ofst_1.ctl_drv_up = 1;
return comp_ofst_1.raw;
}
/* Fix PCODE COMP offset bug: revert to default values */
union comp_ofst_1_reg comp_ofst_1 = {
.dq_odt_down = 4,
.dq_odt_up = 4,
.clk_odt_down = 4,
.clk_odt_up = orig_comp.clk_odt_up,
.dq_drv_down = 4,
.dq_drv_up = orig_comp.dq_drv_up,
.clk_drv_down = 4,
.clk_drv_up = orig_comp.clk_drv_up,
.ctl_drv_down = 4,
.ctl_drv_up = orig_comp.ctl_drv_up,
};
if (IS_IVY_CPU(ctrl->cpu))
comp_ofst_1.dq_drv_up = 2; /* 28p6 ohms */
return comp_ofst_1.raw;
}
static void normalize_tclk(ramctr_timing *ctrl, bool ref_100mhz_support)
{
if (ctrl->tCK <= TCK_1200MHZ) {
ctrl->tCK = TCK_1200MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_1100MHZ) {
ctrl->tCK = TCK_1100MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_1000MHZ) {
ctrl->tCK = TCK_1000MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_900MHZ) {
ctrl->tCK = TCK_900MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_700MHZ) {
ctrl->tCK = TCK_700MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
ctrl->base_freq = 133;
} else {
ctrl->tCK = 0;
return;
}
if (!ref_100mhz_support && ctrl->base_freq == 100) {
/* Skip unsupported frequency */
ctrl->tCK++;
normalize_tclk(ctrl, ref_100mhz_support);
}
}
#define DEFAULT_TCK TCK_800MHZ
static unsigned int get_mem_min_tck(void)
{
u32 reg32;
u8 rev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
/* Actually, config of MCH or Host Bridge */
cfg = config_of_soc();
/* If non-zero, it was set in the devicetree */
if (cfg->max_mem_clock_mhz) {
if (cfg->max_mem_clock_mhz >= 1066)
return TCK_1066MHZ;
else if (cfg->max_mem_clock_mhz >= 933)
return TCK_933MHZ;
else if (cfg->max_mem_clock_mhz >= 800)
return TCK_800MHZ;
else if (cfg->max_mem_clock_mhz >= 666)
return TCK_666MHZ;
else if (cfg->max_mem_clock_mhz >= 533)
return TCK_533MHZ;
else
return TCK_400MHZ;
}
if (CONFIG(NATIVE_RAMINIT_IGNORE_MAX_MEM_FUSES))
return TCK_1333MHZ;
rev = pci_read_config8(HOST_BRIDGE, PCI_DEVICE_ID);
if ((rev & BASE_REV_MASK) == BASE_REV_SNB) {
/* Read Capabilities A Register DMFC bits */
reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_A);
reg32 &= 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
/* Reserved */
default:
break;
}
} else {
/* Read Capabilities B Register DMFC bits */
reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_B);
reg32 = (reg32 >> 4) & 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
case 4: return TCK_933MHZ;
case 3: return TCK_1066MHZ;
case 2: return TCK_1200MHZ;
case 1: return TCK_1333MHZ;
/* Reserved */
default:
break;
}
}
return DEFAULT_TCK;
}
static void find_cas_tck(ramctr_timing *ctrl)
{
u8 val;
u32 reg32;
u8 ref_100mhz_support;
/* 100 MHz reference clock supported */
reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_B);
ref_100mhz_support = (reg32 >> 21) & 0x7;
printk(BIOS_DEBUG, "100MHz reference clock support: %s\n", ref_100mhz_support ? "yes"
: "no");
printk(BIOS_DEBUG, "PLL_REF100_CFG value: 0x%x\n", ref_100mhz_support);
ctrl->tCK = get_mem_min_tck();
/* Find CAS latency */
while (1) {
/*
* Normalising tCK before computing clock could potentially
* result in a lower selected CAS, which is desired.
*/
normalize_tclk(ctrl, ref_100mhz_support);
if (!(ctrl->tCK))
die("Couldn't find compatible clock / CAS settings\n");
val = DIV_ROUND_UP(ctrl->tAA, ctrl->tCK);
printk(BIOS_DEBUG, "Trying CAS %u, tCK %u.\n", val, ctrl->tCK);
for (; val <= MAX_CAS; val++)
if ((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
break;
if (val == (MAX_CAS + 1)) {
ctrl->tCK++;
continue;
} else {
printk(BIOS_DEBUG, "Found compatible clock, CAS pair.\n");
break;
}
}
/* Frequency multiplier */
ctrl->FRQ = get_FRQ(ctrl);
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", NS2MHZ_DIV256 / ctrl->tCK);
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
}
static void dram_timing(ramctr_timing *ctrl)
{
/*
* On Sandy Bridge, the maximum supported DDR3 frequency is 1066MHz (DDR3 2133).
* Cap it for faster DIMMs, and align it to the closest JEDEC standard frequency.
*/
/*
* On Ivy Bridge, the maximum supported DDR3 frequency is 1400MHz (DDR3 2800).
* Cap it at 1200MHz (DDR3 2400), and align it to the closest JEDEC standard frequency.
*/
if (ctrl->tCK == TCK_1200MHZ) {
ctrl->edge_offset[0] = 18; //XXX: guessed
ctrl->edge_offset[1] = 8;
ctrl->edge_offset[2] = 8;
ctrl->tx_dq_offset[0] = 20; //XXX: guessed
ctrl->tx_dq_offset[1] = 8;
ctrl->tx_dq_offset[2] = 8;
ctrl->pi_coding_threshold = 10;
} else if (ctrl->tCK == TCK_1100MHZ) {
ctrl->edge_offset[0] = 17; //XXX: guessed
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->tx_dq_offset[0] = 19; //XXX: guessed
ctrl->tx_dq_offset[1] = 7;
ctrl->tx_dq_offset[2] = 7;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_1066MHZ) {
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->tx_dq_offset[0] = 18;
ctrl->tx_dq_offset[1] = 7;
ctrl->tx_dq_offset[2] = 7;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_1000MHZ) {
ctrl->edge_offset[0] = 15; //XXX: guessed
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->tx_dq_offset[0] = 17; //XXX: guessed
ctrl->tx_dq_offset[1] = 6;
ctrl->tx_dq_offset[2] = 6;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_933MHZ) {
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->tx_dq_offset[0] = 15;
ctrl->tx_dq_offset[1] = 6;
ctrl->tx_dq_offset[2] = 6;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_900MHZ) {
ctrl->edge_offset[0] = 14; //XXX: guessed
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->tx_dq_offset[0] = 15; //XXX: guessed
ctrl->tx_dq_offset[1] = 6;
ctrl->tx_dq_offset[2] = 6;
ctrl->pi_coding_threshold = 12;
} else if (ctrl->tCK == TCK_800MHZ) {
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->tx_dq_offset[0] = 14;
ctrl->tx_dq_offset[1] = 5;
ctrl->tx_dq_offset[2] = 5;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_700MHZ) {
ctrl->edge_offset[0] = 13; //XXX: guessed
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->tx_dq_offset[0] = 14; //XXX: guessed
ctrl->tx_dq_offset[1] = 5;
ctrl->tx_dq_offset[2] = 5;
ctrl->pi_coding_threshold = 16;
} else if (ctrl->tCK == TCK_666MHZ) {
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->tx_dq_offset[0] = 11;
ctrl->tx_dq_offset[1] = 4;
ctrl->tx_dq_offset[2] = 4;
ctrl->pi_coding_threshold = 16;
} else if (ctrl->tCK == TCK_533MHZ) {
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->tx_dq_offset[0] = 9;
ctrl->tx_dq_offset[1] = 3;
ctrl->tx_dq_offset[2] = 3;
ctrl->pi_coding_threshold = 17;
} else { /* TCK_400MHZ */
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->tx_dq_offset[0] = 6;
ctrl->tx_dq_offset[1] = 2;
ctrl->tx_dq_offset[2] = 2;
ctrl->pi_coding_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->pi_code_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->mdll_wake_delay = (128000 / ctrl->tCK) + 3;
if (ctrl->tCWL)
ctrl->CWL = DIV_ROUND_UP(ctrl->tCWL, ctrl->tCK);
else
ctrl->CWL = get_CWL(ctrl->tCK);
ctrl->tRCD = DIV_ROUND_UP(ctrl->tRCD, ctrl->tCK);
ctrl->tRP = DIV_ROUND_UP(ctrl->tRP, ctrl->tCK);
ctrl->tRAS = DIV_ROUND_UP(ctrl->tRAS, ctrl->tCK);
ctrl->tWR = DIV_ROUND_UP(ctrl->tWR, ctrl->tCK);
ctrl->tFAW = DIV_ROUND_UP(ctrl->tFAW, ctrl->tCK);
ctrl->tRRD = DIV_ROUND_UP(ctrl->tRRD, ctrl->tCK);
ctrl->tRTP = DIV_ROUND_UP(ctrl->tRTP, ctrl->tCK);
ctrl->tWTR = DIV_ROUND_UP(ctrl->tWTR, ctrl->tCK);
ctrl->tRFC = DIV_ROUND_UP(ctrl->tRFC, ctrl->tCK);
ctrl->tREFI = get_REFI(ctrl->FRQ, ctrl->base_freq);
ctrl->tMOD = get_MOD(ctrl->FRQ, ctrl->base_freq);
ctrl->tXSOffset = get_XSOffset(ctrl->FRQ, ctrl->base_freq);
ctrl->tWLO = get_WLO(ctrl->FRQ, ctrl->base_freq);
ctrl->tCKE = get_CKE(ctrl->FRQ, ctrl->base_freq);
ctrl->tXPDLL = get_XPDLL(ctrl->FRQ, ctrl->base_freq);
ctrl->tXP = get_XP(ctrl->FRQ, ctrl->base_freq);
ctrl->tAONPD = get_AONPD(ctrl->FRQ, ctrl->base_freq);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
}
static void dram_freq(ramctr_timing *ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk(BIOS_ERR,
"DRAM frequency is under lowest supported frequency (400 MHz). "
"Increasing to 400 MHz as last resort.\n");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Determine target MPLL frequency */
find_cas_tck(ctrl);
/*
* The MPLL will never lock if the requested frequency is already set.
* Exit early to prevent a system hang.
*/
reg1 = mchbar_read32(MC_BIOS_DATA);
val2 = (u8)reg1;
if (val2)
return;
/* Step 2 - Request MPLL frequency through the PCU */
reg1 = ctrl->FRQ;
if (ctrl->base_freq == 100)
reg1 |= (1 << 8); /* Use 100MHz reference clock */
reg1 |= (1 << 31); /* Set running bit */
mchbar_write32(MC_BIOS_REQ, reg1);
int i = 0;
printk(BIOS_DEBUG, "MPLL busy... ");
while (reg1 & (1 << 31)) {
udelay(10);
i++;
reg1 = mchbar_read32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = mchbar_read32(MC_BIOS_DATA);
val2 = (u8)reg1;
if (val2 >= ctrl->FRQ) {
printk(BIOS_DEBUG, "MPLL frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "MPLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing *ctrl)
{
int channel;
/* IO clock */
FOR_ALL_CHANNELS {
mchbar_write32(GDCRCLKRANKSUSED_ch(channel), ctrl->rankmap[channel]);
}
/* IO command */
FOR_ALL_CHANNELS {
mchbar_write32(GDCRCTLRANKSUSED_ch(channel), ctrl->rankmap[channel]);
}
/* IO control */
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
/* Perform RCOMP */
printram("RCOMP...");
while (!(mchbar_read32(RCOMP_TIMER) & (1 << 16)))
;
printram("done\n");
/* Set COMP2 */
mchbar_write32(CRCOMPOFST2, get_COMP2(ctrl));
printram("COMP2 done\n");
/* Set COMP1 */
FOR_ALL_POPULATED_CHANNELS {
mchbar_write32(CRCOMPOFST1_ch(channel), get_COMP1(ctrl, channel));
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
mchbar_setbits32(M_COMP, 1 << 8);
udelay(20);
printram("done\n");
}
int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot, int s3resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting %s Bridge RAM training (%s).\n",
IS_SANDY_CPU(ctrl->cpu) ? "Sandy" : "Ivy",
fast_boot ? "fast boot" : "full initialization");
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MPLL frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
mchbar_write32(MRC_REVISION, 0xc04eb002);
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
mchbar_write32(PM_THML_STAT, 0x5500);
/* Set scheduler chicken bits */
mchbar_write32(SCHED_CBIT, 0x10100005);
/* Set up watermarks and starvation counter */
set_wmm_behavior(ctrl->cpu);
/* Clear IO reset bit */
mchbar_clrbits32(MC_INIT_STATE_G, 1 << 5);
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl, 1);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do JEDEC DDR3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = receive_enable_calibration(ctrl);
if (err)
return err;
err = read_mpr_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = aggressive_read_training(ctrl);
if (err)
return err;
err = aggressive_write_training(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_read_write_timings(ctrl);
if (!s3resume) {
err = channel_test(ctrl);
if (err)
return err;
}
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl, 0);
return 0;
}