blob: 98b302850cddda60dab61787d258c8885bfea37e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/hpet.h>
#include <console/console.h>
#include <console/usb.h>
#include <cf9_reset.h>
#include <string.h>
#include <device/device.h>
#include <device/dram/ddr3.h>
#include <device/pci_ops.h>
#include <arch/cpu.h>
#include <cbmem.h>
#include <cbfs.h>
#include <commonlib/bsd/ipchksum.h>
#include <cpu/intel/model_206ax/model_206ax.h>
#include <pc80/mc146818rtc.h>
#include <device/pci_def.h>
#include <lib.h>
#include <mrc_cache.h>
#include <spd.h>
#include <smbios.h>
#include <stddef.h>
#include <stdint.h>
#include <timestamp.h>
#include "raminit.h"
#include "pei_data.h"
#include "sandybridge.h"
#include "chip.h"
#include <security/vboot/vboot_common.h>
#include <southbridge/intel/bd82x6x/pch.h>
#include <memory_info.h>
#include <mode_switch.h>
/* Management Engine is in the southbridge */
#include <southbridge/intel/bd82x6x/me.h>
/*
* MRC scrambler seed offsets should be reserved in
* mainboard cmos.layout and not covered by checksum.
*/
#if CONFIG(USE_OPTION_TABLE)
#include "option_table.h"
#define CMOS_OFFSET_MRC_SEED (CMOS_VSTART_mrc_scrambler_seed >> 3)
#define CMOS_OFFSET_MRC_SEED_S3 (CMOS_VSTART_mrc_scrambler_seed_s3 >> 3)
#define CMOS_OFFSET_MRC_SEED_CHK (CMOS_VSTART_mrc_scrambler_seed_chk >> 3)
#else
#define CMOS_OFFSET_MRC_SEED 152
#define CMOS_OFFSET_MRC_SEED_S3 156
#define CMOS_OFFSET_MRC_SEED_CHK 160
#endif
#define MRC_CACHE_VERSION 0
/* Assembly functions: */
void mrc_wrapper(void *func_ptr, uint32_t arg1);
void __prot2lm_do_putchar(uint8_t byte);
static void save_mrc_data(struct pei_data *pei_data)
{
u16 c1, c2, checksum;
/* Save the MRC S3 restore data to cbmem */
mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION,
(void *)(uintptr_t)pei_data->mrc_output_ptr,
pei_data->mrc_output_len);
/* Save the MRC seed values to CMOS */
cmos_write32(pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
printk(BIOS_DEBUG, "Save scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
cmos_write32(pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
printk(BIOS_DEBUG, "Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Save a simple checksum of the seed values */
c1 = ipchksum((u8 *)&pei_data->scrambler_seed, sizeof(u32));
c2 = ipchksum((u8 *)&pei_data->scrambler_seed_s3, sizeof(u32));
checksum = ipchksum_add(sizeof(u32), c1, c2);
cmos_write((checksum >> 0) & 0xff, CMOS_OFFSET_MRC_SEED_CHK);
cmos_write((checksum >> 8) & 0xff, CMOS_OFFSET_MRC_SEED_CHK + 1);
}
static void prepare_mrc_cache(struct pei_data *pei_data)
{
u16 c1, c2, checksum, seed_checksum;
size_t mrc_size;
/* Preset just in case there is an error */
pei_data->mrc_input_ptr = 0;
pei_data->mrc_input_len = 0;
/* Read scrambler seeds from CMOS */
pei_data->scrambler_seed = cmos_read32(CMOS_OFFSET_MRC_SEED);
printk(BIOS_DEBUG, "Read scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
pei_data->scrambler_seed_s3 = cmos_read32(CMOS_OFFSET_MRC_SEED_S3);
printk(BIOS_DEBUG, "Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Compute seed checksum and compare */
c1 = ipchksum((u8 *)&pei_data->scrambler_seed, sizeof(u32));
c2 = ipchksum((u8 *)&pei_data->scrambler_seed_s3, sizeof(u32));
checksum = ipchksum_add(sizeof(u32), c1, c2);
seed_checksum = cmos_read(CMOS_OFFSET_MRC_SEED_CHK);
seed_checksum |= cmos_read(CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
if (checksum != seed_checksum) {
printk(BIOS_ERR, "%s: invalid seed checksum\n", __func__);
pei_data->scrambler_seed = 0;
pei_data->scrambler_seed_s3 = 0;
return;
}
pei_data->mrc_input_ptr = (uintptr_t)mrc_cache_current_mmap_leak(MRC_TRAINING_DATA,
MRC_CACHE_VERSION,
&mrc_size);
if (!pei_data->mrc_input_ptr) {
/* Error message printed in find_current_mrc_cache */
return;
}
pei_data->mrc_input_len = mrc_size;
printk(BIOS_DEBUG, "%s: at 0x%x, size %zx\n", __func__,
pei_data->mrc_input_ptr, mrc_size);
}
/**
* Find PEI executable in coreboot filesystem and execute it.
*
* @param pei_data: configuration data for UEFI PEI reference code
*/
static void sdram_initialize(struct pei_data *pei_data)
{
int (*entry)(struct pei_data *pei_data);
/* Wait for ME to be ready */
intel_early_me_init();
intel_early_me_uma_size();
printk(BIOS_DEBUG, "Starting UEFI PEI System Agent\n");
/*
* Always pass in mrc_cache data. The driver will determine
* whether to use the data or not.
*/
prepare_mrc_cache(pei_data);
/* If MRC data is not found we cannot continue S3 resume. */
if (pei_data->boot_mode == 2 && !pei_data->mrc_input_ptr) {
printk(BIOS_DEBUG, "Giving up in %s: No MRC data\n", __func__);
system_reset();
}
/*
* Pass console handler in pei_data. On x86_64 provide a wrapper around
* do_putchar that switches to long mode before calling do_putchar.
*/
if (ENV_X86_64)
pei_data->tx_byte_ptr = (uintptr_t)__prot2lm_do_putchar;
else
pei_data->tx_byte_ptr = (uintptr_t)do_putchar;
/* Locate and call UEFI System Agent binary. */
entry = cbfs_map("mrc.bin", NULL);
if (entry) {
int rv;
rv = protected_mode_call_2arg(mrc_wrapper, (uintptr_t)entry, (uintptr_t)pei_data);
if (rv) {
switch (rv) {
case -1:
printk(BIOS_ERR, "PEI version mismatch.\n");
break;
case -2:
printk(BIOS_ERR, "Invalid memory frequency.\n");
break;
default:
printk(BIOS_ERR, "MRC returned %x.\n", rv);
}
die_with_post_code(POSTCODE_INVALID_VENDOR_BINARY,
"Nonzero MRC return value.\n");
}
} else {
die("UEFI PEI System Agent not found.\n");
}
/* mrc.bin reconfigures USB, so reinit it to have debug */
if (CONFIG(USBDEBUG_IN_PRE_RAM))
usbdebug_hw_init(true);
/* Print the MRC version after executing the UEFI PEI stage */
u32 version = mchbar_read32(MRC_REVISION);
printk(BIOS_DEBUG, "MRC Version %u.%u.%u Build %u\n",
(version >> 24) & 0xff, (version >> 16) & 0xff,
(version >> 8) & 0xff, (version >> 0) & 0xff);
/*
* Send ME init done for SandyBridge here.
* This is done inside the SystemAgent binary on IvyBridge.
*/
if (BASE_REV_SNB == (pci_read_config16(PCI_CPU_DEVICE, PCI_DEVICE_ID) & BASE_REV_MASK))
intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
else
intel_early_me_status();
report_memory_config();
}
/*
* These are the location and structure of MRC_VAR data in CAR.
* The CAR region looks like this:
* +------------------+ -> DCACHE_RAM_BASE
* | |
* | |
* | COREBOOT STACK |
* | |
* | |
* +------------------+ -> DCACHE_RAM_BASE + DCACHE_RAM_SIZE
* | |
* | MRC HEAP |
* | size = 0x5000 |
* | |
* +------------------+
* | |
* | MRC VAR |
* | size = 0x4000 |
* | |
* +------------------+ -> DACHE_RAM_BASE + DACHE_RAM_SIZE
* + DCACHE_RAM_MRC_VAR_SIZE
*/
#define DCACHE_RAM_MRC_VAR_BASE (CONFIG_DCACHE_RAM_BASE + CONFIG_DCACHE_RAM_SIZE \
+ CONFIG_DCACHE_RAM_MRC_VAR_SIZE - 0x4000)
struct mrc_var_data {
u32 acpi_timer_flag;
u32 pool_used;
u32 pool_base;
u32 tx_byte;
u32 reserved[4];
} __packed;
static bool do_pcie_init(void)
{
if (IS_IVY_CPU(cpu_get_cpuid())) {
return is_devfn_enabled(PCI_DEVFN(1, 0));
} else {
return false;
}
}
static void devicetree_fill_pei_data(struct pei_data *pei_data)
{
const struct northbridge_intel_sandybridge_config *cfg = config_of_soc();
switch (cfg->max_mem_clock_mhz) {
/* MRC only supports fixed numbers of frequencies */
default:
printk(BIOS_WARNING, "RAMINIT: Limiting DDR3 clock to 800 Mhz\n");
__fallthrough;
case 400:
pei_data->max_ddr3_freq = 800;
break;
case 533:
pei_data->max_ddr3_freq = 1066;
break;
case 666:
pei_data->max_ddr3_freq = 1333;
break;
case 800:
pei_data->max_ddr3_freq = 1600;
break;
}
/*
* SPD addresses are listed in devicetree as actual addresses,
* and for MRC need to be shifted left so bit 0 is always zero.
*/
if (!CONFIG(HAVE_SPD_IN_CBFS)) {
for (unsigned int i = 0; i < ARRAY_SIZE(cfg->spd_addresses); i++) {
pei_data->spd_addresses[i] = cfg->spd_addresses[i] << 1;
}
}
memcpy(pei_data->ts_addresses, cfg->ts_addresses, sizeof(pei_data->ts_addresses));
}
static void spd_fill_pei_data(struct pei_data *pei_data)
{
struct spd_info spdi = {0};
unsigned int i, have_memory_down = 0;
mb_get_spd_map(&spdi);
for (i = 0; i < ARRAY_SIZE(spdi.addresses); i++) {
if (spdi.addresses[i] == SPD_MEMORY_DOWN) {
pei_data->spd_addresses[i] = 0;
have_memory_down = 1;
} else {
/* MRC expects left-aligned SMBus addresses. */
pei_data->spd_addresses[i] = spdi.addresses[i] << 1;
}
}
/* Copy SPD data from CBFS for on-board memory */
if (have_memory_down) {
printk(BIOS_DEBUG, "SPD index %d\n", spdi.spd_index);
size_t spd_file_len;
uint8_t *spd_file = cbfs_map("spd.bin", &spd_file_len);
if (!spd_file)
die("SPD data %s!", "not found");
if (spd_file_len < ((spdi.spd_index + 1) * SPD_SIZE_MAX_DDR3))
die("SPD data %s!", "incomplete");
/* MRC only uses index 0... */
memcpy(pei_data->spd_data[0], spd_file + (spdi.spd_index * SPD_SIZE_MAX_DDR3), SPD_SIZE_MAX_DDR3);
/* but coreboot uses the other indices */
for (i = 1; i < ARRAY_SIZE(spdi.addresses); i++) {
if (spdi.addresses[i] == SPD_MEMORY_DOWN)
memcpy(pei_data->spd_data[i], pei_data->spd_data[0], SPD_SIZE_MAX_DDR3);
}
}
}
static void disable_p2p(void)
{
/* Disable PCI-to-PCI bridge early to prevent probing by MRC */
const struct device *const p2p = pcidev_on_root(0x1e, 0);
if (p2p && p2p->enabled)
return;
RCBA32(FD) |= PCH_DISABLE_P2P;
}
static void setup_sdram_meminfo(struct pei_data *pei_data);
void perform_raminit(int s3resume)
{
const struct northbridge_intel_sandybridge_config *cfg = config_of_soc();
struct pei_data pei_data = {
.pei_version = PEI_VERSION,
.mchbar = CONFIG_FIXED_MCHBAR_MMIO_BASE,
.dmibar = CONFIG_FIXED_DMIBAR_MMIO_BASE,
.epbar = CONFIG_FIXED_EPBAR_MMIO_BASE,
.pciexbar = CONFIG_ECAM_MMCONF_BASE_ADDRESS,
.smbusbar = CONFIG_FIXED_SMBUS_IO_BASE,
.wdbbar = 0x4000000,
.wdbsize = 0x1000,
.hpet_address = HPET_BASE_ADDRESS,
.rcba = (uintptr_t)DEFAULT_RCBA,
.pmbase = DEFAULT_PMBASE,
.gpiobase = DEFAULT_GPIOBASE,
.thermalbase = 0xfed08000,
.tseg_size = CONFIG_SMM_TSEG_SIZE,
.system_type = !(get_platform_type() == PLATFORM_MOBILE),
.pcie_init = do_pcie_init(),
.gbe_enable = is_devfn_enabled(PCI_DEVFN(0x19, 0)),
.boot_mode = s3resume ? BOOT_PATH_RESUME : BOOT_PATH_NORMAL,
.ec_present = cfg->ec_present,
.ddr3lv_support = cfg->ddr3lv_support,
.nmode = cfg->nmode,
.ddr_refresh_rate_config = cfg->ddr_refresh_rate_config,
.usb3.mode = cfg->usb3.mode,
/* .usb3.hs_port_switch_mask = native config->xhci_switchable_ports */
.usb3.preboot_support = cfg->usb3.preboot_support,
.usb3.xhci_streams = cfg->usb3.xhci_streams,
};
struct mrc_var_data *mrc_var;
/* Prepare USB controller early in S3 resume */
if (s3resume)
enable_usb_bar();
southbridge_fill_pei_data(&pei_data);
devicetree_fill_pei_data(&pei_data);
if (CONFIG(HAVE_SPD_IN_CBFS))
spd_fill_pei_data(&pei_data);
mainboard_fill_pei_data(&pei_data);
post_code(0x3a);
/* Fill after mainboard_fill_pei_data as it might provide spd_data */
pei_data.dimm_channel0_disabled =
(!pei_data.spd_addresses[0] && !pei_data.spd_data[0][0]) +
(!pei_data.spd_addresses[1] && !pei_data.spd_data[1][0]) * 2;
pei_data.dimm_channel1_disabled =
(!pei_data.spd_addresses[2] && !pei_data.spd_data[2][0]) +
(!pei_data.spd_addresses[3] && !pei_data.spd_data[3][0]) * 2;
disable_p2p();
timestamp_add_now(TS_INITRAM_START);
sdram_initialize(&pei_data);
timestamp_add_now(TS_INITRAM_END);
/* Sanity check mrc_var location by verifying a known field */
mrc_var = (void *)DCACHE_RAM_MRC_VAR_BASE;
if (mrc_var->tx_byte == pei_data.tx_byte_ptr) {
printk(BIOS_DEBUG, "MRC_VAR pool occupied [%08x,%08x]\n",
mrc_var->pool_base, mrc_var->pool_base + mrc_var->pool_used);
} else {
printk(BIOS_ERR, "Could not parse MRC_VAR data\n");
hexdump(mrc_var, sizeof(*mrc_var));
}
const int cbmem_was_initted = !cbmem_recovery(s3resume);
if (!s3resume)
save_mrc_data(&pei_data);
if (s3resume && !cbmem_was_initted) {
/* Failed S3 resume, reset to come up cleanly */
system_reset();
}
setup_sdram_meminfo(&pei_data);
}
static void setup_sdram_meminfo(struct pei_data *pei_data)
{
u32 addr_decode_ch[2];
struct memory_info *mem_info;
struct dimm_info *dimm;
int dimm_size;
int i;
int dimm_cnt = 0;
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info));
memset(mem_info, 0, sizeof(struct memory_info));
addr_decode_ch[0] = mchbar_read32(MAD_DIMM_CH0);
addr_decode_ch[1] = mchbar_read32(MAD_DIMM_CH1);
const int refclk = mchbar_read32(MC_BIOS_REQ) & 0x100 ? 100 : 133;
const int ddr_frequency = (mchbar_read32(MC_BIOS_DATA) * refclk * 100 * 2 + 50) / 100;
for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
u32 ch_conf = addr_decode_ch[i];
/* DIMM-A */
dimm_size = ((ch_conf >> 0) & 0xff) * 256;
if (dimm_size) {
dimm = &mem_info->dimm[dimm_cnt];
dimm->dimm_size = dimm_size;
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = ddr_frequency;
dimm->rank_per_dimm = 1 + ((ch_conf >> 17) & 1);
dimm->channel_num = i;
dimm->dimm_num = 0;
dimm->bank_locator = i * 2;
memcpy(dimm->serial, /* bytes 122-125 */
&pei_data->spd_data[0][SPD_DDR3_SERIAL_NUM],
sizeof(uint8_t) * SPD_DDR3_SERIAL_LEN);
memcpy(dimm->module_part_number, /* bytes 128-145 */
&pei_data->spd_data[0][SPD_DDR3_PART_NUM],
sizeof(uint8_t) * SPD_DDR3_PART_LEN);
dimm->mod_id = /* bytes 117/118 */
(pei_data->spd_data[0][SPD_DDR3_MOD_ID2] << 8) |
(pei_data->spd_data[0][SPD_DDR3_MOD_ID1] & 0xFF);
dimm->mod_type = SPD_DDR3_DIMM_TYPE_SO_DIMM;
dimm->bus_width = MEMORY_BUS_WIDTH_64;
dimm_cnt++;
}
/* DIMM-B */
dimm_size = ((ch_conf >> 8) & 0xff) * 256;
if (dimm_size) {
dimm = &mem_info->dimm[dimm_cnt];
dimm->dimm_size = dimm_size;
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = ddr_frequency;
dimm->rank_per_dimm = 1 + ((ch_conf >> 18) & 1);
dimm->channel_num = i;
dimm->dimm_num = 1;
dimm->bank_locator = i * 2;
memcpy(dimm->serial, /* bytes 122-125 */
&pei_data->spd_data[0][SPD_DDR3_SERIAL_NUM],
sizeof(uint8_t) * SPD_DDR3_SERIAL_LEN);
memcpy(dimm->module_part_number, /* bytes 128-145 */
&pei_data->spd_data[0][SPD_DDR3_PART_NUM],
sizeof(uint8_t) * SPD_DDR3_PART_LEN);
dimm->mod_id = /* bytes 117/118 */
(pei_data->spd_data[0][SPD_DDR3_MOD_ID2] << 8) |
(pei_data->spd_data[0][SPD_DDR3_MOD_ID1] & 0xFF);
dimm->mod_type = SPD_DDR3_DIMM_TYPE_SO_DIMM;
dimm->bus_width = MEMORY_BUS_WIDTH_64;
dimm_cnt++;
}
}
mem_info->dimm_cnt = dimm_cnt;
}