blob: aac852ab11d30cf47e7481e0935537de000539fb [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/bsd/gcd.h>
#include <console/console.h>
#include <cpu/intel/model_2065x/model_2065x.h>
#include <cpu/x86/msr.h>
#include <delay.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <northbridge/intel/ironlake/raminit.h>
#include <types.h>
#define NORTHBRIDGE PCI_DEV(0, 0, 0)
static inline int div_roundup(int a, int b)
{
return DIV_ROUND_UP(a, b);
}
static u32 lcm(u32 a, u32 b)
{
return (a * b) / gcd(a, b);
}
struct stru1 {
u8 freqs_reversed;
u8 freq_diff_reduced;
u8 freq_min_reduced;
u8 divisor_f4_to_fmax;
u8 divisor_f3_to_fmax;
u8 freq4_to_max_remainder;
u8 freq3_to_2_remainder;
u8 freq3_to_2_remaindera;
u8 freq4_to_2_remainder;
int divisor_f3_to_f1, divisor_f4_to_f2;
int common_time_unit_ps;
int freq_max_reduced;
};
static void
compute_frequence_ratios(struct raminfo *info, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int round_it,
int add_freqs, struct stru1 *result)
{
int g;
int common_time_unit_ps;
int freq1_reduced, freq2_reduced;
int freq_min_reduced;
int freq_max_reduced;
int freq3, freq4;
g = gcd(freq1, freq2);
freq1_reduced = freq1 / g;
freq2_reduced = freq2 / g;
freq_min_reduced = MIN(freq1_reduced, freq2_reduced);
freq_max_reduced = MAX(freq1_reduced, freq2_reduced);
common_time_unit_ps = div_roundup(900000, lcm(freq1, freq2));
freq3 = div_roundup(num_cycles_2, common_time_unit_ps) - 1;
freq4 = div_roundup(num_cycles_1, common_time_unit_ps) - 1;
if (add_freqs) {
freq3 += freq2_reduced;
freq4 += freq1_reduced;
}
if (round_it) {
result->freq3_to_2_remainder = 0;
result->freq3_to_2_remaindera = 0;
result->freq4_to_max_remainder = 0;
result->divisor_f4_to_f2 = 0;
result->divisor_f3_to_f1 = 0;
} else {
if (freq2_reduced < freq1_reduced) {
result->freq3_to_2_remainder =
result->freq3_to_2_remaindera =
freq3 % freq1_reduced - freq1_reduced + 1;
result->freq4_to_max_remainder =
-(freq4 % freq1_reduced);
result->divisor_f3_to_f1 = freq3 / freq1_reduced;
result->divisor_f4_to_f2 =
(freq4 -
(freq1_reduced - freq2_reduced)) / freq2_reduced;
result->freq4_to_2_remainder =
-(char)((freq1_reduced - freq2_reduced) +
((u8)freq4 -
(freq1_reduced -
freq2_reduced)) % (u8)freq2_reduced);
} else {
if (freq2_reduced > freq1_reduced) {
result->freq4_to_max_remainder =
(freq4 % freq2_reduced) - freq2_reduced + 1;
result->freq4_to_2_remainder =
freq4 % freq_max_reduced -
freq_max_reduced + 1;
} else {
result->freq4_to_max_remainder =
-(freq4 % freq2_reduced);
result->freq4_to_2_remainder =
-(char)(freq4 % freq_max_reduced);
}
result->divisor_f4_to_f2 = freq4 / freq2_reduced;
result->divisor_f3_to_f1 =
(freq3 -
(freq2_reduced - freq1_reduced)) / freq1_reduced;
result->freq3_to_2_remainder = -(freq3 % freq2_reduced);
result->freq3_to_2_remaindera =
-(char)((freq_max_reduced - freq_min_reduced) +
(freq3 -
(freq_max_reduced -
freq_min_reduced)) % freq1_reduced);
}
}
result->divisor_f3_to_fmax = freq3 / freq_max_reduced;
result->divisor_f4_to_fmax = freq4 / freq_max_reduced;
if (round_it) {
if (freq2_reduced > freq1_reduced) {
if (freq3 % freq_max_reduced)
result->divisor_f3_to_fmax++;
}
if (freq2_reduced < freq1_reduced) {
if (freq4 % freq_max_reduced)
result->divisor_f4_to_fmax++;
}
}
result->freqs_reversed = (freq2_reduced < freq1_reduced);
result->freq_diff_reduced = freq_max_reduced - freq_min_reduced;
result->freq_min_reduced = freq_min_reduced;
result->common_time_unit_ps = common_time_unit_ps;
result->freq_max_reduced = freq_max_reduced;
}
static void compute_274265(struct raminfo *info)
{
int delay_a_ps, delay_b_ps, delay_c_ps, delay_d_ps;
int delay_e_ps, delay_e_cycles, delay_f_cycles;
int delay_e_over_cycle_ps;
int cycletime_ps;
int channel;
delay_a_ps = 4 * halfcycle_ps(info) + 6 * fsbcycle_ps(info);
info->training.reg2ca9_bit0 = 0;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
cycletime_ps =
900000 / lcm(2 * info->fsb_frequency, frequency_11(info));
delay_d_ps =
(halfcycle_ps(info) * get_max_timing(info, channel) >> 6)
- info->some_delay_3_ps_rounded + 200;
if (!
((info->silicon_revision == 0
|| info->silicon_revision == 1)
&& (info->revision >= 8)))
delay_d_ps += halfcycle_ps(info) * 2;
delay_d_ps +=
halfcycle_ps(info) * (!info->revision_flag_1 +
info->some_delay_2_halfcycles_ceil +
2 * info->some_delay_1_cycle_floor +
info->clock_speed_index +
2 * info->cas_latency - 7 + 11);
delay_d_ps += info->revision >= 8 ? 2758 : 4428;
mchbar_clrsetbits32(0x140, 7 << 24, 2 << 24);
mchbar_clrsetbits32(0x138, 7 << 24, 2 << 24);
if ((mchbar_read8(0x144) & 0x1f) > 0x13)
delay_d_ps += 650;
delay_c_ps = delay_d_ps + 1800;
if (delay_c_ps <= delay_a_ps)
delay_e_ps = 0;
else
delay_e_ps =
cycletime_ps * div_roundup(delay_c_ps - delay_a_ps,
cycletime_ps);
delay_e_over_cycle_ps = delay_e_ps % (2 * halfcycle_ps(info));
delay_e_cycles = delay_e_ps / (2 * halfcycle_ps(info));
delay_f_cycles =
div_roundup(2500 - delay_e_over_cycle_ps,
2 * halfcycle_ps(info));
if (delay_f_cycles > delay_e_cycles) {
info->delay46_ps[channel] = delay_e_ps;
delay_e_cycles = 0;
} else {
info->delay46_ps[channel] =
delay_e_over_cycle_ps +
2 * halfcycle_ps(info) * delay_f_cycles;
delay_e_cycles -= delay_f_cycles;
}
if (info->delay46_ps[channel] < 2500) {
info->delay46_ps[channel] = 2500;
info->training.reg2ca9_bit0 = 1;
}
delay_b_ps = halfcycle_ps(info) + delay_c_ps;
if (delay_b_ps <= delay_a_ps)
delay_b_ps = 0;
else
delay_b_ps -= delay_a_ps;
info->delay54_ps[channel] =
cycletime_ps * div_roundup(delay_b_ps,
cycletime_ps) -
2 * halfcycle_ps(info) * delay_e_cycles;
if (info->delay54_ps[channel] < 2500)
info->delay54_ps[channel] = 2500;
info->training.reg274265[channel][0] = delay_e_cycles;
if (delay_d_ps + 7 * halfcycle_ps(info) <=
24 * halfcycle_ps(info))
info->training.reg274265[channel][1] = 0;
else
info->training.reg274265[channel][1] =
div_roundup(delay_d_ps + 7 * halfcycle_ps(info),
4 * halfcycle_ps(info)) - 6;
info->training.reg274265[channel][2] =
div_roundup(delay_c_ps + 3 * fsbcycle_ps(info),
4 * halfcycle_ps(info)) + 1;
}
}
static void program_274265(const struct ram_training *const training)
{
int channel;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write32((channel << 10) + 0x274,
(training->reg274265[channel][0] << 16) |
training->reg274265[channel][1]);
mchbar_write16((channel << 10) + 0x265,
training->reg274265[channel][2] << 8);
}
if (training->reg2ca9_bit0)
mchbar_setbits8(0x2ca9, 1 << 0);
else
mchbar_clrbits8(0x2ca9, 1 << 0);
printk(RAM_SPEW, "reg2ca9_bit0 = %x\n", training->reg2ca9_bit0);
for (int i = 0; i < 2; i++)
for (int j = 0; j < 3; j++)
printk(RAM_SPEW, "reg274265[%d][%d] = %x\n",
i, j, training->reg274265[i][j]);
}
static void
set_2d5x_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int num_cycles_3,
int num_cycles_4, int reverse)
{
struct stru1 vv;
char multiplier;
compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1,
0, 1, &vv);
multiplier =
div_roundup(MAX
(div_roundup(num_cycles_2, vv.common_time_unit_ps) +
div_roundup(num_cycles_3, vv.common_time_unit_ps),
div_roundup(num_cycles_1,
vv.common_time_unit_ps) +
div_roundup(num_cycles_4, vv.common_time_unit_ps))
+ vv.freq_min_reduced - 1, vv.freq_max_reduced) - 1;
u32 y =
(u8)((vv.freq_max_reduced - vv.freq_min_reduced) +
vv.freq_max_reduced * multiplier)
| (vv.
freqs_reversed << 8) | ((u8)(vv.freq_min_reduced *
multiplier) << 16) | ((u8)(vv.
freq_min_reduced
*
multiplier)
<< 24);
u32 x =
vv.freq3_to_2_remaindera | (vv.freq4_to_2_remainder << 8) | (vv.
divisor_f3_to_f1
<< 16)
| (vv.divisor_f4_to_f2 << 20) | (vv.freq_min_reduced << 24);
if (reverse) {
mchbar_write32(reg + 0, y);
mchbar_write32(reg + 4, x);
} else {
mchbar_write32(reg + 4, y);
mchbar_write32(reg + 0, x);
}
}
static void
set_6d_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2,
int num_cycles_1, int num_cycles_2, int num_cycles_3,
int num_cycles_4)
{
struct stru1 ratios1;
struct stru1 ratios2;
compute_frequence_ratios(info, freq1, freq2, num_cycles_1, num_cycles_2,
0, 1, &ratios2);
compute_frequence_ratios(info, freq1, freq2, num_cycles_3, num_cycles_4,
0, 1, &ratios1);
printk(RAM_SPEW, "[%x] <= %x\n", reg,
ratios1.freq4_to_max_remainder | (ratios2.
freq4_to_max_remainder
<< 8)
| (ratios1.divisor_f4_to_fmax << 16) | (ratios2.
divisor_f4_to_fmax
<< 20));
mchbar_write32(reg, ratios1.freq4_to_max_remainder |
ratios2.freq4_to_max_remainder << 8 |
ratios1.divisor_f4_to_fmax << 16 |
ratios2.divisor_f4_to_fmax << 20);
}
static void
set_2dx8_reg(struct raminfo *info, u16 reg, u8 mode, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int round_it, int add_freqs)
{
struct stru1 ratios;
compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1,
round_it, add_freqs, &ratios);
switch (mode) {
case 0:
mchbar_write32(reg + 4,
ratios.freq_diff_reduced |
ratios.freqs_reversed << 8);
mchbar_write32(reg,
ratios.freq3_to_2_remainder |
ratios.freq4_to_max_remainder << 8 |
ratios.divisor_f3_to_fmax << 16 |
ratios.divisor_f4_to_fmax << 20 |
ratios.freq_min_reduced << 24);
break;
case 1:
mchbar_write32(reg,
ratios.freq3_to_2_remainder |
ratios.divisor_f3_to_fmax << 16);
break;
case 2:
mchbar_write32(reg,
ratios.freq3_to_2_remainder |
ratios.freq4_to_max_remainder << 8 |
ratios.divisor_f3_to_fmax << 16 |
ratios.divisor_f4_to_fmax << 20);
break;
case 4:
mchbar_write32(reg,
ratios.divisor_f3_to_fmax << 4 |
ratios.divisor_f4_to_fmax << 8 |
ratios.freqs_reversed << 12 |
ratios.freq_min_reduced << 16 |
ratios.freq_diff_reduced << 24);
break;
}
}
static void set_2dxx_series(struct raminfo *info, int s3resume)
{
set_2dx8_reg(info, 0x2d00, 0, 0x78, frequency_11(info) / 2, 1359, 1005,
0, 1);
set_2dx8_reg(info, 0x2d08, 0, 0x78, 0x78, 3273, 5033, 1, 1);
set_2dx8_reg(info, 0x2d10, 0, 0x78, info->fsb_frequency, 1475, 1131, 0,
1);
set_2dx8_reg(info, 0x2d18, 0, 2 * info->fsb_frequency,
frequency_11(info), 1231, 1524, 0, 1);
set_2dx8_reg(info, 0x2d20, 0, 2 * info->fsb_frequency,
frequency_11(info) / 2, 1278, 2008, 0, 1);
set_2dx8_reg(info, 0x2d28, 0, info->fsb_frequency, frequency_11(info),
1167, 1539, 0, 1);
set_2dx8_reg(info, 0x2d30, 0, info->fsb_frequency,
frequency_11(info) / 2, 1403, 1318, 0, 1);
set_2dx8_reg(info, 0x2d38, 0, info->fsb_frequency, 0x78, 3460, 5363, 1,
1);
set_2dx8_reg(info, 0x2d40, 0, info->fsb_frequency, 0x3c, 2792, 5178, 1,
1);
set_2dx8_reg(info, 0x2d48, 0, 2 * info->fsb_frequency, 0x78, 2738, 4610,
1, 1);
set_2dx8_reg(info, 0x2d50, 0, info->fsb_frequency, 0x78, 2819, 5932, 1,
1);
set_2dx8_reg(info, 0x6d4, 1, info->fsb_frequency,
frequency_11(info) / 2, 4000, 0, 0, 0);
set_2dx8_reg(info, 0x6d8, 2, info->fsb_frequency,
frequency_11(info) / 2, 4000, 4000, 0, 0);
if (s3resume) {
printk(RAM_SPEW, "[6dc] <= %x\n",
info->cached_training->reg_6dc);
mchbar_write32(0x6dc, info->cached_training->reg_6dc);
} else
set_6d_reg(info, 0x6dc, 2 * info->fsb_frequency, frequency_11(info), 0,
info->delay46_ps[0], 0,
info->delay54_ps[0]);
set_2dx8_reg(info, 0x6e0, 1, 2 * info->fsb_frequency,
frequency_11(info), 2500, 0, 0, 0);
set_2dx8_reg(info, 0x6e4, 1, 2 * info->fsb_frequency,
frequency_11(info) / 2, 3500, 0, 0, 0);
if (s3resume) {
printk(RAM_SPEW, "[6e8] <= %x\n",
info->cached_training->reg_6e8);
mchbar_write32(0x6e8, info->cached_training->reg_6e8);
} else
set_6d_reg(info, 0x6e8, 2 * info->fsb_frequency, frequency_11(info), 0,
info->delay46_ps[1], 0,
info->delay54_ps[1]);
set_2d5x_reg(info, 0x2d58, 0x78, 0x78, 864, 1195, 762, 786, 0);
set_2d5x_reg(info, 0x2d60, 0x195, info->fsb_frequency, 1352, 725, 455,
470, 0);
set_2d5x_reg(info, 0x2d68, 0x195, 0x3c, 2707, 5632, 3277, 2207, 0);
set_2d5x_reg(info, 0x2d70, 0x195, frequency_11(info) / 2, 1276, 758,
454, 459, 0);
set_2d5x_reg(info, 0x2d78, 0x195, 0x78, 1021, 799, 510, 513, 0);
set_2d5x_reg(info, 0x2d80, info->fsb_frequency, 0xe1, 0, 2862, 2579,
2588, 0);
set_2d5x_reg(info, 0x2d88, info->fsb_frequency, 0xe1, 0, 2690, 2405,
2405, 0);
set_2d5x_reg(info, 0x2da0, 0x78, 0xe1, 0, 2560, 2264, 2251, 0);
set_2d5x_reg(info, 0x2da8, 0x195, frequency_11(info), 1060, 775, 484,
480, 0);
set_2d5x_reg(info, 0x2db0, 0x195, 0x78, 4183, 6023, 2217, 2048, 0);
mchbar_write32(0x2dbc, ((frequency_11(info) / 2) - 1) | 0xe00000);
mchbar_write32(0x2db8, (info->fsb_frequency - 1) << 16 | 0x77);
}
static u16 quickpath_configure_pll_ratio(struct raminfo *info, const u8 x2ca8)
{
mchbar_setbits32(0x18b4, 1 << 21 | 1 << 16);
mchbar_setbits32(0x1890, 1 << 25);
mchbar_setbits32(0x18b4, 1 << 15);
/* Get maximum supported PLL ratio */
u16 qpi_pll_ratio = (pci_read_config32(QPI_PHY_0, QPI_PLL_STATUS) >> 24 & 0x7f);
/* Adjust value if invalid */
if (qpi_pll_ratio == 0 || qpi_pll_ratio > 40)
qpi_pll_ratio = 40;
if (qpi_pll_ratio == 16)
qpi_pll_ratio = 12;
while (qpi_pll_ratio >= 12) {
if (qpi_pll_ratio <= (info->clock_speed_index + 3) * 8)
break;
qpi_pll_ratio -= 2;
}
/* Finally, program the ratio */
pci_write_config8(QPI_PHY_0, QPI_PLL_RATIO, qpi_pll_ratio);
const u16 csipll0 = mchbar_read16(0x2c10);
mchbar_write16(0x2c10, (qpi_pll_ratio > 26) << 11 | 1 << 10 | qpi_pll_ratio);
if (csipll0 != mchbar_read16(0x2c10) && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
mchbar_setbits16(0x2c12, 1 << 8);
return qpi_pll_ratio;
}
void early_quickpath_init(struct raminfo *info, const u8 x2ca8)
{
u8 reg8;
u32 reg32;
/* Initialize DDR MPLL first */
if (x2ca8 == 0) {
mchbar_clrsetbits8(0x164, 0x26, info->clock_speed_index == 0 ? 0x24 : 0x26);
/* Program DDR MPLL feedback divider ratio */
mchbar_write16(0x2c20, (info->clock_speed_index + 3) * 4);
}
const u16 qpi_pll_ratio = quickpath_configure_pll_ratio(info, x2ca8);
mchbar_clrsetbits32(0x1804, 0x3, 0x8400080);
pci_update_config32(QPI_PHY_0, QPI_PHY_CONTROL, 0xfffffffc, 0x400080);
const u32 x1c04 = mchbar_read32(0x1c04) & 0xc01080;
const u32 x1804 = mchbar_read32(0x1804) & 0xc01080;
if (x1c04 != x1804 && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
reg32 = 0x3000000;
if (info->revision >= 0x18 && qpi_pll_ratio <= 12) {
/* Get TDP limit in 1/8W units */
const msr_t msr = rdmsr(MSR_TURBO_POWER_CURRENT_LIMIT);
if ((msr.lo & 0x7fff) <= 90)
reg32 = 0;
}
mchbar_write32(0x18d8, 0x120000);
mchbar_write32(0x18dc, reg32 | 0xa484a);
reg32 = qpi_pll_ratio > 20 ? 8 : 16;
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x0);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x9404a | reg32 << 7);
mchbar_write32(0x18d8, 0x40000);
mchbar_write32(0x18dc, 0xb000000);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x60000);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x0);
mchbar_write32(0x18d8, 0x180000);
mchbar_write32(0x18dc, 0xc0000142);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x20000);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x142);
mchbar_write32(0x18d8, 0x1e0000);
const u32 x18dc = mchbar_read32(0x18dc);
mchbar_write32(0x18dc, qpi_pll_ratio < 18 ? 2 : 3);
if (x18dc != mchbar_read32(0x18dc) && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
reg8 = qpi_pll_ratio > 20 ? 10 : 9;
mchbar_write32(0x188c, 0x20bc00 | reg8);
pci_write_config32(QPI_PHY_0, QPI_PHY_PWR_MGMT, 0x40b0c00 | reg8);
if (qpi_pll_ratio <= 14)
reg8 = 0x33;
else if (qpi_pll_ratio <= 22)
reg8 = 0x42;
else
reg8 = 0x51;
info->fsb_frequency = qpi_pll_ratio * 15;
mchbar_write32(0x1a10, reg8 << 24 | info->fsb_frequency);
if (info->silicon_revision == 2 || info->silicon_revision == 3) {
mchbar_setbits32(0x18b8, 0x200);
mchbar_setbits32(0x1918, 0x300);
}
if (info->revision > 0x17)
mchbar_setbits32(0x18b8, 0xc00);
reg32 = ((qpi_pll_ratio > 20) + 1) << 16;
mchbar_clrsetbits32(0x182c, ~0xfff0f0ff, reg32 | 0x200);
pci_update_config32(QPI_PHY_0, QPI_PHY_PRIM_TIMEOUT, 0xfff0f0ff, reg32 | 0x200);
mchbar_clrbits32(0x1a1c, 7 << 28);
mchbar_setbits32(0x1a70, 1 << 20);
mchbar_clrbits32(0x18b4, 1 << 15);
mchbar_clrsetbits32(0x1a68, 0x00143fc0, 0x143800);
const u32 x1e68 = mchbar_read32(0x1e68) & 0x143fc0;
const u32 x1a68 = mchbar_read32(0x1a68) & 0x143fc0;
if (x1e68 != x1a68 && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
pci_update_config32(QPI_LINK_0, QPI_QPILCL, 0xffffff3f, 0x140000);
reg32 = pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS);
pci_write_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS, (reg32 & 0xfffe4555) | 0x64555);
if (reg32 != pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS) && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
pci_update_config32(QPI_NON_CORE, MIRROR_PORT_CTL, ~3, 0x80 * 3);
reg32 = mchbar_read32(0x1af0);
mchbar_write32(0x1af0, (reg32 & 0xfdffcf) | 0x1f020000);
if (reg32 != mchbar_read32(0x1af0) && x2ca8 == 0)
mchbar_setbits8(0x2ca8, 1 << 0);
mchbar_clrbits32(0x1890, 1 << 25);
mchbar_clrsetbits32(0x18b4, 0xf << 12, 0x6 << 12);
mchbar_write32(0x18a4, 0x22222222);
mchbar_write32(0x18a8, 0x22222222);
mchbar_write32(0x18ac, 0x22222);
}
void late_quickpath_init(struct raminfo *info, const int s3resume)
{
const u16 deven = pci_read_config16(NORTHBRIDGE, DEVEN);
if (s3resume && info->cached_training) {
program_274265(info->cached_training);
} else {
compute_274265(info);
program_274265(&info->training);
}
set_2dxx_series(info, s3resume);
if (!(deven & 8)) {
mchbar_clrsetbits32(0x2cb0, ~0, 0x40);
}
udelay(1000);
if (deven & 8) {
mchbar_setbits32(0xff8, 3 << 11);
mchbar_clrbits32(0x2cb0, ~0);
pci_read_config8(PCI_DEV(0, 0x2, 0x0), 0x4c);
pci_read_config8(PCI_DEV(0, 0x2, 0x0), 0x4c);
pci_read_config8(PCI_DEV(0, 0x2, 0x0), 0x4e);
mchbar_read8(0x1150);
mchbar_read8(0x1151);
mchbar_read8(0x1022);
mchbar_read8(0x16d0);
mchbar_write32(0x1300, 0x60606060);
mchbar_write32(0x1304, 0x60606060);
mchbar_write32(0x1308, 0x78797a7b);
mchbar_write32(0x130c, 0x7c7d7e7f);
mchbar_write32(0x1310, 0x60606060);
mchbar_write32(0x1314, 0x60606060);
mchbar_write32(0x1318, 0x60606060);
mchbar_write32(0x131c, 0x60606060);
mchbar_write32(0x1320, 0x50515253);
mchbar_write32(0x1324, 0x54555657);
mchbar_write32(0x1328, 0x58595a5b);
mchbar_write32(0x132c, 0x5c5d5e5f);
mchbar_write32(0x1330, 0x40414243);
mchbar_write32(0x1334, 0x44454647);
mchbar_write32(0x1338, 0x48494a4b);
mchbar_write32(0x133c, 0x4c4d4e4f);
mchbar_write32(0x1340, 0x30313233);
mchbar_write32(0x1344, 0x34353637);
mchbar_write32(0x1348, 0x38393a3b);
mchbar_write32(0x134c, 0x3c3d3e3f);
mchbar_write32(0x1350, 0x20212223);
mchbar_write32(0x1354, 0x24252627);
mchbar_write32(0x1358, 0x28292a2b);
mchbar_write32(0x135c, 0x2c2d2e2f);
mchbar_write32(0x1360, 0x10111213);
mchbar_write32(0x1364, 0x14151617);
mchbar_write32(0x1368, 0x18191a1b);
mchbar_write32(0x136c, 0x1c1d1e1f);
mchbar_write32(0x1370, 0x10203);
mchbar_write32(0x1374, 0x4050607);
mchbar_write32(0x1378, 0x8090a0b);
mchbar_write32(0x137c, 0xc0d0e0f);
mchbar_write8(0x11cc, 0x4e);
mchbar_write32(0x1110, 0x73970404);
mchbar_write32(0x1114, 0x72960404);
mchbar_write32(0x1118, 0x6f950404);
mchbar_write32(0x111c, 0x6d940404);
mchbar_write32(0x1120, 0x6a930404);
mchbar_write32(0x1124, 0x68a41404);
mchbar_write32(0x1128, 0x66a21404);
mchbar_write32(0x112c, 0x63a01404);
mchbar_write32(0x1130, 0x609e1404);
mchbar_write32(0x1134, 0x5f9c1404);
mchbar_write32(0x1138, 0x5c961404);
mchbar_write32(0x113c, 0x58a02404);
mchbar_write32(0x1140, 0x54942404);
mchbar_write32(0x1190, 0x900080a);
mchbar_write16(0x11c0, 0xc40b);
mchbar_write16(0x11c2, 0x303);
mchbar_write16(0x11c4, 0x301);
mchbar_clrsetbits32(0x1190, ~0, 0x8900080a);
mchbar_write32(0x11b8, 0x70c3000);
mchbar_write8(0x11ec, 0xa);
mchbar_write16(0x1100, 0x800);
mchbar_clrsetbits32(0x11bc, ~0, 0x1e84800);
mchbar_write16(0x11ca, 0xfa);
mchbar_write32(0x11e4, 0x4e20);
mchbar_write8(0x11bc, 0xf);
mchbar_write16(0x11da, 0x19);
mchbar_write16(0x11ba, 0x470c);
mchbar_write32(0x1680, 0xe6ffe4ff);
mchbar_write32(0x1684, 0xdeffdaff);
mchbar_write32(0x1688, 0xd4ffd0ff);
mchbar_write32(0x168c, 0xccffc6ff);
mchbar_write32(0x1690, 0xc0ffbeff);
mchbar_write32(0x1694, 0xb8ffb0ff);
mchbar_write32(0x1698, 0xa8ff0000);
mchbar_write32(0x169c, 0xc00);
mchbar_write32(0x1290, 0x5000000);
}
mchbar_write32(0x124c, 0x15040d00);
mchbar_write32(0x1250, 0x7f0000);
mchbar_write32(0x1254, 0x1e220004);
mchbar_write32(0x1258, 0x4000004);
mchbar_write32(0x1278, 0x0);
mchbar_write32(0x125c, 0x0);
mchbar_write32(0x1260, 0x0);
mchbar_write32(0x1264, 0x0);
mchbar_write32(0x1268, 0x0);
mchbar_write32(0x126c, 0x0);
mchbar_write32(0x1270, 0x0);
mchbar_write32(0x1274, 0x0);
if (deven & 8) {
mchbar_write16(0x1214, 0x320);
mchbar_write32(0x1600, 0x40000000);
mchbar_clrsetbits32(0x11f4, ~0, 1 << 28);
mchbar_clrsetbits16(0x1230, ~0, 1 << 15);
mchbar_write32(0x1400, 0x13040020);
mchbar_write32(0x1404, 0xe090120);
mchbar_write32(0x1408, 0x5120220);
mchbar_write32(0x140c, 0x5120330);
mchbar_write32(0x1410, 0xe090220);
mchbar_write32(0x1414, 0x1010001);
mchbar_write32(0x1418, 0x1110000);
mchbar_write32(0x141c, 0x9020020);
mchbar_write32(0x1420, 0xd090220);
mchbar_write32(0x1424, 0x2090220);
mchbar_write32(0x1428, 0x2090330);
mchbar_write32(0x142c, 0xd090220);
mchbar_write32(0x1430, 0x1010001);
mchbar_write32(0x1434, 0x1110000);
mchbar_write32(0x1438, 0x11040020);
mchbar_write32(0x143c, 0x4030220);
mchbar_write32(0x1440, 0x1060220);
mchbar_write32(0x1444, 0x1060330);
mchbar_write32(0x1448, 0x4030220);
mchbar_write32(0x144c, 0x1010001);
mchbar_write32(0x1450, 0x1110000);
mchbar_write32(0x1454, 0x4010020);
mchbar_write32(0x1458, 0xb090220);
mchbar_write32(0x145c, 0x1090220);
mchbar_write32(0x1460, 0x1090330);
mchbar_write32(0x1464, 0xb090220);
mchbar_write32(0x1468, 0x1010001);
mchbar_write32(0x146c, 0x1110000);
mchbar_write32(0x1470, 0xf040020);
mchbar_write32(0x1474, 0xa090220);
mchbar_write32(0x1478, 0x1120220);
mchbar_write32(0x147c, 0x1120330);
mchbar_write32(0x1480, 0xa090220);
mchbar_write32(0x1484, 0x1010001);
mchbar_write32(0x1488, 0x1110000);
mchbar_write32(0x148c, 0x7020020);
mchbar_write32(0x1490, 0x1010220);
mchbar_write32(0x1494, 0x10210);
mchbar_write32(0x1498, 0x10320);
mchbar_write32(0x149c, 0x1010220);
mchbar_write32(0x14a0, 0x1010001);
mchbar_write32(0x14a4, 0x1110000);
mchbar_write32(0x14a8, 0xd040020);
mchbar_write32(0x14ac, 0x8090220);
mchbar_write32(0x14b0, 0x1111310);
mchbar_write32(0x14b4, 0x1111420);
mchbar_write32(0x14b8, 0x8090220);
mchbar_write32(0x14bc, 0x1010001);
mchbar_write32(0x14c0, 0x1110000);
mchbar_write32(0x14c4, 0x3010020);
mchbar_write32(0x14c8, 0x7090220);
mchbar_write32(0x14cc, 0x1081310);
mchbar_write32(0x14d0, 0x1081420);
mchbar_write32(0x14d4, 0x7090220);
mchbar_write32(0x14d8, 0x1010001);
mchbar_write32(0x14dc, 0x1110000);
mchbar_write32(0x14e0, 0xb040020);
mchbar_write32(0x14e4, 0x2030220);
mchbar_write32(0x14e8, 0x1051310);
mchbar_write32(0x14ec, 0x1051420);
mchbar_write32(0x14f0, 0x2030220);
mchbar_write32(0x14f4, 0x1010001);
mchbar_write32(0x14f8, 0x1110000);
mchbar_write32(0x14fc, 0x5020020);
mchbar_write32(0x1500, 0x5090220);
mchbar_write32(0x1504, 0x2071310);
mchbar_write32(0x1508, 0x2071420);
mchbar_write32(0x150c, 0x5090220);
mchbar_write32(0x1510, 0x1010001);
mchbar_write32(0x1514, 0x1110000);
mchbar_write32(0x1518, 0x7040120);
mchbar_write32(0x151c, 0x2090220);
mchbar_write32(0x1520, 0x70b1210);
mchbar_write32(0x1524, 0x70b1310);
mchbar_write32(0x1528, 0x2090220);
mchbar_write32(0x152c, 0x1010001);
mchbar_write32(0x1530, 0x1110000);
mchbar_write32(0x1534, 0x1010110);
mchbar_write32(0x1538, 0x1081310);
mchbar_write32(0x153c, 0x5041200);
mchbar_write32(0x1540, 0x5041310);
mchbar_write32(0x1544, 0x1081310);
mchbar_write32(0x1548, 0x1010001);
mchbar_write32(0x154c, 0x1110000);
mchbar_write32(0x1550, 0x1040120);
mchbar_write32(0x1554, 0x4051210);
mchbar_write32(0x1558, 0xd051200);
mchbar_write32(0x155c, 0xd051200);
mchbar_write32(0x1560, 0x4051210);
mchbar_write32(0x1564, 0x1010001);
mchbar_write32(0x1568, 0x1110000);
mchbar_write16(0x1222, 0x220a);
mchbar_write16(0x123c, 0x1fc0);
mchbar_write16(0x1220, 0x1388);
}
}