blob: 0544c17a66b507ff8e38f5429a8a3e789757ccdf [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "vx900.h"
#include "chip.h"
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <device/pci_ids.h>
#include <cpu/cpu.h>
#include <cf9_reset.h>
#include <reset.h>
#include <string.h>
#define RAM_4GB (((u64)1) << 32)
static uint64_t uma_memory_base = 0;
static uint64_t uma_memory_size = 0;
/**
* @file vx900/northbridge.c
*
* STATUS: Pretty good
* One thing that needs to be thoroughly tested is the remap above 4G logic.
* Unfortunately, while we cannot initialize odd ranks, our testing
* possibilities are somewhat limited. A point of failure that is not covered is
* when the amount of RAM and PCI config space added up exceeds 8GB. The
* remapping mechanism will overflow, the effects of which are unknown.
*/
void do_board_reset(void)
{
system_reset();
}
uint64_t get_uma_memory_base(void)
{
printk(BIOS_DEBUG, "UMA base 0x%.8llx (%lluMB)\n", uma_memory_base,
uma_memory_base >> 20);
printk(BIOS_DEBUG, "UMA size 0x%.8llx (%lluMB)\n", uma_memory_size,
uma_memory_size >> 20);
return uma_memory_base;
}
static u64 vx900_get_top_of_ram(struct device *mcu)
{
u16 reg16;
/* The last valid DRAM address is computed by the MCU
* One issue might be if we have a hole in the rank mappings, so that
* virtual ranks are not mapped successively in the linear address space
* (Ex: rank 0 mapped 0-1G, rank 1 mapped 2G-3G)
* We don't do this awkward mapping in RAM init, so we don't worry about
* it here, but it is something to keep in mind if having RAM issues */
reg16 = pci_read_config16(mcu, 0x88) & 0x07ff;
return (u64) reg16 << 24;
}
/*
* This guy is meant to go away, but for now, leave it in so that we can see
* if the logic to remap RAM above 4G has errors.
*/
static void killme_debug_4g_remap_reg(u32 reg32)
{
if (reg32 & (1 << 0))
printk(BIOS_DEBUG, "Mem remapping enabled\n");
u64 remapstart = (reg32 >> 2) & 0x3ff;
u64 remapend = (reg32 >> 14) & 0x3ff;
remapstart <<= 26;
remapend <<= 26;
printk(BIOS_DEBUG, "Remapstart %lld(MB)\n", remapstart >> 20);
printk(BIOS_DEBUG, "Remapend %lld(MB)\n", remapend >> 20);
}
/**
* \brief Remap low memory colliding with PCI MMIO space, above 4G
*
* @param mcu The memory controller
* @param tolm Top of low memory.
*
* @return The new top of memory.
*/
static u64 vx900_remap_above_4g(struct device *mcu, u32 tolm)
{
size_t i;
u8 reg8, start8, end8, start, end;
u16 reg16;
u32 reg32;
u64 tor, newtor, chunk;
/*
* The remapping mechanism works like this:
*
* - Choose the top of low memory.
* This becomes the "remap from"
* - Choose a chunk above 4G where to remap.
* This becomes "remap to"
* - Choose a chunk above 4G where to end the remapping.
* This becomes "remap until"
*
* This remaps a "chunk" of memory where we want to.
* sizeof(chunk) = until - to;
*
* Therefore the memory region from "from" to " from + sizeof(chunk)"
* becomes accessible at "to" to "until"
*/
if (tolm >= vx900_get_top_of_ram(mcu)) {
printk(BIOS_DEBUG, "Nothing to remap\n");
return 0;
}
/* This is how the Vendor BIOS. Keep it for comparison for now */
killme_debug_4g_remap_reg(0x00180141);
/* We can remap with a granularity of 64MB, so align tolm */
tolm &= ~((64 * MiB) - 1);
/* The "start remapping from where ?" register */
reg16 = ((tolm >> 20) & 0xfff) << 4;
pci_update_config16(mcu, 0x84, (u16)~0xfff0, reg16);
/* Find the chunk size */
tor = vx900_get_top_of_ram(mcu);
printk(BIOS_DEBUG, "Top of RAM %lldMB\n", tor >> 20);
if (tor < RAM_4GB) {
chunk = tor - tolm;
newtor = RAM_4GB + chunk;
} else {
chunk = (RAM_4GB - tolm);
newtor = tor + chunk;
}
printk(BIOS_DEBUG, "New top of RAM %lldMB\n", newtor >> 20);
reg8 = tolm >> 26;
/* Which rank does the PCI TOLM fall on? */
for (i = 0; i < VX900_MAX_MEM_RANKS; i++) {
end8 = pci_read_config8(mcu, 0x40 + i);
if (reg8 > end8)
continue;
start8 = pci_read_config8(mcu, 0x48 + i);
if (reg8 <= start8)
continue;
printk(BIOS_DEBUG, "Address %x falls on rank %zu\n", tolm, i);
break;
}
for (; i < VX900_MAX_MEM_RANKS; i++) {
start = pci_read_config8(mcu, 0x48 + i);
end = pci_read_config8(mcu, 0x40 + i);
if (end == 0) {
printk(BIOS_DEBUG, "Huh? rank %zu empty?\n", i);
continue;
}
if (end < (tolm >> 26)) {
printk(BIOS_DEBUG, "Huh? rank %zu don't need remap?\n",
i);
continue;
}
printk(BIOS_DEBUG, "Physical rank %u is mapped to\n"
" Start address: 0x%.10llx (%dMB)\n"
" End address: 0x%.10llx (%dMB)\n",
(int)i,
((u64) start << 26), (start << (26 - 20)),
((u64) end << 26), (end << (26 - 20)));
if (end < (RAM_4GB >> 26))
end = (RAM_4GB >> 26);
if (end >= (tolm >> 26))
end += chunk >> 26;
if (start > (tolm >> 26))
start += chunk >> 26;
pci_write_config8(mcu, 0x48 + i, start);
pci_write_config8(mcu, 0x40 + i, end);
printk(BIOS_DEBUG, "ReMapped Physical rank %u, to\n"
" Start address: 0x%.10llx (%dMB)\n"
" End address: 0x%.10llx (%dMB)\n",
(int)i,
((u64) start << 26), (start << (26 - 20)),
((u64) end << 26), (end << (26 - 20)));
}
/* The "remap to where?" register */
reg32 = ((MAX(tor, RAM_4GB) >> 26) & 0x3ff) << 2;
/* The "remap until where?" register */
reg32 |= ((newtor >> 26) & 0x3ff) << 14;
/* Now enable the goodies */
reg32 |= (1 << 0);
pci_write_config32(mcu, 0xf8, reg32);
printk(BIOS_DEBUG, "Wrote remap map %x\n", reg32);
killme_debug_4g_remap_reg(reg32);
printk(BIOS_DEBUG, "New top of memory is at %lldMB\n", newtor >> 20);
return newtor;
}
static void vx900_set_resources(struct device *dev)
{
u32 pci_tolm, tomk, vx900_tolm, full_tolmk, fbufk, tolmk;
printk(BIOS_DEBUG, "========================================"
"========================================\n");
printk(BIOS_DEBUG, "============= VX900 memory sizing & Co. "
"========================================\n");
printk(BIOS_DEBUG, "========================================"
"========================================\n");
int idx = 10;
struct device *const mcu = dev_find_device(PCI_VENDOR_ID_VIA,
PCI_DEVICE_ID_VIA_VX900_MEMCTRL,
0);
if (!mcu) {
die("Something is terribly wrong.\n"
" We tried locating the MCU on the PCI bus, "
"but couldn't find it. Halting.\n");
}
/* How much low adrress space do we have? */
pci_tolm = find_pci_tolm(dev->link_list);
printk(BIOS_SPEW, "Found PCI tolm at %.8x\n", pci_tolm);
printk(BIOS_SPEW, "Found PCI tolm at %dMB\n", pci_tolm >> 20);
/* Figure out the total amount of RAM */
tomk = vx900_get_top_of_ram(mcu) >> 10;
printk(BIOS_SPEW, "Found top of memory at %dMB\n", tomk >> 10);
/* Do the same for top of low RAM */
vx900_tolm = vx900_get_tolm();
full_tolmk = vx900_tolm << (20 - 10);
/* Remap above 4G if needed */
full_tolmk = MIN(full_tolmk, pci_tolm >> 10);
printk(BIOS_SPEW, "Found top of low memory at %dMB\n",
full_tolmk >> 10);
/* What about the framebuffer for the integrated GPU? */
fbufk = vx900_get_chrome9hd_fb_size() << (20 - 10);
printk(BIOS_SPEW, "Integrated graphics buffer: %dMB\n", fbufk >> 10);
/* Can't use the framebuffer as system RAM, sorry */
tolmk = MIN(full_tolmk, tomk);
tolmk -= fbufk;
ram_resource(dev, idx++, 0, 640);
printk(BIOS_SPEW, "System RAM left: %dMB\n", tolmk >> 10);
/* FIXME: how can we avoid leaving this hole?
* Leave a hole for VGA, 0xa0000 - 0xc0000 ?? */
/* TODO: VGA Memory hole can be disabled in SNMIC. Upper 64k of ROM seem
* to be always mapped to the top of 1M, but this can be overcome with
* some smart positive/subtractive resource decoding */
ram_resource(dev, idx++, 768, (tolmk - 768));
uma_memory_size = fbufk << 10;
uma_memory_base = tolmk << 10;
//uma_resource(dev, idx++, uma_memory_base>>10, uma_memory_size>>10);
printk(BIOS_DEBUG, "UMA @ %lldMB + %lldMB\n", uma_memory_base >> 20,
uma_memory_size >> 20);
/* FIXME: How do we handle remapping above 4G? */
u64 tor = vx900_remap_above_4g(mcu, pci_tolm);
if (tor)
ram_resource(dev, idx++, RAM_4GB >> 10, (tor - RAM_4GB) >> 10);
printk(BIOS_DEBUG, "======================================================\n");
assign_resources(dev->link_list);
}
static void vx900_read_resources(struct device *dev)
{
/* Our fixed resources start at 0 */
int idx = 0;
/* Reserve our ROM mapped space */
struct resource *res;
res = new_resource(dev, idx++);
res->size = CONFIG_ROM_SIZE;
res->base = 0xffffffff - (res->size - 1);
res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED | IORESOURCE_FIXED;
/* Now do the same for our MMCONF
* We always run with MMCONF enabled. We need to access the extended
* config space when configuring PCI-Express links */
mmconf_resource(dev, idx++);
pci_domain_read_resources(dev);
}
static struct device_operations pci_domain_ops = {
.read_resources = vx900_read_resources,
.set_resources = vx900_set_resources,
.enable_resources = NULL,
.init = NULL,
.scan_bus = pci_domain_scan_bus,
};
static void cpu_bus_init(struct device *dev)
{
initialize_cpus(dev->link_list);
}
static struct device_operations cpu_bus_ops = {
.read_resources = DEVICE_NOOP,
.set_resources = DEVICE_NOOP,
.enable_resources = DEVICE_NOOP,
.init = cpu_bus_init,
.scan_bus = 0,
};
static void enable_dev(struct device *dev)
{
/* Set the operations if it is a special bus type */
if (dev->path.type == DEVICE_PATH_DOMAIN) {
dev->ops = &pci_domain_ops;
} else if (dev->path.type == DEVICE_PATH_CPU_CLUSTER) {
dev->ops = &cpu_bus_ops;
}
}
struct chip_operations northbridge_via_vx900_ops = {
CHIP_NAME("VIA VX900 Chipset")
.enable_dev = enable_dev,
};