blob: f2c0905cc4cce195ae438905c531789dc17d1c4b [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/bsd/helpers.h>
#include <console/console.h>
#include <delay.h>
#include <device/mmio.h>
#include <edid.h>
#include <soc/addressmap.h>
#include <soc/dptx.h>
#include <soc/dptx_hal.h>
#include <soc/dptx_reg.h>
#include <soc/dp_intf.h>
#include <string.h>
#define ONE_BLOCK_SIZE 128
#define DP_LINK_CONSTANT_N_VALUE 0x8000
#define DP_LINK_STATUS_SIZE 6
#define DP_LANE0_1_STATUS 0x202
#define DP_LANE2_3_STATUS 0x203
#define DP_LANE_CR_DONE (1 << 0)
#define DP_LANE_CHANNEL_EQ_DONE (1 << 1)
#define DP_LANE_SYMBOL_LOCKED (1 << 2)
#define DP_BRANCH_OUI_HEADER_SIZE 0xc
#define DP_RECEIVER_CAP_SIZE 0xf
#define DP_DSC_RECEIVER_CAP_SIZE 0xf
#define EDP_PSR_RECEIVER_CAP_SIZE 2
#define EDP_DISPLAY_CTL_CAP_SIZE 3
#define DP_LTTPR_COMMON_CAP_SIZE 8
#define DP_LTTPR_PHY_CAP_SIZE 3
#define DP_TRAINING_AUX_RD_INTERVAL 0x00e
#define DP_TRAINING_AUX_RD_MASK 0x7f
#define DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT (1 << 7)
#define DP_EDP_DPCD_REV 0x700
#define DP_EDP_11 0x00
#define DP_EDP_12 0x01
#define DP_EDP_13 0x02
#define DP_EDP_14 0x03
#define DP_EDP_14a 0x04
#define DP_EDP_14b 0x05
/* Receiver Capability */
#define DP_DPCD_REV 0x000
#define DP_DPCD_REV_10 0x10
#define DP_DPCD_REV_11 0x11
#define DP_DPCD_REV_12 0x12
#define DP_DPCD_REV_13 0x13
#define DP_DPCD_REV_14 0x14
#define DP_CHANNEL_EQ_BITS (DP_LANE_CR_DONE | \
DP_LANE_CHANNEL_EQ_DONE | \
DP_LANE_SYMBOL_LOCKED)
#define DP_LANE_ALIGN_STATUS_UPDATED 0x204
#define DP_INTERLANE_ALIGN_DONE (1 << 0)
#define DP_DOWNSTREAM_PORT_STATUS_CHANGED (1 << 6)
#define DP_LINK_STATUS_UPDATED (1 << 7)
#define DP_SINK_STATUS 0x205
#define DP_RECEIVE_PORT_0_STATUS (1 << 0)
#define DP_RECEIVE_PORT_1_STATUS (1 << 1)
#define DP_STREAM_REGENERATION_STATUS (1 << 2)
#define DP_AUX_MAX_PAYLOAD_BYTES 16
#define MAX_LANECOUNT 4
enum {
DP_LANECOUNT_1 = 0x1,
DP_LANECOUNT_2 = 0x2,
DP_LANECOUNT_4 = 0x4,
};
enum {
DP_VERSION_11 = 0x11,
DP_VERSION_12 = 0x12,
DP_VERSION_14 = 0x14,
DP_VERSION_12_14 = 0x16,
DP_VERSION_14_14 = 0x17,
DP_VERSION_MAX,
};
enum {
DPTX_SWING0 = 0x00,
DPTX_SWING1 = 0x01,
DPTX_SWING2 = 0x02,
DPTX_SWING3 = 0x03,
};
enum {
DPTX_PREEMPHASIS0 = 0x00,
DPTX_PREEMPHASIS1 = 0x01,
DPTX_PREEMPHASIS2 = 0x02,
DPTX_PREEMPHASIS3 = 0x03,
};
enum {
DPTX_PASS = 0,
DPTX_PLUG_OUT = 1,
DPTX_TIMEOUT = 2,
DPTX_AUTH_FAIL = 3,
DPTX_EDID_FAIL = 4,
DPTX_TRANING_FAIL = 5,
DPTX_TRANING_STATE_CHANGE = 6,
};
enum {
FEC_ERROR_COUNT_DISABLE = 0x0,
FEC_UNCORRECTED_BLOCK_ERROR_COUNT = 0x1,
FEC_CORRECTED_BLOCK_ERROR_COUNT = 0x2,
FEC_BIT_ERROR_COUNT = 0x3,
FEC_PARITY_BLOCK_ERROR_COUNT = 0x4,
FEC_PARITY_BIT_ERROR_COUNT = 0x5,
};
enum {
DPTX_NTSTATE_STARTUP = 0x0,
DPTX_NTSTATE_CHECKCAP = 0x1,
DPTX_NTSTATE_CHECKEDID = 0x2,
DPTX_NTSTATE_TRAINING_PRE = 0x3,
DPTX_NTSTATE_TRAINING = 0x4,
DPTX_NTSTATE_CHECKTIMING = 0x5,
DPTX_NTSTATE_NORMAL = 0x6,
DPTX_NTSTATE_POWERSAVE = 0x7,
DPTX_NTSTATE_DPIDLE = 0x8,
DPTX_NTSTATE_MAX,
};
enum {
DPTX_DISP_NONE = 0,
DPTX_DISP_RESUME = 1,
DPTX_DISP_SUSPEND = 2,
};
enum {
TRAIN_STEP_SUCCESS = 0,
TRAIN_STEP_FAIL_BREAK = 1,
TRAIN_STEP_FAIL_NOT_BREAK = 2,
};
#define DPTX_TRAIN_RETRY_LIMIT 0x8
#define DPTX_TRAIN_MAX_ITERATION 0x5
#define HPD_INT_EVNET BIT(3)
#define HPD_CONNECT BIT(2)
#define HPD_DISCONNECT BIT(1)
#define HPD_INITIAL_STATE 0
static bool dptx_auxwrite_bytes(struct mtk_dp *mtk_dp, u8 cmd,
u32 dpcd_addr, size_t length, u8 *data)
{
if (retry(7, dptx_hal_auxwrite_bytes(mtk_dp, cmd, dpcd_addr, length, data),
mdelay(1)))
return true;
printk(BIOS_ERR, "aux write fail: cmd = %d, addr = %#x, len = %ld\n",
cmd, dpcd_addr, length);
return false;
}
static bool dptx_auxwrite_dpcd(struct mtk_dp *mtk_dp, u8 cmd,
u32 dpcd_addr, size_t length, u8 *data)
{
bool ret = true;
size_t offset = 0;
size_t len;
while (offset < length) {
len = MIN(length - offset, DP_AUX_MAX_PAYLOAD_BYTES);
ret &= dptx_auxwrite_bytes(mtk_dp, cmd, dpcd_addr + offset,
len, data + offset);
offset += len;
}
return ret;
}
static bool dptx_auxread_bytes(struct mtk_dp *mtk_dp, u8 cmd,
u32 dpcd_addr, size_t length, u8 *data)
{
if (retry(7, dptx_hal_auxread_bytes(mtk_dp, cmd, dpcd_addr, length, data),
mdelay(1)))
return true;
printk(BIOS_ERR, "aux read fail: cmd = %d, addr = %#x, len = %ld\n",
cmd, dpcd_addr, length);
return false;
}
static bool dptx_auxread_dpcd(struct mtk_dp *mtk_dp, u8 cmd,
u32 dpcd_addr, size_t length, u8 *rxbuf)
{
bool ret = true;
size_t offset = 0;
size_t len;
while (offset < length) {
len = MIN(length - offset, DP_AUX_MAX_PAYLOAD_BYTES);
ret &= dptx_auxread_bytes(mtk_dp, cmd, dpcd_addr + offset,
len, rxbuf + offset);
offset += len;
}
return ret;
}
static int dptx_get_edid(struct mtk_dp *mtk_dp, struct edid *out)
{
int ret;
u8 edid[ONE_BLOCK_SIZE];
u8 tmp = 0;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_I2C_WRITE, 0x50, 0x1, &tmp);
for (tmp = 0; tmp < ONE_BLOCK_SIZE / DP_AUX_MAX_PAYLOAD_BYTES; tmp++)
dptx_auxread_dpcd(mtk_dp, DP_AUX_I2C_READ,
0x50, DP_AUX_MAX_PAYLOAD_BYTES,
edid + tmp * 16);
ret = decode_edid(edid, ONE_BLOCK_SIZE, out);
if (ret != EDID_CONFORMANT) {
printk(BIOS_ERR, "failed to decode edid(%d).\n", ret);
return -1;
}
mtk_dp->edid = out;
return 0;
}
static u8 dptx_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static u8 dptx_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
u8 l = dptx_link_status(link_status, i);
return (l >> s) & 0xf;
}
static bool dptx_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dptx_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
static void dptx_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
u32 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
DP_TRAINING_AUX_RD_MASK;
if (rd_interval > 4)
printk(BIOS_ERR, "aux interval %d, out of range (max 4)\n",
rd_interval);
if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
rd_interval = 1;
else
rd_interval *= 4;
mdelay(rd_interval);
}
static void dptx_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
u32 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
DP_TRAINING_AUX_RD_MASK;
if (rd_interval > 4)
printk(BIOS_ERR, "aux interval %d, out of range (max 4)\n",
rd_interval);
if (rd_interval == 0)
rd_interval = 1;
else
rd_interval *= 4;
mdelay(rd_interval);
}
static bool dptx_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
u8 lane_align;
u8 lane_status;
int lane;
lane_align = dptx_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dptx_get_lane_status(link_status, lane);
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
return false;
}
return true;
}
static void dptx_videomute(struct mtk_dp *mtk_dp, bool enable)
{
dptx_hal_videomute(mtk_dp, enable);
}
static void dptx_fec_ready(struct mtk_dp *mtk_dp, u8 err_cnt_sel)
{
u8 i, data[3];
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ, 0x90, 0x1, data);
printk(BIOS_DEBUG, "FEC Capable[0], [0:3] should be 1: %#x\n",
data[0]);
/*
* FEC error count select 120[3:1]:
* 000b: FEC_ERROR_COUNT_DIS
* 001b: UNCORRECTED_BLOCK_ERROR_COUNT
* 010b: CORRECTED_BLOCK_ERROR_COUNT
* 011b: BIT_ERROR_COUNT
* 100b: PARITY_BLOCK_ERROR_COUNT
* 101b: PARITY_BIT_ERROR_COUNT
*/
if (data[0] & BIT(0)) {
mtk_dp->has_fec = true;
data[0] = (err_cnt_sel << 1) | 0x1;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
0x120, 0x1, data);
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
0x280, 0x3, data);
for (i = 0; i < 3; i++)
printk(BIOS_DEBUG, "FEC status & error Count: %#x\n",
data[i]);
}
}
static void dptx_init_variable(struct mtk_dp *mtk_dp)
{
mtk_dp->regs = (void *)EDP_BASE;
mtk_dp->train_info.sys_max_linkrate = DP_LINKRATE_HBR3;
mtk_dp->train_info.linkrate = DP_LINKRATE_HBR2;
mtk_dp->train_info.linklane_count = DP_LANECOUNT_4;
mtk_dp->train_info.sink_extcap_en = false;
mtk_dp->train_info.sink_ssc_en = false;
mtk_dp->train_info.tps3 = true;
mtk_dp->train_info.tps4 = true;
mtk_dp->training_state = DPTX_NTSTATE_STARTUP;
mtk_dp->info.format = DP_COLOR_FORMAT_RGB_444;
mtk_dp->info.depth = DP_COLOR_DEPTH_8BIT;
mtk_dp->power_on = false;
mtk_dp->video_enable = false;
mtk_dp->dp_ready = false;
mtk_dp->has_dsc = false;
mtk_dp->has_fec = false;
mtk_dp->dsc_enable = false;
}
static inline bool dptx_check_res_sample_rate(const struct edid *edid)
{
return edid->mode.va + edid->mode.vbl <= 525;
}
static void dptx_setsdp_downcnt_init(struct mtk_dp *mtk_dp, u16 sram_read_start)
{
u32 count = 0; /* count: sdp_down_cnt_init */
u8 offset;
if (mtk_dp->edid->mode.pixel_clock > 0)
count = (sram_read_start * 2700 * 8 *
mtk_dp->train_info.linkrate) /
(mtk_dp->edid->mode.pixel_clock * 4);
switch (mtk_dp->train_info.linklane_count) {
case DP_LANECOUNT_1:
count = (count > 0x1a) ? count : 0x1a;
break;
case DP_LANECOUNT_2:
/* Case for LowResolution and High Audio Sample Rate. */
offset = dptx_check_res_sample_rate(mtk_dp->edid) ?
0x04 : 0x00;
count = (count > 0x10) ? count : 0x10 + offset;
break;
case DP_LANECOUNT_4:
default:
count = (count > 0x06) ? count : 0x06;
break;
}
printk(BIOS_DEBUG, "pixel rate(khz) = %d, sdp_dc_init = %#x\n",
mtk_dp->edid->mode.pixel_clock, count);
dptx_hal_setsdp_downcnt_init(mtk_dp, count);
}
static void dptx_setsdp_downcnt_init_inhblanking(struct mtk_dp *mtk_dp)
{
int pixclk_mhz = mtk_dp->edid->mode.pixel_clock / 1000;
u8 offset;
u16 count = 0; /* count: sdp_down_cnt_init*/
switch (mtk_dp->train_info.linklane_count) {
case DP_LANECOUNT_1:
count = 0x20;
break;
case DP_LANECOUNT_2:
offset = dptx_check_res_sample_rate(mtk_dp->edid) ?
0x14 : 0x00;
count = 0x0018 + offset;
break;
case DP_LANECOUNT_4:
default:
offset = dptx_check_res_sample_rate(mtk_dp->edid) ?
0x08 : 0x00;
if (pixclk_mhz > mtk_dp->train_info.linkrate * 27) {
count = 0x8;
printk(BIOS_ERR, "Pixclk > LinkRateChange\n");
} else {
count = 0x10 + offset;
}
break;
}
dptx_hal_setsdp_downcnt_init_inhblanking(mtk_dp, count);
}
static void dptx_set_tu(struct mtk_dp *mtk_dp)
{
u8 bpp;
u16 sram_read_start = DPTX_TBC_BUF_READSTARTADRTHRD;
int tu_size, n_value, f_value, pixclk_mhz;
bpp = dptx_hal_get_colorbpp(mtk_dp);
pixclk_mhz = mtk_dp->edid->mode.pixel_clock / 1000;
tu_size = (640 * pixclk_mhz * bpp) /
(mtk_dp->train_info.linkrate * 27 *
mtk_dp->train_info.linklane_count * 8);
n_value = tu_size / 10;
f_value = tu_size % 10;
printk(BIOS_DEBUG, "TU_size %d, FValue %d\n", tu_size, f_value);
if (mtk_dp->train_info.linklane_count > 0) {
sram_read_start = mtk_dp->edid->mode.ha /
(mtk_dp->train_info.linklane_count *
4 * 2 * 2);
sram_read_start = MIN(sram_read_start,
DPTX_TBC_BUF_READSTARTADRTHRD);
dptx_hal_settu_sramrd_start(mtk_dp, sram_read_start);
}
dptx_hal_settu_setencoder(mtk_dp);
dptx_setsdp_downcnt_init_inhblanking(mtk_dp);
dptx_setsdp_downcnt_init(mtk_dp, sram_read_start);
}
static void dptx_set_misc(struct mtk_dp *mtk_dp)
{
u8 format, depth;
union misc_t dptx_misc;
format = mtk_dp->info.format;
depth = mtk_dp->info.depth;
/*
* MISC 0/1 reference to spec 1.4a p143 Table 2-96.
* MISC0[7:5] color depth.
*/
dptx_misc.dp_misc.color_depth = depth;
/*
* MISC0[3]: 0->RGB, 1->YUV
* MISC0[2:1]: 01b->4:2:2, 10b->4:4:4
*/
switch (format) {
case DP_COLOR_FORMAT_YUV_444:
dptx_misc.dp_misc.color_format = 0x1;
break;
case DP_COLOR_FORMAT_YUV_422:
dptx_misc.dp_misc.color_format = 0x2;
break;
case DP_COLOR_FORMAT_RAW:
dptx_misc.dp_misc.color_format = 0x1;
dptx_misc.dp_misc.spec_def2 = 0x1;
break;
case DP_COLOR_FORMAT_YONLY:
dptx_misc.dp_misc.color_format = 0x0;
dptx_misc.dp_misc.spec_def2 = 0x1;
break;
case DP_COLOR_FORMAT_YUV_420:
case DP_COLOR_FORMAT_RGB_444:
default:
break;
}
dptx_hal_setmisc(mtk_dp, dptx_misc.cmisc);
}
static void dptx_set_dptxout(struct mtk_dp *mtk_dp)
{
dptx_hal_bypassmsa_en(mtk_dp, false);
dptx_set_tu(mtk_dp);
}
static bool dptx_training_checkswingpre(struct mtk_dp *mtk_dp,
u8 target_lane_count,
const u8 *dpcp202_x, u8 *dpcp_buf)
{
bool ret = true;
u8 swing_value, preemphasis;
/* Lane 0 */
if (target_lane_count >= 0x1) {
swing_value = (dpcp202_x[4] & 0x3);
preemphasis = (dpcp202_x[4] & 0xc) >> 2;
/* Adjust the swing and pre-emphasis */
ret &= dptx_hal_setswing_preemphasis(mtk_dp, DPTX_LANE0,
swing_value, preemphasis);
/*
* Adjust the swing and pre-emphasis done,
* and notify sink side.
*/
dpcp_buf[0] = swing_value | (preemphasis << 3);
/* Max swing reached. */
if (swing_value == DPTX_SWING3)
dpcp_buf[0] |= BIT(2);
/* Max pre-emphasis reached. */
if (preemphasis == DPTX_PREEMPHASIS3)
dpcp_buf[0] |= BIT(5);
}
/* Lane 1 */
if (target_lane_count >= 0x2) {
swing_value = (dpcp202_x[4] & 0x30) >> 4;
preemphasis = (dpcp202_x[4] & 0xc0) >> 6;
/* Adjust the swing and pre-emphasis */
ret &= dptx_hal_setswing_preemphasis(mtk_dp, DPTX_LANE1,
swing_value, preemphasis);
/*
* Adjust the swing and pre-emphasis done,
* and notify sink side.
*/
dpcp_buf[1] = swing_value | (preemphasis << 3);
/* Max swing reached. */
if (swing_value == DPTX_SWING3)
dpcp_buf[1] |= BIT(2);
/* Max pre-emphasis reached. */
if (preemphasis == DPTX_PREEMPHASIS3)
dpcp_buf[1] |= BIT(5);
}
/* Lane 2 and Lane 3 */
if (target_lane_count == 0x4) {
/* Lane 2 */
swing_value = (dpcp202_x[5] & 0x3);
preemphasis = (dpcp202_x[5] & 0x0c) >> 2;
/* Adjust the swing and pre-emphasis */
ret &= dptx_hal_setswing_preemphasis(mtk_dp, DPTX_LANE2,
swing_value, preemphasis);
/*
* Adjust the swing and pre-emphasis done,
* and notify sink side.
*/
dpcp_buf[2] = swing_value | (preemphasis << 3);
/* Max swing reached. */
if (swing_value == DPTX_SWING3)
dpcp_buf[2] |= BIT(2);
/* Max pre-emphasis reached. */
if (preemphasis == DPTX_PREEMPHASIS3)
dpcp_buf[2] |= BIT(5);
/* Lane 3 */
swing_value = (dpcp202_x[5] & 0x30) >> 4;
preemphasis = (dpcp202_x[5] & 0xc0) >> 6;
/* Adjust the swing and pre-emphasis */
ret &= dptx_hal_setswing_preemphasis(mtk_dp, DPTX_LANE3,
swing_value, preemphasis);
/*
* Adjust the swing and pre-emphasis done,
* and notify sink side.
*/
dpcp_buf[0x3] = swing_value | (preemphasis << 3);
/* Max swing reached. */
if (swing_value == DPTX_SWING3)
dpcp_buf[3] |= BIT(2);
/* Max pre-emphasis reached. */
if (preemphasis == DPTX_PREEMPHASIS3)
dpcp_buf[3] |= BIT(5);
}
/* Wait signal stable enough */
mdelay(2);
return ret;
}
static int dptx_train_tps1(struct mtk_dp *mtk_dp, u8 target_lanecount,
int *status_ctrl, int *iteration, u8 *dpcp_buffer,
u8 *dpcd206)
{
u8 tmp_val[6];
u8 dpcd200c[3];
printk(BIOS_INFO, "CR Training START\n");
dptx_hal_setscramble(mtk_dp, false);
if (*status_ctrl == 0x0) {
dptx_hal_set_txtrainingpattern(mtk_dp, BIT(4));
*status_ctrl = 0x1;
tmp_val[0] = 0x21;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00102, 0x1, tmp_val);
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00206, 0x2, tmp_val + 4);
*iteration = *iteration + 1;
dptx_training_checkswingpre(mtk_dp, target_lanecount,
tmp_val, dpcp_buffer);
}
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00103, target_lanecount, dpcp_buffer);
dptx_link_train_clock_recovery_delay(mtk_dp->rx_cap);
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00202, 0x6, tmp_val);
if (mtk_dp->train_info.sink_extcap_en) {
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_0200C, 0x3, dpcd200c);
tmp_val[0] = dpcd200c[0];
tmp_val[1] = dpcd200c[1];
tmp_val[2] = dpcd200c[2];
}
if (dptx_clock_recovery_ok(tmp_val, target_lanecount)) {
printk(BIOS_INFO, "CR Training Success\n");
mtk_dp->train_info.cr_done = true;
*iteration = 0x1;
return TRAIN_STEP_SUCCESS;
}
printk(BIOS_INFO, "CR Training Fail\n");
/* Requested swing and emp is the same with last time. */
if (*dpcd206 == tmp_val[4]) {
*iteration = *iteration + 1;
if (*dpcd206 & 0x3)
return TRAIN_STEP_FAIL_BREAK;
} else {
*dpcd206 = tmp_val[4];
}
return TRAIN_STEP_FAIL_NOT_BREAK;
}
static int dptx_train_tps2_3(struct mtk_dp *mtk_dp, u8 target_lanecount,
int *status_ctrl, int *iteration, u8 *dpcp_buffer,
u8 *dpcd206)
{
u8 tmp_val[6];
u8 dpcd200c[3];
printk(BIOS_INFO, "EQ Training START\n");
if (*status_ctrl == 0x1) {
if (mtk_dp->train_info.tps4)
dptx_hal_set_txtrainingpattern(mtk_dp, BIT(7));
else if (mtk_dp->train_info.tps3)
dptx_hal_set_txtrainingpattern(mtk_dp, BIT(6));
else
dptx_hal_set_txtrainingpattern(mtk_dp, BIT(5));
if (mtk_dp->train_info.tps4) {
tmp_val[0] = 0x07;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00102, 0x1, tmp_val);
} else if (mtk_dp->train_info.tps3) {
tmp_val[0] = 0x23;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00102, 0x1, tmp_val);
} else {
tmp_val[0] = 0x22;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00102, 0x1, tmp_val);
}
*status_ctrl = 0x2;
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00206, 0x2, tmp_val + 4);
*iteration = *iteration + 1;
dptx_training_checkswingpre(mtk_dp, target_lanecount,
tmp_val, dpcp_buffer);
}
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE, DPCD_00103,
target_lanecount, dpcp_buffer);
dptx_link_train_channel_eq_delay(mtk_dp->rx_cap);
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00202, 0x6, tmp_val);
if (mtk_dp->train_info.sink_extcap_en) {
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_0200C, 0x3, dpcd200c);
tmp_val[0] |= dpcd200c[0];
tmp_val[1] |= dpcd200c[1];
tmp_val[2] |= dpcd200c[2];
}
if (!dptx_clock_recovery_ok(tmp_val, target_lanecount)) {
printk(BIOS_INFO, "EQ Training Fail\n");
mtk_dp->train_info.cr_done = false;
mtk_dp->train_info.eq_done = false;
return TRAIN_STEP_FAIL_BREAK;
}
if (dptx_channel_eq_ok(tmp_val, target_lanecount)) {
printk(BIOS_INFO, "EQ Training Success\n");
mtk_dp->train_info.eq_done = true;
return TRAIN_STEP_SUCCESS;
}
printk(BIOS_INFO, "EQ Training Fail\n");
if (*dpcd206 == tmp_val[4])
*iteration = *iteration + 1;
else
*dpcd206 = tmp_val[4];
return TRAIN_STEP_FAIL_NOT_BREAK;
}
static int dptx_trainingflow(struct mtk_dp *mtk_dp,
u8 lanerate, u8 lanecount)
{
u8 tmp_val[6];
u8 target_linkrate = lanerate;
u8 target_lanecount = lanecount;
u8 dpcp_buffer[4];
u8 dpcd206;
bool pass_tps1 = false;
bool pass_tps2_3 = false;
int train_retry, status_ctrl, iteration;
memset(tmp_val, 0, sizeof(tmp_val));
memset(dpcp_buffer, 0, sizeof(dpcp_buffer));
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00600, 0x1, tmp_val);
if (tmp_val[0] != 0x1) {
tmp_val[0] = 0x1;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00600, 0x1, tmp_val);
mdelay(1);
}
tmp_val[0] = target_linkrate;
tmp_val[1] = target_lanecount | DPTX_AUX_SET_ENAHNCED_FRAME;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00100, 0x2, tmp_val);
if (mtk_dp->train_info.sink_ssc_en) {
tmp_val[0x0] = 0x10;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00107, 0x1, tmp_val);
}
train_retry = 0x0;
status_ctrl = 0x0;
iteration = 0x1;
dpcd206 = 0xff;
dptx_hal_set_txlane(mtk_dp, target_lanecount / 2);
dptx_hal_set_txrate(mtk_dp, target_linkrate);
do {
train_retry++;
if (!pass_tps1) {
int ret = dptx_train_tps1(mtk_dp, target_lanecount,
&status_ctrl, &iteration,
dpcp_buffer, &dpcd206);
if (ret == TRAIN_STEP_FAIL_BREAK)
break;
if (ret == TRAIN_STEP_SUCCESS) {
pass_tps1 = true;
train_retry = 0;
}
} else {
int ret = dptx_train_tps2_3(mtk_dp, target_lanecount,
&status_ctrl, &iteration,
dpcp_buffer, &dpcd206);
if (ret == TRAIN_STEP_FAIL_BREAK)
break;
if (ret == TRAIN_STEP_SUCCESS) {
pass_tps2_3 = true;
break;
}
}
dptx_training_checkswingpre(mtk_dp, target_lanecount,
tmp_val, dpcp_buffer);
} while (train_retry < DPTX_TRAIN_RETRY_LIMIT &&
iteration < DPTX_TRAIN_MAX_ITERATION);
tmp_val[0] = 0x0;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00102, 0x1, tmp_val);
dptx_hal_set_txtrainingpattern(mtk_dp, 0);
if (!pass_tps2_3) {
printk(BIOS_ERR, "Link Training Fail\n");
return DPTX_TRANING_FAIL;
}
mtk_dp->train_info.linkrate = target_linkrate;
mtk_dp->train_info.linklane_count = target_lanecount;
dptx_hal_setscramble(mtk_dp, true);
tmp_val[0] = target_lanecount | DPTX_AUX_SET_ENAHNCED_FRAME;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00101, 0x1, tmp_val);
dptx_hal_set_ef_mode(mtk_dp, ENABLE_DPTX_EF_MODE);
printk(BIOS_INFO, "Link Training Success\n");
return DPTX_PASS;
}
static void dptx_check_sinkcap(struct mtk_dp *mtk_dp)
{
u8 buffer[16];
memset(buffer, 0x0, sizeof(buffer));
buffer[0] = 0x1;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00600, 0x1, buffer);
mdelay(2);
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00000, 0x10, buffer);
mtk_dp->train_info.sink_extcap_en = false;
mtk_dp->train_info.dpcd_rev = buffer[0];
printk(BIOS_INFO, "SINK DPCD version: %#x\n",
mtk_dp->train_info.dpcd_rev);
memcpy(mtk_dp->rx_cap, buffer, sizeof(mtk_dp->rx_cap));
mtk_dp->rx_cap[14] &= 0x7f;
if (mtk_dp->train_info.dpcd_rev >= 0x14)
dptx_fec_ready(mtk_dp, FEC_BIT_ERROR_COUNT);
mtk_dp->train_info.linkrate = MIN(buffer[0x1],
mtk_dp->train_info.sys_max_linkrate);
mtk_dp->train_info.linklane_count = MIN(buffer[2] & 0x1F,
MAX_LANECOUNT);
mtk_dp->train_info.tps3 = (buffer[2] & BIT(6)) >> 0x6;
mtk_dp->train_info.tps4 = (buffer[3] & BIT(7)) >> 0x7;
mtk_dp->train_info.down_stream_port_present = (buffer[5] & BIT(0));
if ((buffer[3] & BIT(0)) == 0x1) {
printk(BIOS_INFO, "SINK SUPPORT SSC!\n");
mtk_dp->train_info.sink_ssc_en = true;
} else {
printk(BIOS_INFO, "SINK NOT SUPPORT SSC!\n");
mtk_dp->train_info.sink_ssc_en = false;
}
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00021, 0x1, buffer);
mtk_dp->train_info.dp_mstcap = (buffer[0] & BIT(0));
mtk_dp->train_info.dp_mstbranch = false;
if (mtk_dp->train_info.dp_mstcap == BIT(0)) {
if (mtk_dp->train_info.down_stream_port_present == 0x1)
mtk_dp->train_info.dp_mstbranch = true;
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_02003, 0x1, buffer);
if (buffer[0] != 0x0)
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_02003, 0x1, buffer);
}
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00600, 0x1, buffer);
if (buffer[0] != 0x1) {
buffer[0] = 0x1;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00600, 0x1, buffer);
}
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00200, 0x2, buffer);
}
static void dptx_training_changemode(struct mtk_dp *mtk_dp)
{
dptx_hal_phyd_reset(mtk_dp);
dptx_hal_reset_swing_preemphasis(mtk_dp);
dptx_hal_ssc_en(mtk_dp, mtk_dp->train_info.sink_ssc_en);
mdelay(2);
}
static int dptx_set_trainingstart(struct mtk_dp *mtk_dp)
{
int ret = DPTX_PASS;
u8 lanecount;
u8 linkrate;
u8 buffer;
u8 limit;
u8 max_linkrate;
buffer = 0x1;
dptx_auxwrite_dpcd(mtk_dp, DP_AUX_NATIVE_WRITE,
DPCD_00600, 0x1, &buffer);
linkrate = mtk_dp->rx_cap[1];
lanecount = mtk_dp->rx_cap[2] & 0x1f;
printk(BIOS_INFO, "RX support linkrate = %#x, lanecount = %#x\n",
linkrate, lanecount);
mtk_dp->train_info.linkrate =
(linkrate >= mtk_dp->train_info.sys_max_linkrate) ?
mtk_dp->train_info.sys_max_linkrate : linkrate;
mtk_dp->train_info.linklane_count = (lanecount >= MAX_LANECOUNT) ?
MAX_LANECOUNT : lanecount;
if (mtk_dp->train_info.sink_extcap_en)
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_02002, 0x1, &buffer);
else
dptx_auxread_dpcd(mtk_dp, DP_AUX_NATIVE_READ,
DPCD_00200, 0x1, &buffer);
if ((buffer & 0xbf) != 0)
mtk_dp->train_info.sink_count_num = buffer & 0xbf;
linkrate = mtk_dp->train_info.linkrate;
lanecount = mtk_dp->train_info.linklane_count;
switch (linkrate) {
case DP_LINKRATE_RBR:
case DP_LINKRATE_HBR:
case DP_LINKRATE_HBR2:
case DP_LINKRATE_HBR25:
case DP_LINKRATE_HBR3:
break;
default:
mtk_dp->train_info.linkrate = DP_LINKRATE_HBR3;
break;
};
max_linkrate = linkrate;
limit = 0x6;
do {
mtk_dp->train_info.cr_done = false;
mtk_dp->train_info.eq_done = false;
dptx_training_changemode(mtk_dp);
ret = dptx_trainingflow(mtk_dp, linkrate, lanecount);
if (!mtk_dp->train_info.cr_done) {
/* CR fail and reduce link capability. */
switch (linkrate) {
case DP_LINKRATE_RBR:
lanecount = lanecount / 2;
linkrate = max_linkrate;
if (lanecount == 0x0)
return DPTX_TRANING_FAIL;
break;
case DP_LINKRATE_HBR:
linkrate = DP_LINKRATE_RBR;
break;
case DP_LINKRATE_HBR2:
linkrate = DP_LINKRATE_HBR;
break;
case DP_LINKRATE_HBR3:
linkrate = DP_LINKRATE_HBR2;
break;
default:
return DPTX_TRANING_FAIL;
};
} else if (!mtk_dp->train_info.eq_done) {
/* EQ fail and reduce lane counts. */
if (lanecount == DP_LANECOUNT_4)
lanecount = DP_LANECOUNT_2;
else if (lanecount == DP_LANECOUNT_2)
lanecount = DP_LANECOUNT_1;
else
return DPTX_TRANING_FAIL;
} else {
return DPTX_PASS;
}
} while (--limit > 0);
return DPTX_TRANING_FAIL;
}
static void dptx_init_port(struct mtk_dp *mtk_dp)
{
dptx_hal_phy_setidlepattern(mtk_dp, true);
dptx_hal_init_setting(mtk_dp);
dptx_hal_aux_setting(mtk_dp);
dptx_hal_digital_setting(mtk_dp);
dptx_hal_phy_setting(mtk_dp);
dptx_hal_hpd_detect_setting(mtk_dp);
dptx_hal_digital_swreset(mtk_dp);
dptx_hal_analog_power_en(mtk_dp, true);
dptx_hal_hpd_int_en(mtk_dp, true);
}
static void dptx_video_enable(struct mtk_dp *mtk_dp, bool enable)
{
printk(BIOS_INFO, "Output Video %s!\n", enable ?
"enable" : "disable");
if (enable) {
dptx_set_dptxout(mtk_dp);
dptx_videomute(mtk_dp, false);
dptx_hal_verify_clock(mtk_dp);
} else
dptx_videomute(mtk_dp, true);
}
static void dptx_set_color_format(struct mtk_dp *mtk_dp, u8 color_format)
{
dptx_hal_set_color_format(mtk_dp, color_format);
}
static void dptx_set_color_depth(struct mtk_dp *mtk_dp, u8 color_depth)
{
dptx_hal_set_color_depth(mtk_dp, color_depth);
}
static void dptx_video_config(struct mtk_dp *mtk_dp)
{
u32 mvid = 0;
bool overwrite = false;
dptx_hal_overwrite_mn(mtk_dp, overwrite, mvid, 0x8000);
/* Interlace does not support. */
dptx_hal_set_msa(mtk_dp);
dptx_set_misc(mtk_dp);
dptx_set_color_depth(mtk_dp, mtk_dp->info.depth);
dptx_set_color_format(mtk_dp, mtk_dp->info.format);
}
int mtk_edp_init(struct edid *edid)
{
struct mtk_dp mtk_edp;
dptx_init_variable(&mtk_edp);
dptx_init_port(&mtk_edp);
if (!dptx_hal_hpd_high(&mtk_edp)) {
printk(BIOS_ERR, "HPD is low\n");
return -1;
}
dptx_check_sinkcap(&mtk_edp);
dptx_get_edid(&mtk_edp, edid);
dptx_set_trainingstart(&mtk_edp);
dp_intf_config(edid);
dptx_video_config(&mtk_edp);
dptx_video_enable(&mtk_edp, true);
return 0;
}