blob: 1b18dc7210b7f561d5f99cfb94af8edb9f06d31a [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <bootmode.h>
#include <cbfs.h>
#include <console/console.h>
#include <ip_checksum.h>
#include <mrc_cache.h>
#include <soc/dramc_param.h>
#include <soc/emi.h>
#include <soc/mmu_operations.h>
#include <symbols.h>
#include <timer.h>
/* This must be defined in chromeos.fmd in same name and size. */
#define CALIBRATION_REGION "RW_MRC_CACHE"
#define CALIBRATION_REGION_SIZE 0x2000
_Static_assert(sizeof(struct dramc_param) <= CALIBRATION_REGION_SIZE,
"sizeof(struct dramc_param) exceeds " CALIBRATION_REGION);
const char *get_dram_geometry_str(u32 ddr_geometry);
const char *get_dram_type_str(u32 ddr_type);
static int mt_mem_test(const struct dramc_data *dparam)
{
if (CONFIG(MEMORY_TEST)) {
u8 *addr = _dram;
const struct ddr_base_info *ddr_info = &dparam->ddr_info;
for (u8 rank = RANK_0; rank < ddr_info->support_ranks; rank++) {
int result = complex_mem_test(addr, 0x2000);
if (result != 0) {
printk(BIOS_ERR,
"[MEM] complex R/W mem test failed: %d\n", result);
return -1;
}
printk(BIOS_DEBUG, "[MEM] rank %u complex R/W mem test passed\n", rank);
addr += ddr_info->rank_size[rank];
}
}
return 0;
}
const char *get_dram_geometry_str(u32 ddr_geometry)
{
const char *s;
switch (ddr_geometry) {
case DDR_TYPE_2CH_2RK_4GB_2_2:
s = "2CH_2RK_4GB_2_2";
break;
case DDR_TYPE_2CH_2RK_6GB_3_3:
s = "2CH_2RK_6GB_3_3";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4:
s = "2CH_2RK_8GB_4_4";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4_BYTE:
s = "2CH_2RK_8GB_4_4_BYTE";
break;
case DDR_TYPE_2CH_1RK_4GB_4_0:
s = "2CH_1RK_4GB_4_0";
break;
case DDR_TYPE_2CH_2RK_6GB_2_4:
s = "2CH_2RK_6GB_2_4";
break;
default:
s = "";
break;
}
return s;
}
const char *get_dram_type_str(u32 ddr_type)
{
const char *s;
switch (ddr_type) {
case DDR_TYPE_DISCRETE:
s = "DSC";
break;
case DDR_TYPE_EMCP:
s = "EMCP";
break;
default:
s = "";
break;
}
return s;
}
static int dram_run_fast_calibration(struct dramc_param *dparam)
{
const u16 config = CONFIG(MEDIATEK_DRAM_DVFS) ? DRAMC_ENABLE_DVFS : DRAMC_DISABLE_DVFS;
if (dparam->dramc_datas.ddr_info.config_dvfs != config) {
printk(BIOS_WARNING,
"DRAM-K: Incompatible config for calibration data from flash "
"(expected: %#x, saved: %#x)\n",
config, dparam->dramc_datas.ddr_info.config_dvfs);
return -1;
}
printk(BIOS_INFO, "DRAM-K: DRAM calibration data valid pass\n");
init_dram_by_params(dparam);
if (mt_mem_test(&dparam->dramc_datas) == 0)
return 0;
return DRAMC_ERR_FAST_CALIBRATION;
}
static int dram_run_full_calibration(struct dramc_param *dparam)
{
/* Load and run the provided blob for full-calibration if available */
struct prog dram = PROG_INIT(PROG_REFCODE, CONFIG_CBFS_PREFIX "/dram");
initialize_dramc_param(dparam);
dump_param_header(dparam);
if (cbfs_prog_stage_load(&dram)) {
printk(BIOS_ERR, "DRAM-K: CBFS load program failed\n");
return -2;
}
dparam->do_putc = do_putchar;
prog_set_entry(&dram, prog_entry(&dram), dparam);
prog_run(&dram);
if (dparam->header.status != DRAMC_SUCCESS) {
printk(BIOS_ERR, "DRAM-K: Full calibration failed: status = %d\n",
dparam->header.status);
return -3;
}
if (!(dparam->header.flags & DRAMC_FLAG_HAS_SAVED_DATA)) {
printk(BIOS_ERR,
"DRAM-K: Full calibration executed without saving parameters. "
"Please ensure the blob is built properly.\n");
return -4;
}
return 0;
}
static void mem_init_set_default_config(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
u32 type, geometry;
memset(dparam, 0, sizeof(*dparam));
type = dram_info->ddr_type;
geometry = dram_info->ddr_geometry;
dparam->dramc_datas.ddr_info.sdram.ddr_type = type;
if (CONFIG(MEDIATEK_DRAM_DVFS))
dparam->dramc_datas.ddr_info.config_dvfs = DRAMC_ENABLE_DVFS;
dparam->dramc_datas.ddr_info.sdram.ddr_geometry = geometry;
printk(BIOS_INFO, "DRAM-K: ddr_type: %s, config_dvfs: %d, ddr_geometry: %s\n",
get_dram_type_str(type),
dparam->dramc_datas.ddr_info.config_dvfs,
get_dram_geometry_str(geometry));
}
static void mt_mem_init_run(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
const ssize_t mrc_cache_size = sizeof(*dparam);
ssize_t data_size;
struct stopwatch sw;
int ret;
/* Load calibration params from flash and run fast calibration */
data_size = mrc_cache_load_current(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
if (data_size == mrc_cache_size) {
printk(BIOS_INFO, "DRAM-K: Running fast calibration\n");
stopwatch_init(&sw);
ret = dram_run_fast_calibration(dparam);
if (ret != 0) {
printk(BIOS_ERR, "DRAM-K: Failed to run fast calibration "
"in %ld msecs, error: %d\n",
stopwatch_duration_msecs(&sw), ret);
/* Erase flash data after fast calibration failed */
memset(dparam, 0xa5, mrc_cache_size);
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_INFO, "DRAM-K: Fast calibration passed in %ld msecs\n",
stopwatch_duration_msecs(&sw));
return;
}
} else {
printk(BIOS_WARNING, "DRAM-K: Invalid data in flash (size: %#zx, expected: %#zx)\n",
data_size, mrc_cache_size);
}
/* Run full calibration */
printk(BIOS_INFO, "DRAM-K: Running full calibration\n");
mem_init_set_default_config(dparam, dram_info);
stopwatch_init(&sw);
int err = dram_run_full_calibration(dparam);
if (err == 0) {
printk(BIOS_INFO, "DRAM-K: Full calibration passed in %ld msecs\n",
stopwatch_duration_msecs(&sw));
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_ERR, "DRAM-K: Full calibration failed in %ld msecs\n",
stopwatch_duration_msecs(&sw));
}
}
void mt_mem_init(struct dramc_param *dparam)
{
const struct sdram_info *sdram_param = get_sdram_config();
mt_mem_init_run(dparam, sdram_param);
}
void mtk_dram_init(void)
{
/* dramc_param is too large to fit in stack. */
static struct dramc_param dramc_parameter;
mt_mem_init(&dramc_parameter);
mtk_mmu_after_dram();
}