blob: 9c7baa9d3a3da3acbc72e77a5952374e86e5867a [file] [log] [blame]
/* SPDX-License-Identifier: BSD-3-Clause */
/* This is a driver for a SPI interfaced TPM2 device.
*
* It assumes that the required SPI interface has been initialized before the
* driver is started. A 'sruct spi_slave' pointer passed at initialization is
* used to direct traffic to the correct SPI interface. This driver does not
* provide a way to instantiate multiple TPM devices. Also, to keep things
* simple, the driver unconditionally uses of TPM locality zero.
*
* References to documentation are based on the TCG issued "TPM Profile (PTP)
* Specification Revision 00.43".
*/
#include <assert.h>
#include <commonlib/endian.h>
#include <console/console.h>
#include <delay.h>
#include <endian.h>
#include <string.h>
#include <timer.h>
#include <security/tpm/tis.h>
#include "tpm.h"
#define TPM_LOCALITY_0_SPI_BASE 0x00d40000
/* Assorted TPM2 registers for interface type FIFO. */
#define TPM_ACCESS_REG (TPM_LOCALITY_0_SPI_BASE + 0)
#define TPM_STS_REG (TPM_LOCALITY_0_SPI_BASE + 0x18)
#define TPM_DATA_FIFO_REG (TPM_LOCALITY_0_SPI_BASE + 0x24)
#define TPM_DID_VID_REG (TPM_LOCALITY_0_SPI_BASE + 0xf00)
#define TPM_RID_REG (TPM_LOCALITY_0_SPI_BASE + 0xf04)
#define TPM_FW_VER (TPM_LOCALITY_0_SPI_BASE + 0xf90)
#define CR50_BOARD_CFG (TPM_LOCALITY_0_SPI_BASE + 0xfe0)
#define CR50_BOARD_CFG_LOCKBIT_MASK 0x80000000U
#define CR50_BOARD_CFG_FEATUREBITS_MASK 0x3FFFFFFFU
#define CR50_BOARD_CFG_100US_READY_PULSE 0x00000001U
#define CR50_BOARD_CFG_VALUE \
(CONFIG(CR50_USE_LONG_INTERRUPT_PULSES) \
? CR50_BOARD_CFG_100US_READY_PULSE : 0)
#define CR50_TIMEOUT_INIT_MS 30000 /* Very long timeout for TPM init */
/* SPI slave structure for TPM device. */
static struct spi_slave spi_slave;
/* Cached TPM device identification. */
static struct tpm2_info tpm_info;
static struct cr50_firmware_version cr50_firmware_version;
/*
* TODO(vbendeb): make CONFIG(DEBUG_TPM) an int to allow different level of
* debug traces. Right now it is either 0 or 1.
*/
static const int debug_level_ = CONFIG(DEBUG_TPM);
/*
* SPI frame header for TPM transactions is 4 bytes in size, it is described
* in section "6.4.6 Spi Bit Protocol".
*/
typedef struct {
unsigned char body[4];
} spi_frame_header;
void tpm2_get_info(struct tpm2_info *info)
{
*info = tpm_info;
}
__weak int tis_plat_irq_status(void)
{
static int warning_displayed;
if (!warning_displayed) {
printk(BIOS_WARNING, "%s() not implemented, wasting 10ms to wait on"
" Cr50!\n", __func__);
warning_displayed = 1;
}
mdelay(10);
return 1;
}
/*
* TPM may trigger a IRQ after finish processing previous transfer.
* Waiting for this IRQ to sync TPM status.
*
* Returns 1 on success, 0 on failure (timeout).
*/
static int tpm_sync(void)
{
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, 10);
while (!tis_plat_irq_status()) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "Timeout wait for TPM IRQ!\n");
return 0;
}
}
return 1;
}
/*
* Each TPM2 SPI transaction starts the same: CS is asserted, the 4 byte
* header is sent to the TPM, the master waits til TPM is ready to continue.
*
* Returns 1 on success, 0 on failure (TPM SPI flow control timeout.)
*/
static int start_transaction(int read_write, size_t bytes, unsigned int addr)
{
spi_frame_header header, header_resp;
uint8_t byte;
int i;
int ret;
struct stopwatch sw;
static int tpm_sync_needed;
static struct stopwatch wake_up_sw;
if (CONFIG(TPM_CR50)) {
/*
* First Cr50 access in each coreboot stage where TPM is used will be
* prepended by a wake up pulse on the CS line.
*/
int wakeup_needed = 1;
/* Wait for TPM to finish previous transaction if needed */
if (tpm_sync_needed) {
tpm_sync();
/*
* During the first invocation of this function on each stage
* this if () clause code does not run (as tpm_sync_needed
* value is zero), during all following invocations the
* stopwatch below is guaranteed to be started.
*/
if (!stopwatch_expired(&wake_up_sw))
wakeup_needed = 0;
} else {
tpm_sync_needed = 1;
}
if (wakeup_needed) {
/* Just in case Cr50 is asleep. */
spi_claim_bus(&spi_slave);
udelay(1);
spi_release_bus(&spi_slave);
udelay(100);
}
/*
* The Cr50 on H1 does not go to sleep for 1 second after any
* SPI slave activity, let's be conservative and limit the
* window to 900 ms.
*/
stopwatch_init_msecs_expire(&wake_up_sw, 900);
}
/*
* The first byte of the frame header encodes the transaction type
* (read or write) and transfer size (set to length - 1), limited to
* 64 bytes.
*/
header.body[0] = (read_write ? 0x80 : 0) | 0x40 | (bytes - 1);
/* The rest of the frame header is the TPM register address. */
for (i = 0; i < 3; i++)
header.body[i + 1] = (addr >> (8 * (2 - i))) & 0xff;
/* CS assert wakes up the slave. */
spi_claim_bus(&spi_slave);
/*
* The TCG TPM over SPI specification introduces the notion of SPI
* flow control (Section "6.4.5 Flow Control").
*
* Again, the slave (TPM device) expects each transaction to start
* with a 4 byte header trasmitted by master. The header indicates if
* the master needs to read or write a register, and the register
* address.
*
* If the slave needs to stall the transaction (for instance it is not
* ready to send the register value to the master), it sets the MOSI
* line to 0 during the last clock of the 4 byte header. In this case
* the master is supposed to start polling the SPI bus, one byte at
* time, until the last bit in the received byte (transferred during
* the last clock of the byte) is set to 1.
*
* Due to some SPI controllers' shortcomings (Rockchip comes to
* mind...) we transmit the 4 byte header without checking the byte
* transmitted by the TPM during the transaction's last byte.
*
* We know that cr50 is guaranteed to set the flow control bit to 0
* during the header transfer. Real TPM2 are fast enough to not require
* to stall the master. They might still use this feature, so test the
* last bit after shifting in the address bytes.
* crosbug.com/p/52132 has been opened to track this.
*/
header_resp.body[3] = 0;
if (CONFIG(TPM_CR50))
ret = spi_xfer(&spi_slave, header.body, sizeof(header.body), NULL, 0);
else
ret = spi_xfer(&spi_slave, header.body, sizeof(header.body),
header_resp.body, sizeof(header_resp.body));
if (ret) {
printk(BIOS_ERR, "SPI-TPM: transfer error\n");
spi_release_bus(&spi_slave);
return 0;
}
if (header_resp.body[3] & 1)
return 1;
/*
* Now poll the bus until TPM removes the stall bit. Give it up to 100
* ms to sort it out - it could be saving stuff in nvram at some point.
*/
stopwatch_init_msecs_expire(&sw, 100);
do {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "TPM flow control failure\n");
spi_release_bus(&spi_slave);
return 0;
}
spi_xfer(&spi_slave, NULL, 0, &byte, 1);
} while (!(byte & 1));
return 1;
}
/*
* Print out the contents of a buffer, if debug is enabled. Skip registers
* other than FIFO, unless debug_level_ is 2.
*/
static void trace_dump(const char *prefix, uint32_t reg,
size_t bytes, const uint8_t *buffer,
int force)
{
static char prev_prefix;
static unsigned int prev_reg;
static int current_char;
const int BYTES_PER_LINE = 32;
if (!force) {
if (!debug_level_)
return;
if ((debug_level_ < 2) && (reg != TPM_DATA_FIFO_REG))
return;
}
/*
* Do not print register address again if the last dump print was for
* that register.
*/
if (prev_prefix != *prefix || (prev_reg != reg)) {
prev_prefix = *prefix;
prev_reg = reg;
printk(BIOS_DEBUG, "\n%s %2.2x:", prefix, reg);
current_char = 0;
}
if ((reg != TPM_DATA_FIFO_REG) && (bytes == 4)) {
/*
* This must be a regular register address, print the 32 bit
* value.
*/
printk(BIOS_DEBUG, " %8.8x", *(const uint32_t *)buffer);
} else {
int i;
/*
* Data read from or written to FIFO or not in 4 byte
* quantiites is printed byte at a time.
*/
for (i = 0; i < bytes; i++) {
if (current_char &&
!(current_char % BYTES_PER_LINE)) {
printk(BIOS_DEBUG, "\n ");
current_char = 0;
}
(current_char)++;
printk(BIOS_DEBUG, " %2.2x", buffer[i]);
}
}
}
/*
* Once transaction is initiated and the TPM indicated that it is ready to go,
* write the actual bytes to the register.
*/
static void write_bytes(const void *buffer, size_t bytes)
{
spi_xfer(&spi_slave, buffer, bytes, NULL, 0);
}
/*
* Once transaction is initiated and the TPM indicated that it is ready to go,
* read the actual bytes from the register.
*/
static void read_bytes(void *buffer, size_t bytes)
{
spi_xfer(&spi_slave, NULL, 0, buffer, bytes);
}
/*
* To write a register, start transaction, transfer data to the TPM, deassert
* CS when done.
*
* Returns one to indicate success, zero to indicate failure.
*/
static int tpm2_write_reg(unsigned int reg_number, const void *buffer, size_t bytes)
{
trace_dump("W", reg_number, bytes, buffer, 0);
if (!start_transaction(false, bytes, reg_number))
return 0;
write_bytes(buffer, bytes);
spi_release_bus(&spi_slave);
return 1;
}
/*
* To read a register, start transaction, transfer data from the TPM, deassert
* CS when done.
*
* Returns one to indicate success, zero to indicate failure. In case of
* failure zero out the user buffer.
*/
static int tpm2_read_reg(unsigned int reg_number, void *buffer, size_t bytes)
{
if (!start_transaction(true, bytes, reg_number)) {
memset(buffer, 0, bytes);
return 0;
}
read_bytes(buffer, bytes);
spi_release_bus(&spi_slave);
trace_dump("R", reg_number, bytes, buffer, 0);
return 1;
}
/*
* Status register is accessed often, wrap reading and writing it into
* dedicated functions.
*/
static int read_tpm_sts(uint32_t *status)
{
return tpm2_read_reg(TPM_STS_REG, status, sizeof(*status));
}
static int __must_check write_tpm_sts(uint32_t status)
{
return tpm2_write_reg(TPM_STS_REG, &status, sizeof(status));
}
/*
* The TPM may limit the transaction bytes count (burst count) below the 64
* bytes max. The current value is available as a field of the status
* register.
*/
static uint32_t get_burst_count(void)
{
uint32_t status;
read_tpm_sts(&status);
return (status & TPM_STS_BURST_COUNT_MASK) >> TPM_STS_BURST_COUNT_SHIFT;
}
static uint8_t tpm2_read_access_reg(void)
{
uint8_t access;
tpm2_read_reg(TPM_ACCESS_REG, &access, sizeof(access));
/* We do not care about access establishment bit state. Ignore it. */
return access & ~TPM_ACCESS_ESTABLISHMENT;
}
static void tpm2_write_access_reg(uint8_t cmd)
{
/* Writes to access register can set only 1 bit at a time. */
assert (!(cmd & (cmd - 1)));
tpm2_write_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
}
static int tpm2_claim_locality(void)
{
uint8_t access;
struct stopwatch sw;
/*
* Locality is released by TPM reset.
*
* If locality is taken at this point, this could be due to the fact
* that the TPM is performing a long operation and has not processed
* reset request yet. We'll wait up to CR50_TIMEOUT_INIT_MS and see if
* it releases locality when reset is processed.
*/
stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_INIT_MS);
do {
access = tpm2_read_access_reg();
if (access & TPM_ACCESS_ACTIVE_LOCALITY) {
/*
* Don't bombard the chip with traffic, let it keep
* processing the command.
*/
mdelay(2);
continue;
}
/*
* Ok, the locality is free, TPM must be reset, let's claim
* it.
*/
tpm2_write_access_reg(TPM_ACCESS_REQUEST_USE);
access = tpm2_read_access_reg();
if (access != (TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) {
break;
}
printk(BIOS_INFO, "TPM ready after %ld ms\n",
stopwatch_duration_msecs(&sw));
return 1;
} while (!stopwatch_expired(&sw));
printk(BIOS_ERR,
"Failed to claim locality 0 after %ld ms, status: %#x\n",
stopwatch_duration_msecs(&sw), access);
return 0;
}
static int cr50_parse_fw_version(const char *version_str, struct cr50_firmware_version *ver)
{
int epoch, major, minor;
char *number = strstr(version_str, " RW_A:");
if (!number)
number = strstr(version_str, " RW_B:");
if (!number)
return -1;
number += 6; /* Skip past the colon. */
epoch = skip_atoi(&number);
if (*number++ != '.')
return -2;
major = skip_atoi(&number);
if (*number++ != '.')
return -2;
minor = skip_atoi(&number);
ver->epoch = epoch;
ver->major = major;
ver->minor = minor;
return 0;
}
static int cr50_fw_supports_board_cfg(struct cr50_firmware_version *version)
{
/* Cr50 supports the CR50_BOARD_CFG register from version 0.5.5 / 0.6.5
* and onwards. */
if (version->epoch > 0 || version->major >= 7
|| (version->major >= 5 && version->minor >= 5))
return 1;
printk(BIOS_INFO, "Cr50 firmware does not support CR50_BOARD_CFG, version: %d.%d.%d\n",
version->epoch, version->major, version->minor);
return 0;
}
/**
* Set the BOARD_CFG register on the TPM chip to a particular compile-time constant value.
*/
static void cr50_set_board_cfg(void)
{
uint32_t board_cfg_value;
if (!cr50_fw_supports_board_cfg(&cr50_firmware_version))
return;
/* Set the CR50_BOARD_CFG register, for e.g. asking cr50 to use longer ready pulses. */
if (!tpm2_read_reg(CR50_BOARD_CFG, &board_cfg_value, sizeof(board_cfg_value))) {
printk(BIOS_INFO, "Error reading from cr50\n");
return;
}
if ((board_cfg_value & CR50_BOARD_CFG_FEATUREBITS_MASK) == CR50_BOARD_CFG_VALUE) {
printk(BIOS_INFO,
"Current CR50_BOARD_CFG = 0x%08x, matches desired = 0x%08x\n",
board_cfg_value, CR50_BOARD_CFG_VALUE);
return;
}
if (board_cfg_value & CR50_BOARD_CFG_LOCKBIT_MASK) {
/* The high bit is set, meaning that the Cr50 is already locked on a particular
* value for the register, but not the one we wanted. */
printk(BIOS_ERR,
"Current CR50_BOARD_CFG = 0x%08x, does not match desired = 0x%08x\n",
board_cfg_value, CR50_BOARD_CFG_VALUE);
return;
}
printk(BIOS_INFO, "Current CR50_BOARD_CFG = 0x%08x, setting to 0x%08x\n",
board_cfg_value, CR50_BOARD_CFG_VALUE);
board_cfg_value = CR50_BOARD_CFG_VALUE;
if (!tpm2_write_reg(CR50_BOARD_CFG, &board_cfg_value, sizeof(board_cfg_value)))
printk(BIOS_INFO, "Error writing to cr50\n");
}
/*
* Expose method to read the CR50_BOARD_CFG register, will return zero if
* register not supported by Cr50 firmware.
*/
static uint32_t cr50_get_board_cfg(void)
{
uint32_t board_cfg_value;
if (!cr50_fw_supports_board_cfg(&cr50_firmware_version))
return 0;
if (!tpm2_read_reg(CR50_BOARD_CFG, &board_cfg_value, sizeof(board_cfg_value))) {
printk(BIOS_INFO, "Error reading from cr50\n");
return 0;
}
return board_cfg_value & CR50_BOARD_CFG_FEATUREBITS_MASK;
}
bool cr50_is_long_interrupt_pulse_enabled(void)
{
return cr50_get_board_cfg() & CR50_BOARD_CFG_100US_READY_PULSE;
}
/* Device/vendor ID values of the TPM devices this driver supports. */
static const uint32_t supported_did_vids[] = {
0x00281ae0, /* H1 based Cr50 security chip. */
0x0000104a /* ST33HTPH2E32 */
};
static int first_access_this_boot(void)
{
return ENV_SEPARATE_VERSTAGE || ENV_BOOTBLOCK || !CONFIG(VBOOT);
}
int tpm2_init(struct spi_slave *spi_if)
{
uint32_t did_vid, status;
uint8_t cmd;
int retries;
memcpy(&spi_slave, spi_if, sizeof(*spi_if));
/* clear any pending IRQs */
tis_plat_irq_status();
/*
* 150 ms should be enough to synchronize with the TPM even under the
* worst nested reset request conditions. In vast majority of cases
* there would be no wait at all.
*/
printk(BIOS_INFO, "Probing TPM: ");
for (retries = 15; retries > 0; retries--) {
int i;
/* In case of failure to read div_vid is set to zero. */
tpm2_read_reg(TPM_DID_VID_REG, &did_vid, sizeof(did_vid));
for (i = 0; i < ARRAY_SIZE(supported_did_vids); i++)
if (did_vid == supported_did_vids[i])
break; /* TPM is up and ready. */
if (i < ARRAY_SIZE(supported_did_vids))
break;
/* TPM might be resetting, let's retry in a bit. */
mdelay(10);
printk(BIOS_INFO, ".");
}
if (!retries) {
printk(BIOS_ERR, "\n%s: Failed to connect to the TPM\n",
__func__);
return -1;
}
printk(BIOS_INFO, " done!\n");
// FIXME: Move this to tpm_setup()
if (first_access_this_boot())
/*
* Claim locality 0, do it only during the first
* initialization after reset.
*/
if (!tpm2_claim_locality())
return -1;
if (!read_tpm_sts(&status)) {
printk(BIOS_ERR, "Reading status reg failed\n");
return -1;
}
if ((status & TPM_STS_FAMILY_MASK) != TPM_STS_FAMILY_TPM_2_0) {
printk(BIOS_ERR, "unexpected TPM family value, status: %#x\n",
status);
return -1;
}
/*
* Locality claimed, read the revision value and set up the tpm_info
* structure.
*/
tpm2_read_reg(TPM_RID_REG, &cmd, sizeof(cmd));
tpm_info.vendor_id = did_vid & 0xffff;
tpm_info.device_id = did_vid >> 16;
tpm_info.revision = cmd;
printk(BIOS_INFO, "Connected to device vid:did:rid of %4.4x:%4.4x:%2.2x\n",
tpm_info.vendor_id, tpm_info.device_id, tpm_info.revision);
/* Let's report device FW version if available. */
if (CONFIG(TPM_CR50) && tpm_info.vendor_id == 0x1ae0) {
int chunk_count = 0;
size_t chunk_size = 50;
char version_str[301];
/*
* Does not really matter what's written, this just makes sure
* the version is reported from the beginning.
*/
tpm2_write_reg(TPM_FW_VER, &chunk_size, 1);
/*
* Read chunk_size bytes at a time, last chunk will be zero padded.
*/
do {
tpm2_read_reg(TPM_FW_VER,
version_str + chunk_count * chunk_size,
chunk_size);
if (!version_str[++chunk_count * chunk_size - 1])
/* Zero padding detected: end of string. */
break;
/* Check if there is enough room for reading one more chunk. */
} while (chunk_count * chunk_size < sizeof(version_str) - chunk_size);
version_str[chunk_count * chunk_size] = '\0';
printk(BIOS_INFO, "Firmware version: %s\n", version_str);
if (cr50_parse_fw_version(version_str, &cr50_firmware_version)) {
printk(BIOS_ERR, "Did not recognize Cr50 version format\n");
return -1;
}
if (CR50_BOARD_CFG_VALUE) {
if (first_access_this_boot())
cr50_set_board_cfg();
}
}
return 0;
}
/*
* This is in seconds, certain TPM commands, like key generation, can take
* long time to complete.
*
* Returns one to indicate success, zero (not yet implemented) to indicate
* failure.
*/
#define MAX_STATUS_TIMEOUT 120
static int wait_for_status(uint32_t status_mask, uint32_t status_expected)
{
uint32_t status;
struct stopwatch sw;
stopwatch_init_usecs_expire(&sw, MAX_STATUS_TIMEOUT * 1000 * 1000);
do {
udelay(1000);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "failed to get expected status %x\n",
status_expected);
return false;
}
read_tpm_sts(&status);
} while ((status & status_mask) != status_expected);
return 1;
}
enum fifo_transfer_direction {
fifo_transmit = 0,
fifo_receive = 1
};
/* Union allows to avoid casting away 'const' on transmit buffers. */
union fifo_transfer_buffer {
uint8_t *rx_buffer;
const uint8_t *tx_buffer;
};
/*
* Transfer requested number of bytes to or from TPM FIFO, accounting for the
* current burst count value.
*/
static int __must_check fifo_transfer(size_t transfer_size,
union fifo_transfer_buffer buffer,
enum fifo_transfer_direction direction)
{
size_t transaction_size;
size_t burst_count;
size_t handled_so_far = 0;
do {
do {
/* Could be zero when TPM is busy. */
burst_count = get_burst_count();
} while (!burst_count);
transaction_size = transfer_size - handled_so_far;
transaction_size = MIN(transaction_size, burst_count);
/*
* The SPI frame header does not allow to pass more than 64
* bytes.
*/
transaction_size = MIN(transaction_size, 64);
if (direction == fifo_receive) {
if (!tpm2_read_reg(TPM_DATA_FIFO_REG,
buffer.rx_buffer + handled_so_far,
transaction_size))
return 0;
} else {
if (!tpm2_write_reg(TPM_DATA_FIFO_REG,
buffer.tx_buffer + handled_so_far,
transaction_size))
return 0;
}
handled_so_far += transaction_size;
} while (handled_so_far != transfer_size);
return 1;
}
size_t tpm2_process_command(const void *tpm2_command, size_t command_size,
void *tpm2_response, size_t max_response)
{
uint32_t status;
uint32_t expected_status_bits;
size_t payload_size;
size_t bytes_to_go;
const uint8_t *cmd_body = tpm2_command;
uint8_t *rsp_body = tpm2_response;
union fifo_transfer_buffer fifo_buffer;
const int HEADER_SIZE = 6;
/* Do not try using an uninitialized TPM. */
if (!tpm_info.vendor_id)
return 0;
/* Skip the two byte tag, read the size field. */
payload_size = read_be32(cmd_body + 2);
/* Sanity check. */
if (payload_size != command_size) {
printk(BIOS_ERR,
"Command size mismatch: encoded %zd != requested %zd\n",
payload_size, command_size);
trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
printk(BIOS_DEBUG, "\n");
return 0;
}
/* Let the TPM know that the command is coming. */
if (!write_tpm_sts(TPM_STS_COMMAND_READY)) {
printk(BIOS_ERR, "TPM_STS_COMMAND_READY failed\n");
return 0;
}
/*
* TPM commands and responses written to and read from the FIFO
* register (0x24) are datagrams of variable size, prepended by a 6
* byte header.
*
* The specification description of the state machine is a bit vague,
* but from experience it looks like there is no need to wait for the
* sts.expect bit to be set, at least with the 9670 and cr50 devices.
* Just write the command into FIFO, making sure not to exceed the
* burst count or the maximum PDU size, whatever is smaller.
*/
fifo_buffer.tx_buffer = cmd_body;
if (!fifo_transfer(command_size, fifo_buffer, fifo_transmit)) {
printk(BIOS_ERR, "fifo_transfer %zd command bytes failed\n",
command_size);
return 0;
}
/* Now tell the TPM it can start processing the command. */
if (!write_tpm_sts(TPM_STS_GO)) {
printk(BIOS_ERR, "TPM_STS_GO failed\n");
return 0;
}
/* Now wait for it to report that the response is ready. */
expected_status_bits = TPM_STS_VALID | TPM_STS_DATA_AVAIL;
if (!wait_for_status(expected_status_bits, expected_status_bits)) {
/*
* If timed out, which should never happen, let's at least
* print out the offending command.
*/
trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
printk(BIOS_DEBUG, "\n");
return 0;
}
/*
* The response is ready, let's read it. First we read the FIFO
* payload header, to see how much data to expect. The response header
* size is fixed to six bytes, the total payload size is stored in
* network order in the last four bytes.
*/
tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body, HEADER_SIZE);
/* Find out the total payload size, skipping the two byte tag. */
payload_size = read_be32(rsp_body + 2);
if (payload_size > max_response) {
/*
* TODO(vbendeb): at least drain the FIFO here or somehow let
* the TPM know that the response can be dropped.
*/
printk(BIOS_ERR, " TPM response too long (%zd bytes)",
payload_size);
return 0;
}
/*
* Now let's read all but the last byte in the FIFO to make sure the
* status register is showing correct flow control bits: 'more data'
* until the last byte and then 'no more data' once the last byte is
* read.
*/
bytes_to_go = payload_size - 1 - HEADER_SIZE;
fifo_buffer.rx_buffer = rsp_body + HEADER_SIZE;
if (!fifo_transfer(bytes_to_go, fifo_buffer, fifo_receive)) {
printk(BIOS_ERR, "fifo_transfer %zd receive bytes failed\n",
bytes_to_go);
return 0;
}
/* Verify that there is still data to read. */
read_tpm_sts(&status);
if ((status & expected_status_bits) != expected_status_bits) {
printk(BIOS_ERR, "unexpected intermediate status %#x\n",
status);
return 0;
}
/* Read the last byte of the PDU. */
tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body + payload_size - 1, 1);
/* Terminate the dump, if enabled. */
if (debug_level_)
printk(BIOS_DEBUG, "\n");
/* Verify that 'data available' is not asseretd any more. */
read_tpm_sts(&status);
if ((status & expected_status_bits) != TPM_STS_VALID) {
printk(BIOS_ERR, "unexpected final status %#x\n", status);
return 0;
}
/* Move the TPM back to idle state. */
if (!write_tpm_sts(TPM_STS_COMMAND_READY)) {
printk(BIOS_ERR, "TPM_STS_COMMAND_READY failed\n");
return 0;
}
return payload_size;
}
void cr50_get_firmware_version(struct cr50_firmware_version *version)
{
memcpy(version, &cr50_firmware_version, sizeof(*version));
}