blob: bc012d259b23972181c62581dbb4a7a03353f92f [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Damien Zammit <damien@zamaudio.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdint.h>
#include <arch/io.h>
#include <arch/cpu.h>
#include <console/console.h>
#include <commonlib/helpers.h>
#include <delay.h>
#include <pc80/mc146818rtc.h>
#if IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)
#include <southbridge/intel/i82801gx/i82801gx.h>
#else
#include <southbridge/intel/i82801jx/i82801jx.h>
#endif
#include "iomap.h"
#include "x4x.h"
#define ME_UMA_SIZEMB 0
static inline void barrier(void)
{
asm volatile("mfence":::);
}
static u32 fsb2mhz(u32 speed)
{
return (speed * 267) + 800;
}
static u32 ddr2mhz(u32 speed)
{
static const u16 mhz[] = { 0, 0, 667, 800, 1067, 1333 };
if (speed >= ARRAY_SIZE(mhz))
return 0;
return mhz[speed];
}
/* Find MSB bitfield location using bit scan reverse instruction */
static u8 msbpos(u32 val)
{
u32 pos;
if (val == 0) {
printk(BIOS_WARNING, "WARNING: Input to BSR is zero\n");
return 0;
}
asm ("bsrl %1, %0"
: "=r"(pos)
: "r"(val)
);
return (u8)(pos & 0xff);
}
static void sdram_detect_smallest_params2(struct sysinfo *s)
{
u16 mult[6] = {
5000, // 400
3750, // 533
3000, // 667
2500, // 800
1875, // 1066
1500, // 1333
};
u8 i;
u32 tmp;
u32 maxtras = 0;
u32 maxtrp = 0;
u32 maxtrcd = 0;
u32 maxtwr = 0;
u32 maxtrfc = 0;
u32 maxtwtr = 0;
u32 maxtrrd = 0;
u32 maxtrtp = 0;
FOR_EACH_POPULATED_DIMM(s->dimms, i) {
maxtras = MAX(maxtras, s->dimms[i].spd_data[30] * 1000);
maxtrp = MAX(maxtrp, (s->dimms[i].spd_data[27] * 1000) >> 2);
maxtrcd = MAX(maxtrcd, (s->dimms[i].spd_data[29] * 1000) >> 2);
maxtwr = MAX(maxtwr, (s->dimms[i].spd_data[36] * 1000) >> 2);
maxtrfc = MAX(maxtrfc, s->dimms[i].spd_data[42] * 1000 +
(s->dimms[i].spd_data[40] & 0xf));
maxtwtr = MAX(maxtwtr, (s->dimms[i].spd_data[37] * 1000) >> 2);
maxtrrd = MAX(maxtrrd, (s->dimms[i].spd_data[28] * 1000) >> 2);
maxtrtp = MAX(maxtrtp, (s->dimms[i].spd_data[38] * 1000) >> 2);
}
for (i = 9; i < 24; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtras) {
s->selected_timings.tRAS = i;
break;
}
}
for (i = 3; i < 10; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtrp) {
s->selected_timings.tRP = i;
break;
}
}
for (i = 3; i < 10; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtrcd) {
s->selected_timings.tRCD = i;
break;
}
}
for (i = 3; i < 15; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtwr) {
s->selected_timings.tWR = i;
break;
}
}
for (i = 15; i < 78; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtrfc) {
s->selected_timings.tRFC = ((i + 16) & 0xfe) - 15;
break;
}
}
for (i = 4; i < 15; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtwtr) {
s->selected_timings.tWTR = i;
break;
}
}
for (i = 2; i < 15; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtrrd) {
s->selected_timings.tRRD = i;
break;
}
}
for (i = 4; i < 15; i++) {
tmp = mult[s->selected_timings.mem_clk] * i;
if (tmp >= maxtrtp) {
s->selected_timings.tRTP = i;
break;
}
}
s->selected_timings.fsb_clk = s->max_fsb;
printk(BIOS_DEBUG, "Selected timings:\n");
printk(BIOS_DEBUG, "\tFSB: %dMHz\n", fsb2mhz(s->selected_timings.fsb_clk));
printk(BIOS_DEBUG, "\tDDR: %dMHz\n", ddr2mhz(s->selected_timings.mem_clk));
printk(BIOS_DEBUG, "\tCAS: %d\n", s->selected_timings.CAS);
printk(BIOS_DEBUG, "\ttRAS: %d\n", s->selected_timings.tRAS);
printk(BIOS_DEBUG, "\ttRP: %d\n", s->selected_timings.tRP);
printk(BIOS_DEBUG, "\ttRCD: %d\n", s->selected_timings.tRCD);
printk(BIOS_DEBUG, "\ttWR: %d\n", s->selected_timings.tWR);
printk(BIOS_DEBUG, "\ttRFC: %d\n", s->selected_timings.tRFC);
printk(BIOS_DEBUG, "\ttWTR: %d\n", s->selected_timings.tWTR);
printk(BIOS_DEBUG, "\ttRRD: %d\n", s->selected_timings.tRRD);
printk(BIOS_DEBUG, "\ttRTP: %d\n", s->selected_timings.tRTP);
}
static void clkcross_ddr2(struct sysinfo *s)
{
u8 i, j;
MCHBAR16(0xc1c) = MCHBAR16(0xc1c) | (1 << 15);
static const u32 clkxtab[6][3][13] = {
/* MEMCLK 400 N/A */
{{}, {}, {} },
/* MEMCLK 533 N/A */
{{}, {}, {} },
/* MEMCLK 667
* FSB 800 */
{{0x1f1f1f1f, 0x1a07070b, 0x00000000, 0x10000000,
0x20010208, 0x04080000, 0x10010002, 0x00000000,
0x00000000, 0x02000000, 0x04000100, 0x08000000,
0x10200204},
/* FSB 1067 */
{0x6d5b1f1f, 0x0f0f0f0f, 0x00000000, 0x20000000,
0x80020410, 0x02040008, 0x10000100, 0x00000000,
0x00000000, 0x04000000, 0x08000102, 0x20000000,
0x40010208},
/* FSB 1333 */
{0x05050303, 0xffffffff, 0xffff0000, 0x00000000,
0x08020000, 0x00000000, 0x00020001, 0x00000000,
0x00000000, 0x00000000, 0x08010204, 0x00000000,
0x04010000} },
/* MEMCLK 800
* FSB 800 */
{{0xffffffff, 0x05030305, 0x0000ffff, 0x0000000,
0x08010204, 0x00000000, 0x08010204, 0x0000000,
0x00000000, 0x00000000, 0x00020001, 0x0000000,
0x04080102},
/* FSB 1067 */
{0x07070707, 0x06030303, 0x00000000, 0x00000000,
0x08010200, 0x00000000, 0x04000102, 0x00000000,
0x00000000, 0x00000000, 0x00020001, 0x00000000,
0x02040801},
/* FSB 1333 */
{0x0d0b0707, 0x3e1f1f2f, 0x01010000, 0x00000000,
0x10020400, 0x02000000, 0x00040100, 0x00000000,
0x00000000, 0x04080000, 0x00100102, 0x00000000,
0x08100200} },
/* MEMCLK 1067 */
{{},
/* FSB 1067 */
{0xffffffff, 0x05030305, 0x0000ffff, 0x00000000,
0x04080102, 0x00000000, 0x08010204, 0x00000000,
0x00000000, 0x00000000, 0x00020001, 0x00000000,
0x02040801},
/* FSB 1333 */
{0x0f0f0f0f, 0x5b1f1f6d, 0x00000000, 0x00000000,
0x08010204, 0x04000000, 0x00080102, 0x00000000,
0x00000000, 0x02000408, 0x00100001, 0x00000000,
0x04080102} },
/* MEMCLK 1333 */
{{}, {},
/* FSB 1333 */
{0xffffffff, 0x05030305, 0x0000ffff, 0x00000000,
0x04080102, 0x00000000, 0x04080102, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x02040801} }
};
i = (u8)s->selected_timings.mem_clk;
j = (u8)s->selected_timings.fsb_clk;
MCHBAR32(0xc04) = clkxtab[i][j][0];
MCHBAR32(0xc50) = clkxtab[i][j][1];
MCHBAR32(0xc54) = clkxtab[i][j][2];
MCHBAR8(0xc08) = MCHBAR8(0xc08) | (1 << 7);
MCHBAR32(0x6d8) = clkxtab[i][j][3];
MCHBAR32(0x6e0) = clkxtab[i][j][3];
MCHBAR32(0x6dc) = clkxtab[i][j][4];
MCHBAR32(0x6e4) = clkxtab[i][j][4];
MCHBAR32(0x6e8) = clkxtab[i][j][5];
MCHBAR32(0x6f0) = clkxtab[i][j][5];
MCHBAR32(0x6ec) = clkxtab[i][j][6];
MCHBAR32(0x6f4) = clkxtab[i][j][6];
MCHBAR32(0x6f8) = clkxtab[i][j][7];
MCHBAR32(0x6fc) = clkxtab[i][j][8];
MCHBAR32(0x708) = clkxtab[i][j][11];
MCHBAR32(0x70c) = clkxtab[i][j][12];
}
static void setioclk_ddr2(struct sysinfo *s)
{
MCHBAR32(0x1bc) = 0x08060402;
MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x200;
MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x100;
MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x20;
MCHBAR16(0x1c0) = MCHBAR16(0x1c0) & ~1;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_800MHz:
case MEM_CLOCK_1066MHz:
MCHBAR8(0x5d9) = (MCHBAR8(0x5d9) & ~0x2) | 0x2;
MCHBAR8(0x9d9) = (MCHBAR8(0x9d9) & ~0x2) | 0x2;
MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xc0;
MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xe0;
MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xa0;
break;
case MEM_CLOCK_667MHz:
case MEM_CLOCK_1333MHz:
MCHBAR8(0x5d9) = MCHBAR8(0x5d9) & ~0x2;
MCHBAR8(0x9d9) = MCHBAR8(0x9d9) & ~0x2;
MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0x40;
break;
}
MCHBAR32(0x594) = MCHBAR32(0x594) | (1 << 31);
MCHBAR32(0x994) = MCHBAR32(0x994) | (1 << 31);
}
static void launch_ddr2(struct sysinfo *s)
{
u8 i;
u32 launch1 = 0x58001117;
u32 launch2 = 0;
u32 launch3 = 0;
if (s->selected_timings.CAS == 5)
launch2 = 0x00220201;
else if (s->selected_timings.CAS == 6)
launch2 = 0x00230302;
else
die("Unsupported CAS\n");
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
MCHBAR32(0x400*i + 0x220) = launch1;
MCHBAR32(0x400*i + 0x224) = launch2;
MCHBAR32(0x400*i + 0x21c) = launch3;
MCHBAR32(0x400*i + 0x248) = MCHBAR32(0x400*i + 0x248) | (1 << 23);
}
MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0x58000000) | 0x48000000;
MCHBAR32(0x2c0) = MCHBAR32(0x2c0) | 0x1e0;
MCHBAR32(0x2c4) = (MCHBAR32(0x2c4) & ~0xf) | 0xc;
}
static void clkset0(u8 ch, const struct dll_setting *setting)
{
MCHBAR16(0x400*ch + 0x5a0) = (MCHBAR16(0x400*ch + 0x5a0) & ~0xc440) |
(setting->clk_delay << 14) |
(setting->db_sel << 6) |
(setting->db_en << 10);
MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0xf) |
setting->tap;
}
static void clkset1(u8 ch, const struct dll_setting *setting)
{
MCHBAR32(0x400*ch + 0x5a0) = (MCHBAR32(0x400*ch + 0x5a0) & ~0x30880) |
(setting->clk_delay << 16) |
(setting->db_sel << 7) |
(setting->db_en << 11);
MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0xf) |
setting->tap;
}
static void ctrlset0(u8 ch, const struct dll_setting *setting)
{
MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x3300000) |
(setting->clk_delay << 24) |
(setting->db_sel << 20) |
(setting->db_en << 21);
MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0xf) |
setting->tap;
}
static void ctrlset1(u8 ch, const struct dll_setting *setting)
{
MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x18c00000) |
(setting->clk_delay << 27) |
(setting->db_sel << 22) |
(setting->db_en << 23);
MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0xf) |
setting->tap;
}
static void ctrlset2(u8 ch, const struct dll_setting *setting)
{
MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) |
(setting->clk_delay << 14) |
(setting->db_sel << 12) |
(setting->db_en << 13);
MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0xf) |
setting->tap;
}
static void ctrlset3(u8 ch, const struct dll_setting *setting)
{
MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) |
(setting->clk_delay << 10) |
(setting->db_sel << 8) |
(setting->db_en << 9);
MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0xf) |
setting->tap;
}
static void cmdset(u8 ch, const struct dll_setting *setting)
{
MCHBAR8(0x400*ch + 0x598) = (MCHBAR8(0x400*ch + 0x598) & ~0x30) |
(setting->clk_delay << 4);
MCHBAR8(0x400*ch + 0x594) = (MCHBAR8(0x400*ch + 0x594) & ~0x60) |
(setting->db_sel << 5) |
(setting->db_en << 6);
MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0x70) |
(setting->pi << 4);
MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0xf) |
setting->tap;
}
/**
* All finer DQ and DQS DLL settings are set to the same value
* for each rank in a channel, while coarse is common.
*/
static void dqsset(u8 ch, u8 lane, const struct dll_setting *setting)
{
int rank;
MCHBAR32(0x400 * ch + 0x5fc) = (MCHBAR32(0x400 * ch + 0x5fc)
& ~(1 << (lane * 4 + 1)))
| (setting->coarse << (lane * 4 + 1));
for (rank = 0; rank < 4; rank++) {
MCHBAR32(0x400 * ch + 0x5b4 + rank * 4) =
(MCHBAR32(0x400 * ch + 0x5b4 + rank * 4)
& ~(0x201 << lane))
| (setting->db_en << (9 + lane))
| (setting->db_sel << lane);
MCHBAR32(0x400*ch + 0x5c8 + rank * 4) =
(MCHBAR32(0x400 * ch + 0x5c8 + rank * 4)
& ~(0x3 << (16 + lane * 2)))
| (setting->clk_delay << (16+lane * 2));
MCHBAR8(0x400*ch + 0x520 + lane * 4 + rank) =
(MCHBAR8(0x400*ch + 0x520 + lane*4) & ~0x7f)
| (setting->pi << 4)
| setting->tap;
}
}
static void dqset(u8 ch, u8 lane, const struct dll_setting *setting)
{
int rank;
MCHBAR32(0x400 * ch + 0x5fc) = (MCHBAR32(0x400 * ch + 0x5fc)
& ~(1 << (lane * 4)))
| (setting->coarse << (lane * 4));
for (rank = 0; rank < 4; rank++) {
MCHBAR32(0x400 * ch + 0x5a4 + rank * 4) =
(MCHBAR32(0x400 * ch + 0x5a4 + rank * 4)
& ~(0x201 << lane))
| (setting->db_en << (9 + lane))
| (setting->db_sel << lane);
MCHBAR32(0x400 * ch + 0x5c8 + rank * 4) =
(MCHBAR32(0x400 * ch + 0x5c8 + rank * 4)
& ~(0x3 << (lane * 2)))
| (setting->clk_delay << (2 * lane));
MCHBAR8(0x400*ch + 0x500 + lane * 4 + rank) =
(MCHBAR8(0x400 * ch + 0x500 + lane * 4 + rank) & ~0x7f)
| (setting->pi << 4)
| setting->tap;
}
}
static void timings_ddr2(struct sysinfo *s)
{
u8 i;
u8 twl, ta1, ta2, ta3, ta4;
u8 reg8;
u8 flag1 = 0;
u8 flag2 = 0;
u16 reg16;
u32 reg32;
u16 ddr, fsb;
u8 trpmod = 0;
u8 bankmod = 1;
u8 pagemod = 0;
u8 adjusted_cas;
adjusted_cas = s->selected_timings.CAS - 3;
u16 fsb2ps[3] = {
5000, // 800
3750, // 1067
3000 // 1333
};
u16 ddr2ps[6] = {
5000, // 400
3750, // 533
3000, // 667
2500, // 800
1875, // 1067
1500 // 1333
};
u16 lut1[6] = {
0,
0,
2600,
3120,
4171,
5200
};
ta1 = 6;
ta2 = 6;
ta3 = 5;
ta4 = 8;
twl = s->selected_timings.CAS - 1;
FOR_EACH_POPULATED_DIMM(s->dimms, i) {
if (s->dimms[i].banks == 1) {
/* 8 banks */
trpmod = 1;
bankmod = 0;
}
if (s->dimms[i].page_size == 2048)
pagemod = 1;
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
MCHBAR8(0x400*i + 0x26f) = MCHBAR8(0x400*i + 0x26f) | 0x3;
MCHBAR8(0x400*i + 0x228) = (MCHBAR8(0x400*i + 0x228) & ~0x7) | 0x2;
MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf0)
| (0 << 4); /* tWL - x ?? */
MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf) |
adjusted_cas;
MCHBAR16(0x400*i + 0x265) = (MCHBAR16(0x400*i + 0x265) & ~0x3f00) |
((adjusted_cas + 9) << 8);
reg16 = (s->selected_timings.tRAS << 11) |
((twl + 4 + s->selected_timings.tWR) << 6) |
((2 + MAX(s->selected_timings.tRTP, 2)) << 2) | 1;
MCHBAR16(0x400*i + 0x250) = reg16;
reg32 = (bankmod << 21) |
(s->selected_timings.tRRD << 17) |
(s->selected_timings.tRP << 13) |
((s->selected_timings.tRP + trpmod) << 9) |
s->selected_timings.tRFC;
reg8 = (MCHBAR8(0x400*i + 0x26f) >> 1) & 1;
if (bankmod) {
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
if (reg8) {
if (pagemod)
reg32 |= 16 << 22;
else
reg32 |= 12 << 22;
} else {
if (pagemod)
reg32 |= 18 << 22;
else
reg32 |= 14 << 22;
}
break;
case MEM_CLOCK_800MHz:
if (reg8) {
if (pagemod)
reg32 |= 18 << 22;
else
reg32 |= 14 << 22;
} else {
if (pagemod)
reg32 |= 20 << 22;
else
reg32 |= 16 << 22;
}
break;
}
}
MCHBAR32(0x400*i + 0x252) = reg32;
MCHBAR16(0x400*i + 0x256) = (s->selected_timings.tRCD << 12) |
(0x4 << 8) | (ta2 << 4) | ta4;
MCHBAR32(0x400*i + 0x258) = (s->selected_timings.tRCD << 17) |
((twl + 4 + s->selected_timings.tWTR) << 12) |
(ta3 << 8) | (4 << 4) | ta1;
MCHBAR16(0x400*i + 0x25b) = ((s->selected_timings.tRP + trpmod) << 9) |
s->selected_timings.tRFC;
MCHBAR16(0x400*i + 0x260) = (MCHBAR16(0x400*i + 0x260) & ~0x3fe) | (100 << 1);
MCHBAR8(0x400*i + 0x264) = 0xff;
MCHBAR8(0x400*i + 0x25d) = (MCHBAR8(0x400*i + 0x25d) & ~0x3f) |
s->selected_timings.tRAS;
MCHBAR16(0x400*i + 0x244) = 0x2310;
switch (s->selected_timings.mem_clk) {
case MEM_CLOCK_667MHz:
reg8 = 0;
break;
default:
reg8 = 1;
break;
}
MCHBAR8(0x400*i + 0x246) = (MCHBAR8(0x400*i + 0x246) & ~0x1f) |
(reg8 << 2) | 1;
fsb = fsb2ps[s->selected_timings.fsb_clk];
ddr = ddr2ps[s->selected_timings.mem_clk];
reg32 = (u32)((adjusted_cas + 7 + reg8) * ddr);
reg32 = (u32)((reg32 / fsb) << 8);
reg32 |= 0x0e000000;
if ((fsb2mhz(s->selected_timings.fsb_clk) /
ddr2mhz(s->selected_timings.mem_clk)) > 2) {
reg32 |= 1 << 24;
}
MCHBAR32(0x400*i + 0x248) = (MCHBAR32(0x400*i + 0x248) & ~0x0f001f00) |
reg32;
if (twl > 2)
flag1 = 1;
if (s->selected_timings.mem_clk >= MEM_CLOCK_800MHz)
flag2 = 1;
reg16 = (u8)(twl - 1 - flag1 - flag2);
reg16 |= reg16 << 4;
if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) {
if (reg16)
reg16--;
}
reg16 |= flag1 << 8;
reg16 |= flag2 << 9;
MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x1ff) | reg16;
MCHBAR16(0x400*i + 0x25e) = 0x15a5;
MCHBAR32(0x400*i + 0x265) = MCHBAR32(0x400*i + 0x265) & ~0x1f;
MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0x000fffff) |
(0x3f << 14) | lut1[s->selected_timings.mem_clk];
MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) | 1;
MCHBAR8(0x400*i + 0x24c) = MCHBAR8(0x400*i + 0x24c) & ~0x3;
reg16 = 0;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
reg16 = 0x99;
break;
case MEM_CLOCK_800MHz:
if (s->selected_timings.CAS == 5)
reg16 = 0x19a;
else if (s->selected_timings.CAS == 6)
reg16 = 0x9a;
break;
}
reg16 &= 0x7;
reg16 += twl + 9;
reg16 <<= 10;
MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x7c00) | reg16;
MCHBAR8(0x400*i + 0x267) = (MCHBAR8(0x400*i + 0x267) & ~0x3f) | 0x13;
MCHBAR8(0x400*i + 0x268) = (MCHBAR8(0x400*i + 0x268) & ~0xff) | 0x4a;
reg16 = (MCHBAR16(0x400*i + 0x269) & 0xc000) >> 2;
reg16 += 2 << 12;
reg16 |= (0x15 << 6) | 0x1f;
MCHBAR16(0x400*i + 0x26d) = (MCHBAR16(0x400*i + 0x26d) & ~0x7fff) | reg16;
reg32 = (1 << 25) | (6 << 27);
MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0xfa300000) | reg32;
MCHBAR8(0x400*i + 0x271) = MCHBAR8(0x400*i + 0x271) & ~0x80;
MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) & ~0x6;
} // END EACH POPULATED CHANNEL
reg16 = 0x1f << 5;
reg16 |= 0xe << 10;
MCHBAR16(0x125) = (MCHBAR16(0x125) & ~0x3fe0) | reg16;
MCHBAR16(0x127) = (MCHBAR16(0x127) & ~0x7ff) | 0x540;
MCHBAR8(0x129) = MCHBAR8(0x129) | 0x1f;
MCHBAR8(0x12c) = MCHBAR8(0x12c) | 0xa0;
MCHBAR32(0x241) = (MCHBAR32(0x241) & ~0x1ffff) | 0x11;
MCHBAR32(0x641) = (MCHBAR32(0x641) & ~0x1ffff) | 0x11;
MCHBAR8(0x246) = MCHBAR8(0x246) & ~0x10;
MCHBAR8(0x646) = MCHBAR8(0x646) & ~0x10;
MCHBAR32(0x120) = (2 << 29) | (1 << 28) | (1 << 23) | 0xd7f5f;
reg8 = (u8)((MCHBAR32(0x252) & 0x1e000) >> 13);
MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf0) | (reg8 << 4);
reg8 = (u8)((MCHBAR32(0x258) & 0x1e0000) >> 17);
MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf) | reg8;
MCHBAR8(0x12f) = 0x4c;
reg32 = (1 << 31) | (0x80 << 14) | (1 << 13) | (0xa << 9);
MCHBAR32(0x6c0) = (MCHBAR32(0x6c0) & ~0xffffff00) | reg32;
MCHBAR8(0x6c4) = (MCHBAR8(0x6c4) & ~0x7) | 0x2;
}
static void dll_ddr2(struct sysinfo *s)
{
u8 i, j, r, reg8, clk, async = 0;
u16 reg16 = 0;
u32 reg32 = 0;
u8 lane;
MCHBAR16(0x180) = (MCHBAR16(0x180) & ~0x7e06) | 0xc04;
MCHBAR16(0x182) = (MCHBAR16(0x182) & ~0x3ff) | 0xc8;
MCHBAR16(0x18a) = (MCHBAR16(0x18a) & ~0x1f1f) | 0x0f0f;
MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x8020) | 0x100;
MCHBAR8(0x194) = (MCHBAR8(0x194) & ~0x77) | 0x33;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
reg16 = (0xa << 9) | 0xa;
break;
case MEM_CLOCK_800MHz:
reg16 = (0x9 << 9) | 0x9;
break;
}
MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x1e0f) | reg16;
MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x2030) | 0x2010;
udelay(1);
MCHBAR16(0x198) = MCHBAR16(0x198) & ~0x100;
MCHBAR16(0x1c8) = (MCHBAR16(0x1c8) & ~0x1f) | 0xd;
udelay(1);
MCHBAR8(0x190) = MCHBAR8(0x190) & ~1;
udelay(1); // 533ns
MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x11554000;
udelay(1);
MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x1455;
udelay(1);
MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x1c;
MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x1c;
udelay(1); // 533ns
MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x3;
MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x3;
udelay(1); // 533ns
// ME related
MCHBAR32(0x1a0) = (MCHBAR32(0x1a0) & ~0x7ffffff) | 0x551803;
MCHBAR16(0x1b4) = MCHBAR16(0x1b4) & ~0x800;
MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 0xf0;
FOR_EACH_CHANNEL(i) {
reg16 = 0;
MCHBAR16(0x400*i + 0x59c) = MCHBAR16(0x400*i + 0x59c) & ~0x3000;
reg32 = 0;
FOR_EACH_RANK_IN_CHANNEL(r) {
if (!RANK_IS_POPULATED(s->dimms, i, r))
reg32 |= 0x111 << r;
}
MCHBAR32(0x400*i + 0x59c) = (MCHBAR32(0x400*i + 0x59c) & ~0xfff) | reg32;
MCHBAR8(0x400*i + 0x594) = MCHBAR8(0x400*i + 0x594) & ~1;
if (!CHANNEL_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "No dimms in channel %d\n", i);
reg8 = 0x3f;
} else if (ONLY_DIMMA_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "DimmA populated only in channel %d\n", i);
reg8 = 0x38;
} else if (ONLY_DIMMB_IS_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "DimmB populated only in channel %d\n", i);
reg8 = 0x7;
} else if (BOTH_DIMMS_ARE_POPULATED(s->dimms, i)) {
printk(BIOS_DEBUG, "Both dimms populated in channel %d\n", i);
reg8 = 0;
} else {
die("Unhandled case\n");
}
//reg8 = 0x00; // FIXME don't switch on all clocks anyway
MCHBAR32(0x400*i + 0x5a0) = (MCHBAR32(0x400*i + 0x5a0) & ~0x3f000000) |
((u32)(reg8 << 24));
} // END EACH CHANNEL
MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 1;
MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4;
// Update DLL timing
MCHBAR8(0x1a4) = MCHBAR8(0x1a4) & ~0x80;
MCHBAR8(0x1a4) = MCHBAR8(0x1a4) | 0x40;
MCHBAR16(0x5f0) = (MCHBAR16(0x5f0) & ~0x400) | 0x400;
static const struct dll_setting dll_setting_667[23] = {
// tap pi db delay
{13, 0, 1, 0, 0},
{4, 1, 0, 0, 0},
{13, 0, 1, 0, 0},
{4, 5, 0, 0, 0},
{4, 1, 0, 0, 0},
{4, 1, 0, 0, 0},
{4, 1, 0, 0, 0},
{1, 5, 1, 1, 1},
{1, 6, 1, 1, 1},
{2, 0, 1, 1, 1},
{2, 1, 1, 1, 1},
{2, 1, 1, 1, 1},
{14, 6, 1, 0, 0},
{14, 3, 1, 0, 0},
{14, 0, 1, 0, 0},
{9, 0, 0, 0, 1},
{9, 1, 0, 0, 1},
{9, 2, 0, 0, 1},
{9, 2, 0, 0, 1},
{9, 1, 0, 0, 1},
{6, 4, 0, 0, 1},
{6, 2, 0, 0, 1},
{5, 4, 0, 0, 1}
};
static const struct dll_setting dll_setting_800[23] = {
// tap pi db delay
{11, 5, 1, 0, 0},
{0, 5, 1, 1, 0},
{11, 5, 1, 0, 0},
{1, 4, 1, 1, 0},
{0, 5, 1, 1, 0},
{0, 5, 1, 1, 0},
{0, 5, 1, 1, 0},
{2, 5, 1, 1, 1},
{2, 6, 1, 1, 1},
{3, 0, 1, 1, 1},
{3, 0, 1, 1, 1},
{3, 3, 1, 1, 1},
{2, 0, 1, 1, 1},
{1, 3, 1, 1, 1},
{0, 3, 1, 1, 1},
{9, 3, 0, 0, 1},
{9, 4, 0, 0, 1},
{9, 5, 0, 0, 1},
{9, 6, 0, 0, 1},
{10, 0, 0, 0, 1},
{8, 1, 0, 0, 1},
{7, 5, 0, 0, 1},
{6, 2, 0, 0, 1}
};
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
MCHBAR16(0x400*i + 0x5f0) = (MCHBAR16(0x400*i + 0x5f0) & ~0x3fc) | 0x3fc;
MCHBAR32(0x400*i + 0x5fc) = MCHBAR32(0x400*i + 0x5fc) & ~0xcccccccc;
MCHBAR8(0x400*i + 0x5d9) = (MCHBAR8(0x400*i + 0x5d9) & ~0xf0) | 0x70;
MCHBAR16(0x400*i + 0x590) = (MCHBAR16(0x400*i + 0x590) & ~0xffff) | 0x5555;
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) {
clkset0(i, &dll_setting_667[CLKSET0]);
clkset1(i, &dll_setting_667[CLKSET1]);
ctrlset0(i, &dll_setting_667[CTRL0]);
ctrlset1(i, &dll_setting_667[CTRL1]);
ctrlset2(i, &dll_setting_667[CTRL2]);
ctrlset3(i, &dll_setting_667[CTRL3]);
cmdset(i, &dll_setting_667[CMD]);
} else {
clkset0(i, &dll_setting_800[CLKSET0]);
clkset1(i, &dll_setting_800[CLKSET1]);
ctrlset0(i, &dll_setting_800[CTRL0]);
ctrlset1(i, &dll_setting_800[CTRL1]);
ctrlset2(i, &dll_setting_800[CTRL2]);
ctrlset3(i, &dll_setting_800[CTRL3]);
cmdset(i, &dll_setting_800[CMD]);
}
}
// XXX if not async mode
MCHBAR16(0x180) = MCHBAR16(0x180) & ~0x8200;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4;
j = 0;
for (i = 0; i < 16; i++) {
MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10;
while (MCHBAR8(0x180) & 0x10)
;
if (MCHBAR32(0x184) == 0xffffffff) {
j++;
if (j >= 2)
break;
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) {
j = 2;
break;
}
} else {
j = 0;
}
}
if (i == 1 || ((i == 0) && s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) {
j = 0;
i++;
for (; i < 16; i++) {
MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4;
while (MCHBAR8(0x180) & 0x10)
;
if (MCHBAR32(0x184) == 0) {
i++;
break;
}
}
for (; i < 16; i++) {
MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10;
while (MCHBAR8(0x180) & 0x10)
;
if (MCHBAR32(0x184) == 0xffffffff) {
j++;
if (j >= 2)
break;
} else {
j = 0;
}
}
if (j < 2) {
MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10;
while (MCHBAR8(0x180) & 0x10)
;
j = 2;
}
}
if (j < 2) {
MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f;
async = 1;
}
clk = 0x1a;
if (async != 1) {
reg8 = MCHBAR8(0x188) & 0x1e;
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz &&
s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) {
clk = 0x10;
} else if (s->selected_timings.mem_clk == MEM_CLOCK_800MHz) {
clk = 0x10;
} else {
clk = 0x1a;
}
}
MCHBAR8(0x180) = MCHBAR8(0x180) & ~0x80;
if ((s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) &&
(s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) {
i = MCHBAR8(0x180) & 0xf;
i = (i + 10) % 14;
MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i;
MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10;
while (MCHBAR8(0x180) & 0x10)
;
}
reg8 = MCHBAR8(0x188) & ~1;
MCHBAR8(0x188) = reg8;
reg8 &= ~0x3e;
reg8 |= clk;
MCHBAR8(0x188) = reg8;
reg8 |= 1;
MCHBAR8(0x188) = reg8;
if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz)
MCHBAR8(0x18c) = MCHBAR8(0x18c) | 1;
// Program DQ/DQS dll settings
reg32 = 0;
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
for (lane = 0; lane < 8; lane++) {
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)
reg32 = 0x06db7777;
else if (s->selected_timings.mem_clk == MEM_CLOCK_800MHz)
reg32 = 0x00007777;
MCHBAR32(0x400*i + 0x540 + lane*4) =
(MCHBAR32(0x400*i + 0x540 + lane*4) & 0x0fffffff) |
reg32;
}
}
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) {
for (lane = 0; lane < 8; lane++)
dqsset(i, lane, &dll_setting_667[DQS1+lane]);
for (lane = 0; lane < 8; lane++)
dqset(i, lane, &dll_setting_667[DQ1+lane]);
} else {
for (lane = 0; lane < 8; lane++)
dqsset(i, lane, &dll_setting_800[DQS1+lane]);
for (lane = 0; lane < 8; lane++)
dqset(i, lane, &dll_setting_800[DQ1+lane]);
}
}
}
static void rcomp_ddr2(struct sysinfo *s)
{
u8 i, j, k;
u32 x32a[8] = { 0x04040404, 0x06050505, 0x09090807, 0x0D0C0B0A,
0x04040404, 0x08070605, 0x0C0B0A09, 0x100F0E0D };
u16 x378[6] = { 0, 0xAAAA, 0x7777, 0x7777, 0x7777, 0x7777 };
u32 x382[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x04030303, 0x04030303 };
u32 x386[6] = { 0, 0x03020202, 0x03020202, 0x03020202, 0x05040404, 0x05040404 };
u32 x38a[6] = { 0, 0x04040303, 0x04040303, 0x04040303, 0x07070605, 0x07070605 };
u32 x38e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x09090808, 0x09090808 };
u32 x392[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x03030202, 0x03030202 };
u32 x396[6] = { 0, 0x03030202, 0x03030202, 0x03030202, 0x05040303, 0x05040303 };
u32 x39a[6] = { 0, 0x04040403, 0x04040403, 0x04040403, 0x07070605, 0x07070605 };
u32 x39e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x08080808, 0x08080808 };
u16 addr[6] = { 0x31c, 0x374, 0x3a2, 0x3d0, 0x3fe, 0x42c };
u8 bit[6] = { 0, 0, 1, 1, 0, 0 };
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
for (j = 0; j < 6; j++) {
if (j == 0) {
MCHBAR32(0x400*i + addr[j]) =
(MCHBAR32(0x400*i + addr[j]) & ~0xff000) | 0xaa000;
MCHBAR16(0x400*i + 0x320) = (MCHBAR16(0x400*i + 0x320) & ~0xffff) | 0x6666;
for (k = 0; k < 8; k++) {
MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) =
(MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) & ~0x3f3f3f3f) | x32a[k];
MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) =
(MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) & ~0x3f3f3f3f) | x32a[k];
}
} else {
MCHBAR16(0x400*i + addr[j]) = (MCHBAR16(0x400*i + addr[j]) & ~0xf000) | 0xa000;
MCHBAR16(0x400*i + addr[j] + 4) = (MCHBAR16(0x400*i + addr[j] + 4) & ~0xffff) |
x378[j];
MCHBAR32(0x400*i + addr[j] + 0xe) =
(MCHBAR32(0x400*i + addr[j] + 0xe) & ~0x3f3f3f3f) | x382[j];
MCHBAR32(0x400*i + addr[j] + 0x12) =
(MCHBAR32(0x400*i + addr[j] + 0x12) & ~0x3f3f3f3f) | x386[j];
MCHBAR32(0x400*i + addr[j] + 0x16) =
(MCHBAR32(0x400*i + addr[j] + 0x16) & ~0x3f3f3f3f) | x38a[j];
MCHBAR32(0x400*i + addr[j] + 0x1a) =
(MCHBAR32(0x400*i + addr[j] + 0x1a) & ~0x3f3f3f3f) | x38e[j];
MCHBAR32(0x400*i + addr[j] + 0x1e) =
(MCHBAR32(0x400*i + addr[j] + 0x1e) & ~0x3f3f3f3f) | x392[j];
MCHBAR32(0x400*i + addr[j] + 0x22) =
(MCHBAR32(0x400*i + addr[j] + 0x22) & ~0x3f3f3f3f) | x396[j];
MCHBAR32(0x400*i + addr[j] + 0x26) =
(MCHBAR32(0x400*i + addr[j] + 0x26) & ~0x3f3f3f3f) | x39a[j];
MCHBAR32(0x400*i + addr[j] + 0x2a) =
(MCHBAR32(0x400*i + addr[j] + 0x2a) & ~0x3f3f3f3f) | x39e[j];
}
MCHBAR8(0x400*i + addr[j]) = (MCHBAR8(0x400*i + addr[j]) & ~1) | bit[j];
}
MCHBAR8(0x400*i + 0x45a) = (MCHBAR8(0x400*i + 0x45a) & ~0x3f) | 0x12;
MCHBAR8(0x400*i + 0x45e) = (MCHBAR8(0x400*i + 0x45e) & ~0x3f) | 0x12;
MCHBAR8(0x400*i + 0x462) = (MCHBAR8(0x400*i + 0x462) & ~0x3f) | 0x12;
MCHBAR8(0x400*i + 0x466) = (MCHBAR8(0x400*i + 0x466) & ~0x3f) | 0x12;
} // END EACH POPULATED CHANNEL
MCHBAR32(0x134) = (MCHBAR32(0x134) & ~0x63c00) | 0x63c00;
MCHBAR16(0x174) = (MCHBAR16(0x174) & ~0x63ff) | 0x63ff;
MCHBAR16(0x178) = 0x0135;
MCHBAR32(0x130) = (MCHBAR32(0x130) & ~0x7bdffe0) | 0x7a9ffa0;
if (!CHANNEL_IS_POPULATED(s->dimms, 0))
MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 27);
if (!CHANNEL_IS_POPULATED(s->dimms, 1))
MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 28);
MCHBAR8(0x130) = MCHBAR8(0x130) | 1;
}
static void odt_ddr2(struct sysinfo *s)
{
u8 i;
u16 odt[16][2] = {
{ 0x0000, 0x0000 }, // NC_NC
{ 0x0000, 0x0001 }, // x8SS_NC
{ 0x0000, 0x0011 }, // x8DS_NC
{ 0x0000, 0x0001 }, // x16SS_NC
{ 0x0004, 0x0000 }, // NC_x8SS
{ 0x0101, 0x0404 }, // x8SS_x8SS
{ 0x0101, 0x4444 }, // x8DS_x8SS
{ 0x0101, 0x0404 }, // x16SS_x8SS
{ 0x0044, 0x0000 }, // NC_x8DS
{ 0x1111, 0x0404 }, // x8SS_x8DS
{ 0x1111, 0x4444 }, // x8DS_x8DS
{ 0x1111, 0x0404 }, // x16SS_x8DS
{ 0x0004, 0x0000 }, // NC_x16SS
{ 0x0101, 0x0404 }, // x8SS_x16SS
{ 0x0101, 0x4444 }, // x8DS_x16SS
{ 0x0101, 0x0404 }, // x16SS_x16SS
};
FOR_EACH_POPULATED_CHANNEL(s->dimms, i) {
MCHBAR16(0x400*i + 0x298) = odt[s->dimm_config[i]][1];
MCHBAR16(0x400*i + 0x294) = odt[s->dimm_config[i]][0];
MCHBAR16(0x400*i + 0x29c) = (MCHBAR16(0x400*i + 0x29c) & ~0xfff) | 0x66b;
MCHBAR32(0x400*i + 0x260) = (MCHBAR32(0x400*i + 0x260) & ~0x70e3c00) | 0x3063c00;
}
}
static void dojedec_ddr2(u8 r, u8 ch, u8 cmd, u16 val)
{
u32 addr = (ch << 29) | (r*0x08000000);
volatile u32 rubbish;
MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | cmd;
MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | cmd;
rubbish = read32((void *)((val<<3) | addr));
udelay(10);
MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | NORMALOP_CMD;
MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | NORMALOP_CMD;
}
static void jedec_ddr2(struct sysinfo *s)
{
u8 i;
u16 mrsval, ch, r, v;
u8 odt[16][4] = {
{0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00},
{0x01, 0x01, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x01, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x11, 0x11, 0x11, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x01, 0x01},
{0x11, 0x00, 0x11, 0x11},
{0x11, 0x11, 0x11, 0x11},
{0x11, 0x00, 0x11, 0x11},
{0x00, 0x00, 0x01, 0x00},
{0x11, 0x00, 0x11, 0x00},
{0x11, 0x11, 0x11, 0x00},
{0x11, 0x00, 0x11, 0x00}
};
u16 jedec[12][2] = {
{NOP_CMD, 0x0},
{PRECHARGE_CMD, 0x0},
{EMRS2_CMD, 0x0},
{EMRS3_CMD, 0x0},
{EMRS1_CMD, 0x0},
{MRS_CMD, 0x100}, // DLL Reset
{PRECHARGE_CMD, 0x0},
{CBR_CMD, 0x0},
{CBR_CMD, 0x0},
{MRS_CMD, 0x0}, // DLL out of reset
{EMRS1_CMD, 0x380}, // OCD calib default
{EMRS1_CMD, 0x0}
};
mrsval = (s->selected_timings.CAS << 4) | ((s->selected_timings.tWR - 1) << 9) | 0xb;
printk(BIOS_DEBUG, "MRS...\n");
udelay(200);
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
printk(BIOS_DEBUG, "CH%d: Found Rank %d\n", ch, r);
for (i = 0; i < 12; i++) {
v = jedec[i][1];
switch (jedec[i][0]) {
case EMRS1_CMD:
v |= (odt[s->dimm_config[ch]][r] << 2);
break;
case MRS_CMD:
v |= mrsval;
break;
default:
break;
}
dojedec_ddr2(r + ch*4, ch, jedec[i][0], v);
udelay(1);
printk(RAM_SPEW, "Jedec step %d\n", i);
}
}
printk(BIOS_DEBUG, "MRS done\n");
}
static u8 sampledqs(u16 mchloc, u32 addr, u8 hilow, u8 repeat)
{
u8 dqsmatch = 1;
volatile u32 strobe;
while (repeat-- > 0) {
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0x2;
udelay(2);
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x2;
udelay(2);
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0x2;
udelay(2);
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x2;
udelay(2);
barrier();
strobe = read32((u32 *)addr);
barrier();
if (((MCHBAR32(mchloc) & 0x40) >> 6) != hilow)
dqsmatch = 0;
}
return dqsmatch;
}
static void rcven_ddr2(struct sysinfo *s)
{
u8 i, reg8, ch, lane;
u32 addr;
u8 tap = 0;
u8 savecc, savemedium, savetap, coarsecommon, medium;
u8 lanecoarse[8] = {0};
u8 mincoarse = 0xff;
u8 pitap[2][8];
u16 coarsectrl[2];
u16 coarsedelay[2];
u16 mediumphase[2];
u16 readdelay[2];
u16 mchbar;
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc;
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0xc;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
addr = (ch << 29);
for (i = 0; !RANK_IS_POPULATED(s->dimms, ch, i); i++)
addr += 128*1024*1024;
for (lane = 0; lane < 8; lane++) {
printk(BIOS_DEBUG, "Channel %d, Lane %d addr=0x%08x\n", ch, lane, addr);
coarsecommon = (s->selected_timings.CAS - 1);
switch (lane) {
case 0: case 1:
medium = 0;
break;
case 2: case 3:
medium = 1;
break;
case 4: case 5:
medium = 2;
break;
case 6: case 7:
medium = 3;
break;
default:
medium = 0;
break;
}
mchbar = 0x400*ch + 0x561 + (lane << 2);
tap = 0;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) |
(medium << (lane*2));
MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf;
MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70;
savecc = coarsecommon;
savemedium = medium;
savetap = 0;
MCHBAR16(0x400*ch + 0x588) = (MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2))) |
(1 << (lane*2));
printk(BIOS_DEBUG, "rcven 0.1 coarse=%d\n", coarsecommon);
while (sampledqs(mchbar, addr, 1, 1) == 1) {
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse > 16: DQS tuning failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium);
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) |
(medium << (lane*2));
}
printk(BIOS_DEBUG, "rcven 0.2\n");
while (sampledqs(mchbar, addr, 0, 1) == 1) {
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse DQS tuning 2 failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium);
coarsecommon = savecc;
medium = savemedium;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
printk(BIOS_DEBUG, "rcven 0.3\n");
tap = 0;
while (sampledqs(mchbar, addr, 1, 1) == 0) {
savetap = tap;
tap++;
if (tap > 14)
break;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap;
}
tap = savetap;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0x70) | 0x30;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (sampledqs(mchbar, addr, 1, 1) == 0)
die("Not at DQS high, doh\n");
printk(BIOS_DEBUG, "rcven 0.4\n");
while (sampledqs(mchbar, addr, 1, 1) == 1) {
coarsecommon--;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
if (coarsecommon == 0) {
die("Couldn't find DQS-high 0 indicator, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium);
printk(BIOS_DEBUG, "rcven 0.5\n");
while (sampledqs(mchbar, addr, 0, 1) == 1) {
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse DQS tuning 5 failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium);
printk(BIOS_DEBUG, "rcven 0.6\n");
coarsecommon = savecc;
medium = savemedium;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
while (sampledqs(mchbar, addr, 1, 1) == 0) {
savetap = tap;
tap++;
if (tap > 14)
break;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap;
}
tap = savetap;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70) | 0x70;
pitap[ch][lane] = 0x70 | tap;
MCHBAR16(0x400*ch + 0x588) = MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2));
lanecoarse[lane] = coarsecommon;
printk(BIOS_DEBUG, "rcven 0.7\n");
} // END EACH LANE
// Find minimum coarse value
for (lane = 0; lane < 8; lane++) {
if (mincoarse > lanecoarse[lane])
mincoarse = lanecoarse[lane];
}
printk(BIOS_DEBUG, "Found min coarse value = %d\n", mincoarse);
for (lane = 0; lane < 8; lane++) {
reg8 = (lanecoarse[lane] == 0) ? 0 : lanecoarse[lane] - mincoarse;
MCHBAR16(0x400*ch + 0x5fa) = (MCHBAR16(0x400*ch + 0x5fa) & ~(3 << (lane*2))) |
(reg8 << (lane*2));
}
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (mincoarse << 16);
coarsectrl[ch] = mincoarse;
coarsedelay[ch] = MCHBAR16(0x400*ch + 0x5fa);
mediumphase[ch] = MCHBAR16(0x400*ch + 0x58c);
readdelay[ch] = MCHBAR16(0x400*ch + 0x588);
} // END EACH POPULATED CHANNEL
FOR_EACH_CHANNEL(ch) {
for (lane = 0; lane < 8; lane++) {
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | pitap[ch][lane];
}
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsectrl[ch] << 16);
MCHBAR16(0x400*ch + 0x5fa) = coarsedelay[ch];
MCHBAR16(0x400*ch + 0x58c) = mediumphase[ch];
}
printk(BIOS_DEBUG, "End rcven\n");
}
static void sdram_save_receive_enable(void)
{
int i = 0;
u16 reg16;
u8 values[18];
u8 lane, ch;
FOR_EACH_CHANNEL(ch) {
lane = 0;
while (lane < 8) {
values[i] = (MCHBAR8(0x400*ch + 0x560 + lane++ * 4) & 0xf);
values[i++] |= (MCHBAR8(0x400*ch + 0x560 + lane++ * 4) & 0xf) << 4;
}
values[i++] = (MCHBAR32(0x400*ch + 0x248) >> 16) & 0xf;
reg16 = MCHBAR16(0x400*ch + 0x5fa);
values[i++] = reg16 & 0xff;
values[i++] = (reg16 >> 8) & 0xff;
reg16 = MCHBAR16(0x400*ch + 0x58c);
values[i++] = reg16 & 0xff;
values[i++] = (reg16 >> 8) & 0xff;
}
for (i = 0; i < ARRAY_SIZE(values); i++)
cmos_write(values[i], 128 + i);
}
static void sdram_recover_receive_enable(void)
{
u8 i;
u32 reg32;
u16 reg16;
u8 values[18];
u8 ch, lane;
for (i = 0; i < ARRAY_SIZE(values); i++)
values[i] = cmos_read(128 + i);
i = 0;
FOR_EACH_CHANNEL(ch) {
lane = 0;
while (lane < 8) {
MCHBAR8(0x400*ch + 0x560 + lane++ * 4) = 0x70 |
(values[i] & 0xf);
MCHBAR8(0x400*ch + 0x560 + lane++ * 4) = 0x70 |
((values[i++] >> 4) & 0xf);
}
reg32 = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000)
| ((values[i++] & 0xf) << 16);
MCHBAR32(0x400*ch + 0x248) = reg32;
reg16 = values[i++];
reg16 |= values[i++] << 8;
MCHBAR16(0x400*ch + 0x5fa) = reg16;
reg16 = values[i++];
reg16 |= values[i++] << 8;
MCHBAR16(0x400*ch + 0x58c) = reg16;
}
}
static void sdram_program_receive_enable(struct sysinfo *s)
{
/* enable upper CMOS */
RCBA32(0x3400) = (1 << 2);
/* Program Receive Enable Timings */
if ((s->boot_path == BOOT_PATH_WARM_RESET)
|| (s->boot_path == BOOT_PATH_RESUME)) {
sdram_recover_receive_enable();
} else {
rcven_ddr2(s);
sdram_save_receive_enable();
}
}
static void dradrb_ddr2(struct sysinfo *s)
{
u8 map, i, ch, r, rankpop0, rankpop1;
u32 c0dra = 0;
u32 c1dra = 0;
u32 c0drb = 0;
u32 c1drb = 0;
u32 dra;
u32 dra0;
u32 dra1;
u16 totalmemorymb;
u32 size, offset;
u32 size0, size1;
u8 dratab[2][2][2][4] = {
{
{
{0xff, 0xff, 0xff, 0xff},
{0xff, 0x00, 0x02, 0xff}
},
{
{0xff, 0x01, 0xff, 0xff},
{0xff, 0x03, 0xff, 0xff}
}
},
{
{
{0xff, 0xff, 0xff, 0xff},
{0xff, 0x04, 0x06, 0x08}
},
{
{0xff, 0xff, 0xff, 0xff},
{0x05, 0x07, 0x09, 0xff}
}
}
};
u8 drbtab[10] = {0x04, 0x02, 0x08, 0x04, 0x08, 0x04, 0x10, 0x08, 0x20, 0x10};
// DRA
rankpop0 = 0;
rankpop1 = 0;
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
if (s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED
&& (r) < s->dimms[ch<<1].ranks)
i = ch << 1;
else
i = (ch << 1) + 1;
dra = dratab[s->dimms[i].banks]
[s->dimms[i].width]
[s->dimms[i].cols-9]
[s->dimms[i].rows-12];
if (s->dimms[i].banks == 1)
dra |= 0x80;
if (ch == 0) {
c0dra |= dra << (r*8);
rankpop0 |= 1 << r;
} else {
c1dra |= dra << (r*8);
rankpop1 |= 1 << r;
}
}
MCHBAR32(0x208) = c0dra;
MCHBAR32(0x608) = c1dra;
MCHBAR8(0x262) = (MCHBAR8(0x262) & ~0xf0) | ((rankpop0 << 4) & 0xf0);
MCHBAR8(0x662) = (MCHBAR8(0x662) & ~0xf0) | ((rankpop1 << 4) & 0xf0);
if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0) ||
ONLY_DIMMB_IS_POPULATED(s->dimms, 0))
MCHBAR8(0x260) = MCHBAR8(0x260) | 1;
if (ONLY_DIMMA_IS_POPULATED(s->dimms, 1) ||
ONLY_DIMMB_IS_POPULATED(s->dimms, 1))
MCHBAR8(0x660) = MCHBAR8(0x660) | 1;
// DRB
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
if (s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED
&& (r) < s->dimms[ch<<1].ranks)
i = ch << 1;
else
i = (ch << 1) + 1;
if (ch == 0) {
dra0 = (c0dra >> (8*r)) & 0x7f;
c0drb = (u16)(c0drb + drbtab[dra0]);
s->dimms[i].rank_capacity_mb = drbtab[dra0] << 6;
MCHBAR16(0x200 + 2*r) = c0drb;
} else {
dra1 = (c1dra >> (8*r)) & 0x7f;
c1drb = (u16)(c1drb + drbtab[dra1]);
s->dimms[i].rank_capacity_mb = drbtab[dra1] << 6;
MCHBAR16(0x600 + 2*r) = c1drb;
}
}
s->channel_capacity[0] = c0drb << 6;
s->channel_capacity[1] = c1drb << 6;
totalmemorymb = s->channel_capacity[0] + s->channel_capacity[1];
printk(BIOS_DEBUG, "Total memory: %d + %d = %dMiB\n",
s->channel_capacity[0], s->channel_capacity[1], totalmemorymb);
rankpop1 >>= 4;
if (rankpop1) {
MCHBAR16(0x600 + 2*msbpos(rankpop1)) = c0drb + c1drb;
MCHBAR16(0x602 + 2*msbpos(rankpop1)) = c0drb + c1drb;
MCHBAR16(0x604 + 2*msbpos(rankpop1)) = c0drb + c1drb;
MCHBAR16(0x606 + 2*msbpos(rankpop1)) = c0drb + c1drb;
}
/* Populated channel sizes in MiB */
size0 = s->channel_capacity[0];
size1 = s->channel_capacity[1];
MCHBAR8(0x111) = MCHBAR8(0x111) & ~0x2;
MCHBAR8(0x111) = MCHBAR8(0x111) | (1 << 4);
/* Set ME UMA size in MiB */
MCHBAR16(0x100) = ME_UMA_SIZEMB;
/* Set ME UMA Present bit */
MCHBAR32(0x111) = MCHBAR32(0x111) | 1;
size = MIN(size0 - ME_UMA_SIZEMB, size1) * 2;
MCHBAR16(0x104) = size;
MCHBAR16(0x102) = size0 + size1 - size;
map = 0;
if (size0 == 0)
map = 0;
else if (size1 == 0)
map |= 0x20;
else
map |= 0x40;
if (size == 0)
map |= 0x18;
if (size0 - ME_UMA_SIZEMB >= size1)
map |= 0x4;
MCHBAR8(0x110) = map;
MCHBAR16(0x10e) = 0;
if (size1 != 0)
offset = 0;
else if ((size0 > size1) && ((map & 0x7) == 0x4))
offset = size/2 + (size0 + size1 - size);
else
offset = size/2 + ME_UMA_SIZEMB;
MCHBAR16(0x108) = offset;
MCHBAR16(0x10a) = size/2;
}
static void mmap_ddr2(struct sysinfo *s)
{
bool reclaim;
u32 gfxsize, gttsize, tsegsize, mmiosize, tom, tolud, touud;
u32 gfxbase, gttbase, tsegbase, reclaimbase, reclaimlimit;
u16 ggc;
u16 ggc2uma[] = { 0, 1, 4, 8, 16, 32, 48, 64, 128, 256, 96,
160, 224, 352 };
u8 ggc2gtt[] = { 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4};
ggc = pci_read_config16(PCI_DEV(0, 0, 0), 0x52);
gfxsize = ggc2uma[(ggc & 0xf0) >> 4];
gttsize = ggc2gtt[(ggc & 0xf00) >> 8];
tsegsize = 1; // 1MB TSEG
mmiosize = 0x800; // 2GB MMIO
tom = s->channel_capacity[0] + s->channel_capacity[1] - ME_UMA_SIZEMB;
tolud = MIN(0x1000 - mmiosize, tom);
reclaim = false;
if ((tom - tolud) > 0x40)
reclaim = true;
if (reclaim) {
tolud = tolud & ~0x3f;
tom = tom & ~0x3f;
reclaimbase = MAX(0x1000, tom);
reclaimlimit = reclaimbase + (MIN(0x1000, tom) - tolud) - 0x40;
}
touud = tom;
if (reclaim)
touud = reclaimlimit + 0x40;
gfxbase = tolud - gfxsize;
gttbase = gfxbase - gttsize;
tsegbase = gttbase - tsegsize;
pci_write_config16(PCI_DEV(0, 0, 0), 0xb0, tolud << 4);
pci_write_config16(PCI_DEV(0, 0, 0), 0xa0, tom >> 6);
if (reclaim) {
pci_write_config16(PCI_DEV(0, 0, 0), 0x98,
(u16)(reclaimbase >> 6));
pci_write_config16(PCI_DEV(0, 0, 0), 0x9a,
(u16)(reclaimlimit >> 6));
}
pci_write_config16(PCI_DEV(0, 0, 0), 0xa2, touud);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa4, gfxbase << 20);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa8, gttbase << 20);
pci_write_config32(PCI_DEV(0, 0, 0), 0xac, tsegbase << 20);
}
static void enhanced_ddr2(struct sysinfo *s)
{
u8 ch, reg8;
MCHBAR32(0xfb0) = 0x1000d024;
MCHBAR32(0xfb4) = 0xc842;
MCHBAR32(0xfbc) = 0xf;
MCHBAR32(0xfc4) = 0xfe22244;
MCHBAR8(0x12f) = 0x5c;
MCHBAR8(0xfb0) = (MCHBAR8(0xfb0) & ~1) | 1;
MCHBAR8(0x12f) = MCHBAR8(0x12f) | 0x2;
MCHBAR8(0x6c0) = (MCHBAR8(0x6c0) & ~0xf0) | 0xa0;
MCHBAR32(0xfa8) = 0x30d400;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1;
MCHBAR32(0x400*ch + 0x278) = 0x88141881;
MCHBAR16(0x400*ch + 0x27c) = 0x0041;
MCHBAR8(0x400*ch + 0x292) = 0xf2;
MCHBAR16(0x400*ch + 0x272) = MCHBAR16(0x400*ch + 0x272) | 0x100;
MCHBAR8(0x400*ch + 0x243) = (MCHBAR8(0x400*ch + 0x243) & ~0x2) | 1;
MCHBAR32(0x400*ch + 0x288) = 0x8040200;
MCHBAR32(0x400*ch + 0x28c) = 0xff402010;
MCHBAR32(0x400*ch + 0x290) = 0x4f2091c;
}
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | 1);
MCHBAR32(0xfa0) = (MCHBAR32(0xfa0) & ~0x20002) | 0x2;
MCHBAR32(0xfa4) = (MCHBAR32(0xfa4) & ~0x219100c3) | 0x219100c2;
MCHBAR32(0x2c) = 0x44a53;
MCHBAR32(0x30) = 0x1f5a86;
MCHBAR32(0x34) = 0x1902810;
MCHBAR32(0x38) = 0xf7000000;
MCHBAR32(0x3c) = 0x23014410;
MCHBAR32(0x40) = (MCHBAR32(0x40) & ~0x8f038000) | 0x8f038000;
MCHBAR32(0x20) = 0x33001;
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~1);
}
static void power_ddr2(struct sysinfo *s)
{
u32 reg1, reg2, reg3, reg4, clkgate, x592;
u8 lane, ch;
u8 twl = 0;
u16 x264, x23c;
twl = s->selected_timings.CAS - 1;
x264 = 0x78;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_667MHz:
reg1 = 0x99;
reg2 = 0x1048a9;
clkgate = 0x230000;
x23c = 0x7a89;
break;
case MEM_CLOCK_800MHz:
if (s->selected_timings.CAS == 5) {
reg1 = 0x19a;
reg2 = 0x1048aa;
} else {
reg1 = 0x9a;
reg2 = 0x2158aa;
x264 = 0x89;
}
clkgate = 0x280000;
x23c = 0x7b89;
break;
}
reg3 = 0x232;
reg4 = 0x2864;
if (CHANNEL_IS_POPULATED(s->dimms, 0) && CHANNEL_IS_POPULATED(s->dimms, 1))
MCHBAR32(0x14) = 0x0010461f;
else
MCHBAR32(0x14) = 0x0010691f;
MCHBAR32(0x18) = 0xdf6437f7;
MCHBAR32(0x1c) = 0x0;
MCHBAR32(0x24) = (MCHBAR32(0x24) & ~0xe0000000) | 0x30000000;
MCHBAR32(0x44) = (MCHBAR32(0x44) & ~0x1fef0000) | 0x6b0000;
MCHBAR16(0x115) = (u16) reg1;
MCHBAR32(0x117) = (MCHBAR32(0x117) & ~0xffffff) | reg2;
MCHBAR8(0x124) = 0x7;
MCHBAR16(0x12a) = (MCHBAR16(0x12a) & 0) | 0x80;
MCHBAR8(0x12c) = (MCHBAR8(0x12c) & 0) | 0xa0;
MCHBAR16(0x174) = MCHBAR16(0x174) & ~(1 << 15);
MCHBAR16(0x188) = (MCHBAR16(0x188) & ~0x1f00) | 0x1f00;
MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0x8;
MCHBAR8(0x192) = (MCHBAR8(0x192) & ~1) | 1;
MCHBAR8(0x193) = (MCHBAR8(0x193) & ~0xf) | 0xf;
MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x480) | 0x80;
MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0x1fff) | 0x3f; // | clockgatingiii
MCHBAR32(0x6d1) = (MCHBAR32(0x6d1) & ~0xff03ff) | 0x100 | clkgate;
MCHBAR8(0x212) = (MCHBAR8(0x212) & ~0x7f) | 0x7f;
MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0xffff0) | 0xcc5f0;
MCHBAR8(0x2c4) = (MCHBAR8(0x2c4) & ~0x70) | 0x70;
MCHBAR32(0x2d1) = (MCHBAR32(0x2d1) & ~0xffffff) | 0xff2831; // | clockgatingi
MCHBAR32(0x2d4) = 0x40453600;
MCHBAR32(0x300) = 0xc0b0a08;
MCHBAR32(0x304) = 0x6040201;
MCHBAR32(0x30c) = (MCHBAR32(0x30c) & ~0x43c0f) | 0x41405;
MCHBAR16(0x610) = 0x232;
MCHBAR16(0x612) = 0x2864;
MCHBAR32(0x62c) = (MCHBAR32(0x62c) & ~0xc000000) | 0x4000000;
MCHBAR32(0xae4) = 0;
MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0xf0000) | 0x10000;
MCHBAR32(0xf00) = 0x393a3b3c;
MCHBAR32(0xf04) = 0x3d3e3f40;
MCHBAR32(0xf08) = 0x393a3b3c;
MCHBAR32(0xf0c) = 0x3d3e3f40;
MCHBAR32(0xf18) = MCHBAR32(0xf18) & ~0xfff00001;
MCHBAR32(0xf48) = 0xfff0ffe0;
MCHBAR32(0xf4c) = 0xffc0ff00;
MCHBAR32(0xf50) = 0xfc00f000;
MCHBAR32(0xf54) = 0xc0008000;
MCHBAR32(0xf6c) = (MCHBAR32(0xf6c) & ~0xffff0000) | 0xffff0000;
MCHBAR32(0xfac) = MCHBAR32(0xfac) & ~0x80000000;
MCHBAR32(0xfb8) = MCHBAR32(0xfb8) & ~0xff000000;
MCHBAR32(0xfbc) = (MCHBAR32(0xfbc) & ~0x7f800) | 0xf000;
MCHBAR32(0x1104) = 0x3003232;
MCHBAR32(0x1108) = 0x74;
if (s->selected_timings.fsb_clk == FSB_CLOCK_800MHz)
MCHBAR32(0x110c) = 0xaa;
else
MCHBAR32(0x110c) = 0x100;
MCHBAR32(0x1110) = 0x10810350 & ~0x78;
MCHBAR32(0x1114) = 0;
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)
twl = 5;
else
twl = 6;
x592 = 0xff;
if (pci_read_config8(PCI_DEV(0, 0, 0), 0x8) < 3)
x592 = ~0x4;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
MCHBAR8(0x400*ch + 0x239) = twl + 15;
MCHBAR16(0x400*ch + 0x23c) = x23c;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0x706033) | 0x406033;
MCHBAR32(0x400*ch + 0x260) = (MCHBAR32(0x400*ch + 0x260) & ~(1 << 16)) | (1 << 16);
MCHBAR8(0x400*ch + 0x264) = x264;
MCHBAR8(0x400*ch + 0x592) = (MCHBAR8(0x400*ch + 0x592) & ~0x3f) | (0x3c & x592);
MCHBAR8(0x400*ch + 0x593) = (MCHBAR8(0x400*ch + 0x593) & ~0x1f) | 0x1e;
}
for (lane = 0; lane < 8; lane++)
MCHBAR8(0x561 + (lane << 2)) = MCHBAR8(0x561 + (lane << 2)) & ~(1 << 3);
}
void raminit_ddr2(struct sysinfo *s)
{
u8 ch;
u8 r, bank;
u32 reg32;
// Select timings based on SPD info
sdram_detect_smallest_params2(s);
if (s->boot_path != BOOT_PATH_WARM_RESET) {
// Clear self refresh
MCHBAR32(PMSTS_MCHBAR) = MCHBAR32(PMSTS_MCHBAR)
| PMSTS_BOTH_SELFREFRESH;
// Clear host clk gate reg
MCHBAR32(0x1c) = MCHBAR32(0x1c) | 0xffffffff;
// Select DDR2
MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4;
// Set freq
MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0x70) |
(s->selected_timings.mem_clk << 4) | (1 << 10);
// Overwrite freq if chipset rejects it
s->selected_timings.mem_clk = (MCHBAR8(0xc00) & 0x70) >> 4;
if (s->selected_timings.mem_clk > (s->max_fsb + 3))
die("Error: DDR is faster than FSB, halt\n");
}
// Program clock crossing
clkcross_ddr2(s);
printk(BIOS_DEBUG, "Done clk crossing\n");
// DDR2 IO
if (s->boot_path != BOOT_PATH_WARM_RESET) {
setioclk_ddr2(s);
printk(BIOS_DEBUG, "Done I/O clk\n");
}
// Grant to launch
launch_ddr2(s);
printk(BIOS_DEBUG, "Done launch\n");
// Program DDR2 timings
timings_ddr2(s);
printk(BIOS_DEBUG, "Done timings\n");
// Program DLL
dll_ddr2(s);
// RCOMP
if (s->boot_path != BOOT_PATH_WARM_RESET) {
rcomp_ddr2(s);
printk(BIOS_DEBUG, "RCOMP\n");
}
// ODT
odt_ddr2(s);
printk(BIOS_DEBUG, "Done ODT\n");
// RCOMP update
if (s->boot_path != BOOT_PATH_WARM_RESET) {
while ((MCHBAR8(0x130) & 1) != 0)
;
printk(BIOS_DEBUG, "Done RCOMP update\n");
}
// Set defaults
MCHBAR32(0x260) = (MCHBAR32(0x260) & ~1) | 0xf00000;
MCHBAR32(0x660) = (MCHBAR32(0x660) & ~1) | 0xf00000;
MCHBAR32(0x208) = 0x01010101;
MCHBAR32(0x608) = 0x01010101;
MCHBAR32(0x200) = 0x00040002;
MCHBAR32(0x204) = 0x00080006;
MCHBAR32(0x600) = 0x00040002;
MCHBAR32(0x604) = 0x00100006;
MCHBAR8(0x111) = MCHBAR8(0x111) | 0x2;
MCHBAR32(0x104) = 0;
MCHBAR16(0x102) = 0x400;
MCHBAR8(0x100) = (2 << 5) | (3 << 3);
MCHBAR16(0x10e) = 0;
MCHBAR32(0x108) = 0;
pci_write_config16(PCI_DEV(0, 0, 0), 0xb0, 0x4000);
pci_write_config16(PCI_DEV(0, 0, 0), 0xa0, 0x0010);
pci_write_config16(PCI_DEV(0, 0, 0), 0xa2, 0x0400);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa4, 0x40000000);
pci_write_config32(PCI_DEV(0, 0, 0), 0xa8, 0x40000000);
pci_write_config32(PCI_DEV(0, 0, 0), 0xac, 0x40000000);
// IOBUFACT
if (CHANNEL_IS_POPULATED(s->dimms, 0)) {
MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f;
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x7;
}
if (CHANNEL_IS_POPULATED(s->dimms, 1)) {
if (pci_read_config8(PCI_DEV(0, 0, 0), 0x8) < 2) {
MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f;
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 1;
}
MCHBAR8(0x9dd) = (MCHBAR8(0x9dd) & ~0x3f) | 0x3f;
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x7;
}
// Pre jedec
MCHBAR8(0x40) = MCHBAR8(0x40) | 0x2;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
MCHBAR32(0x400*ch + 0x260) = MCHBAR32(0x400*ch + 0x260) | (1 << 27);
}
MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf000) | 0xf000;
MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf00) | 0xf00;
printk(BIOS_DEBUG, "Done pre-jedec\n");
// JEDEC reset
if (s->boot_path != BOOT_PATH_RESUME)
jedec_ddr2(s);
printk(BIOS_DEBUG, "Done jedec steps\n");
// After JEDEC reset
MCHBAR8(0x40) = MCHBAR8(0x40) & ~0x2;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)
reg32 = (2 << 18) | (3 << 13) | (5 << 8);
else
reg32 = (2 << 18) | (3 << 13) | (4 << 8);
MCHBAR32(0x400*ch + 0x274) = (MCHBAR32(0x400*ch + 0x274) & ~0xfff00) | reg32;
MCHBAR8(0x400*ch + 0x274) = MCHBAR8(0x400*ch + 0x274) & ~0x80;
MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1;
MCHBAR32(0x400*ch + 0x278) = 0x88141881;
MCHBAR16(0x400*ch + 0x27c) = 0x41;
MCHBAR8(0x400*ch + 0x292) = 0xf2;
MCHBAR8(0x400*ch + 0x271) = (MCHBAR8(0x400*ch + 0x271) & ~0xe) | 0xe;
}
MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x8;
MCHBAR8(0x2c3) = MCHBAR8(0x2c3) | 0x40;
MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x4;
printk(BIOS_DEBUG, "Done post-jedec\n");
// Set DDR2 init complete
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
MCHBAR32(0x400*ch + 0x268) = (MCHBAR32(0x400*ch + 0x268) & ~0xc0000000) | 0xc0000000;
}
// Receive enable
sdram_program_receive_enable(s);
printk(BIOS_DEBUG, "Done rcven\n");
// Finish rcven
FOR_EACH_CHANNEL(ch) {
MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) & ~0xe;
MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x2;
MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x4;
MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x8;
}
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80;
// Dummy writes / reads
if (s->boot_path == BOOT_PATH_NORMAL) {
volatile u32 data;
FOR_EACH_POPULATED_RANK(s->dimms, ch, r) {
for (bank = 0; bank < 4; bank++) {
reg32 = (ch << 29) | (r*0x8000000) |
(bank << 12);
write32((u32 *)reg32, 0xffffffff);
data = read32((u32 *)reg32);
printk(BIOS_DEBUG, "Wrote ones,");
printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n",
reg32, data);
write32((u32 *)reg32, 0x00000000);
data = read32((u32 *)reg32);
printk(BIOS_DEBUG, "Wrote zeros,");
printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n",
reg32, data);
}
}
}
printk(BIOS_DEBUG, "Done dummy reads\n");
// XXX tRD
// XXX Write training
// XXX Read training
// DRADRB
dradrb_ddr2(s);
printk(BIOS_DEBUG, "Done DRADRB\n");
// Memory map
mmap_ddr2(s);
printk(BIOS_DEBUG, "Done memory map\n");
// Enhanced mode
enhanced_ddr2(s);
printk(BIOS_DEBUG, "Done enhanced mode\n");
// Periodic RCOMP
MCHBAR16(0x160) = (MCHBAR16(0x160) & ~0xfff) | 0x999;
MCHBAR16(0x1b4) = MCHBAR16(0x1b4) | 0x3000;
MCHBAR8(0x130) = MCHBAR8(0x130) | 0x82;
printk(BIOS_DEBUG, "Done PRCOMP\n");
// Power settings
power_ddr2(s);
printk(BIOS_DEBUG, "Done power settings\n");
// ME related
/*
* FIXME: This locks some registers like bit1 of GGC
* and is only needed in case of ME being used.
*/
if (ME_UMA_SIZEMB != 0) {
if (RANK_IS_POPULATED(s->dimms, 0, 0)
|| RANK_IS_POPULATED(s->dimms, 1, 0))
MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 0);
if (RANK_IS_POPULATED(s->dimms, 0, 1)
|| RANK_IS_POPULATED(s->dimms, 1, 1))
MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 1);
MCHBAR32(0xa30) = MCHBAR32(0xa30) | (1 << 26);
}
printk(BIOS_DEBUG, "Done ddr2\n");
}