blob: f3a1ba5f4137b34226d9a47a5e42b777a83b6d1c [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <bootmode.h>
#include <string.h>
#include <arch/io.h>
#include <cbmem.h>
#include <arch/cbfs.h>
#include <cbfs.h>
#include <halt.h>
#include <ip_checksum.h>
#include <timestamp.h>
#include <pc80/mc146818rtc.h>
#include <northbridge/intel/common/mrc_cache.h>
#include <device/pci_def.h>
#include <memory_info.h>
#include <smbios.h>
#include "raminit_native.h"
#include "sandybridge.h"
#include <delay.h>
#include <lib.h>
#include <device/device.h>
/* Management Engine is in the southbridge */
#include "southbridge/intel/bd82x6x/me.h"
/* For SPD. */
#include "southbridge/intel/bd82x6x/smbus.h"
#include "arch/cpu.h"
#include "cpu/x86/msr.h"
#include <northbridge/intel/sandybridge/chip.h>
/* FIXME: no ECC support. */
/* FIXME: no support for 3-channel chipsets. */
/*
* Register description:
* Intel provides a command queue of depth four.
* Every command is configured by using multiple registers.
* On executing the command queue you have to provide the depth used.
*
* Known registers:
* Channel X = [0, 1]
* Command queue index Y = [0, 1, 2, 3]
*
* DEFAULT_MCHBAR + 0x4220 + 0x400 * X + 4 * Y: command io register
* Controls the DRAM command signals
* Bit 0: !RAS
* Bit 1: !CAS
* Bit 2: !WE
*
* DEFAULT_MCHBAR + 0x4200 + 0x400 * X + 4 * Y: addr bankslot io register
* Controls the address, bank address and slotrank signals
* Bit 0-15 : Address
* Bit 20-22: Bank Address
* Bit 24-25: slotrank
*
* DEFAULT_MCHBAR + 0x4230 + 0x400 * X + 4 * Y: idle register
* Controls the idle time after issuing this DRAM command
* Bit 16-32: number of clock-cylces to idle
*
* DEFAULT_MCHBAR + 0x4284 + 0x400 * channel: execute command queue
* Starts to execute all queued commands
* Bit 0 : start DRAM command execution
* Bit 16-20: (number of queued commands - 1) * 4
*/
#define BASEFREQ 133
#define tDLLK 512
#define IS_SANDY_CPU(x) ((x & 0xffff0) == 0x206a0)
#define IS_SANDY_CPU_C(x) ((x & 0xf) == 4)
#define IS_SANDY_CPU_D0(x) ((x & 0xf) == 5)
#define IS_SANDY_CPU_D1(x) ((x & 0xf) == 6)
#define IS_SANDY_CPU_D2(x) ((x & 0xf) == 7)
#define IS_IVY_CPU(x) ((x & 0xffff0) == 0x306a0)
#define IS_IVY_CPU_C(x) ((x & 0xf) == 4)
#define IS_IVY_CPU_K(x) ((x & 0xf) == 5)
#define IS_IVY_CPU_D(x) ((x & 0xf) == 6)
#define IS_IVY_CPU_E(x) ((x & 0xf) >= 8)
#define NUM_CHANNELS 2
#define NUM_SLOTRANKS 4
#define NUM_SLOTS 2
#define NUM_LANES 8
/* FIXME: Vendor BIOS uses 64 but our algorithms are less
performant and even 1 seems to be enough in practice. */
#define NUM_PATTERNS 4
typedef struct odtmap_st {
u16 rttwr;
u16 rttnom;
} odtmap;
typedef struct dimm_info_st {
dimm_attr dimm[NUM_CHANNELS][NUM_SLOTS];
} dimm_info;
struct ram_rank_timings {
/* Register 4024. One byte per slotrank. */
u8 val_4024;
/* Register 4028. One nibble per slotrank. */
u8 val_4028;
int val_320c;
struct ram_lane_timings {
/* lane register offset 0x10. */
u16 timA; /* bits 0 - 5, bits 16 - 18 */
u8 rising; /* bits 8 - 14 */
u8 falling; /* bits 20 - 26. */
/* lane register offset 0x20. */
int timC; /* bit 0 - 5, 19. */
u16 timB; /* bits 8 - 13, 15 - 17. */
} lanes[NUM_LANES];
};
struct ramctr_timing_st;
typedef struct ramctr_timing_st {
u16 spd_crc[NUM_CHANNELS][NUM_SLOTS];
int mobile;
u16 cas_supported;
/* tLatencies are in units of ns, scaled by x256 */
u32 tCK;
u32 tAA;
u32 tWR;
u32 tRCD;
u32 tRRD;
u32 tRP;
u32 tRAS;
u32 tRFC;
u32 tWTR;
u32 tRTP;
u32 tFAW;
/* Latencies in terms of clock cycles
* They are saved separately as they are needed for DRAM MRS commands*/
u8 CAS; /* CAS read latency */
u8 CWL; /* CAS write latency */
u32 tREFI;
u32 tMOD;
u32 tXSOffset;
u32 tWLO;
u32 tCKE;
u32 tXPDLL;
u32 tXP;
u32 tAONPD;
u16 reg_5064b0; /* bits 0-11. */
u8 rankmap[NUM_CHANNELS];
int ref_card_offset[NUM_CHANNELS];
u32 mad_dimm[NUM_CHANNELS];
int channel_size_mb[NUM_CHANNELS];
u32 cmd_stretch[NUM_CHANNELS];
int reg_c14_offset;
int reg_320c_range_threshold;
int edge_offset[3];
int timC_offset[3];
int extended_temperature_range;
int auto_self_refresh;
int rank_mirror[NUM_CHANNELS][NUM_SLOTRANKS];
struct ram_rank_timings timings[NUM_CHANNELS][NUM_SLOTRANKS];
dimm_info info;
} ramctr_timing;
#define SOUTHBRIDGE PCI_DEV(0, 0x1f, 0)
#define NORTHBRIDGE PCI_DEV(0, 0x0, 0)
#define FOR_ALL_LANES for (lane = 0; lane < NUM_LANES; lane++)
#define FOR_ALL_CHANNELS for (channel = 0; channel < NUM_CHANNELS; channel++)
#define FOR_ALL_POPULATED_RANKS for (slotrank = 0; slotrank < NUM_SLOTRANKS; slotrank++) if (ctrl->rankmap[channel] & (1 << slotrank))
#define FOR_ALL_POPULATED_CHANNELS for (channel = 0; channel < NUM_CHANNELS; channel++) if (ctrl->rankmap[channel])
#define MAX_EDGE_TIMING 71
#define MAX_TIMC 127
#define MAX_TIMB 511
#define MAX_TIMA 127
#define MAKE_ERR ((channel<<16)|(slotrank<<8)|1)
#define GET_ERR_CHANNEL(x) (x>>16)
#define MC_BIOS_REQ 0x5e00
#define MC_BIOS_DATA 0x5e04
static void program_timings(ramctr_timing * ctrl, int channel);
static unsigned int get_mmio_size(void);
static const char *ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active"
};
static void wait_txt_clear(void)
{
struct cpuid_result cp;
cp = cpuid_ext(0x1, 0x0);
/* Check if TXT is supported? */
if (!(cp.ecx & 0x40))
return;
/* Some TXT public bit. */
if (!(read32((void *)0xfed30010) & 1))
return;
/* Wait for TXT clear. */
while (!(read8((void *)0xfed40000) & (1 << 7)));
}
static void sfence(void)
{
asm volatile ("sfence");
}
static void toggle_io_reset(void) {
/* toggle IO reset bit */
u32 r32 = read32(DEFAULT_MCHBAR + 0x5030);
write32(DEFAULT_MCHBAR + 0x5030, r32 | 0x20);
udelay(1);
write32(DEFAULT_MCHBAR + 0x5030, r32 & ~0x20);
udelay(1);
}
/*
* Disable a channel in ramctr_timing.
*/
static void disable_channel(ramctr_timing *ctrl, int channel) {
ctrl->rankmap[channel] = 0;
memset(&ctrl->rank_mirror[channel][0], 0, sizeof(ctrl->rank_mirror[0]));
ctrl->channel_size_mb[channel] = 0;
ctrl->cmd_stretch[channel] = 0;
ctrl->mad_dimm[channel] = 0;
memset(&ctrl->timings[channel][0], 0, sizeof(ctrl->timings[0]));
memset(&ctrl->info.dimm[channel][0], 0, sizeof(ctrl->info.dimm[0]));
}
/*
* Fill cbmem with information for SMBIOS type 17.
*/
static void fill_smbios17(ramctr_timing *ctrl)
{
struct memory_info *mem_info;
int channel, slot;
struct dimm_info *dimm;
uint16_t ddr_freq;
dimm_info *info = &ctrl->info;
ddr_freq = (1000 << 8) / ctrl->tCK;
/*
* Allocate CBMEM area for DIMM information used to populate SMBIOS
* table 17
*/
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: 0x%p\n", mem_info);
if (!mem_info)
return;
memset(mem_info, 0, sizeof(*mem_info));
FOR_ALL_CHANNELS for (slot = 0; slot < NUM_SLOTS; slot++) {
dimm = &mem_info->dimm[mem_info->dimm_cnt];
if (info->dimm[channel][slot].size_mb) {
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = ddr_freq;
dimm->dimm_size = info->dimm[channel][slot].size_mb;
dimm->channel_num = channel;
dimm->rank_per_dimm = info->dimm[channel][slot].ranks;
dimm->dimm_num = slot;
memcpy(dimm->module_part_number,
info->dimm[channel][slot].part_number, 16);
dimm->mod_id = info->dimm[channel][slot].manufacturer_id;
dimm->mod_type = info->dimm[channel][slot].dimm_type;
dimm->bus_width = info->dimm[channel][slot].width;
mem_info->dimm_cnt++;
}
}
}
/*
* Dump in the log memory controller configuration as read from the memory
* controller registers.
*/
static void report_memory_config(void)
{
u32 addr_decoder_common, addr_decode_ch[NUM_CHANNELS];
int i;
addr_decoder_common = MCHBAR32(0x5000);
addr_decode_ch[0] = MCHBAR32(0x5004);
addr_decode_ch[1] = MCHBAR32(0x5008);
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
(MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
addr_decoder_common & 3, (addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
u32 ch_conf = addr_decode_ch[i];
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i,
ch_conf);
printk(BIOS_DEBUG, " ECC %s\n",
ecc_decoder[(ch_conf >> 24) & 3]);
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " DIMMA %d MB width x%d %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? 16 : 8,
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
printk(BIOS_DEBUG, " DIMMB %d MB width x%d %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? 16 : 8,
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
/*
* Return CRC16 match for all SPDs.
*/
static int verify_crc16_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
int channel, slot, spd_slot;
int match = 1;
FOR_ALL_CHANNELS {
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
match &= ctrl->spd_crc[channel][slot] ==
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
}
}
return match;
}
void read_spd(spd_raw_data * spd, u8 addr, bool id_only)
{
int j;
if (id_only) {
for (j = 117; j < 128; j++)
(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
} else {
for (j = 0; j < 256; j++)
(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
}
}
static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
int dimms = 0, dimms_on_channel;
int channel, slot, spd_slot;
dimm_info *dimm = &ctrl->info;
memset (ctrl->rankmap, 0, sizeof(ctrl->rankmap));
ctrl->extended_temperature_range = 1;
ctrl->auto_self_refresh = 1;
FOR_ALL_CHANNELS {
ctrl->channel_size_mb[channel] = 0;
dimms_on_channel = 0;
/* count dimms on channel */
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
if (dimm->dimm[channel][slot].dram_type == SPD_MEMORY_TYPE_SDRAM_DDR3)
dimms_on_channel++;
}
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
/* search for XMP profile */
spd_xmp_decode_ddr3(&dimm->dimm[channel][slot],
spd[spd_slot],
DDR3_XMP_PROFILE_1);
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
printram("No valid XMP profile found.\n");
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
} else if (dimms_on_channel > dimm->dimm[channel][slot].dimms_per_channel) {
printram("XMP profile supports %u DIMMs, but %u DIMMs are installed.\n",
dimm->dimm[channel][slot].dimms_per_channel,
dimms_on_channel);
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
} else if (dimm->dimm[channel][slot].voltage != 1500) {
/* TODO: support other DDR3 voltage than 1500mV */
printram("XMP profile's requested %u mV is unsupported.\n",
dimm->dimm[channel][slot].voltage);
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
}
/* fill in CRC16 for MRC cache */
ctrl->spd_crc[channel][slot] =
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
// set dimm invalid
dimm->dimm[channel][slot].ranks = 0;
dimm->dimm[channel][slot].size_mb = 0;
continue;
}
dram_print_spd_ddr3(&dimm->dimm[channel][slot]);
dimms++;
ctrl->rank_mirror[channel][slot * 2] = 0;
ctrl->rank_mirror[channel][slot * 2 + 1] = dimm->dimm[channel][slot].flags.pins_mirrored;
ctrl->channel_size_mb[channel] += dimm->dimm[channel][slot].size_mb;
ctrl->auto_self_refresh &= dimm->dimm[channel][slot].flags.asr;
ctrl->extended_temperature_range &= dimm->dimm[channel][slot].flags.ext_temp_refresh;
ctrl->rankmap[channel] |= ((1 << dimm->dimm[channel][slot].ranks) - 1) << (2 * slot);
printk(BIOS_DEBUG, "channel[%d] rankmap = 0x%x\n",
channel, ctrl->rankmap[channel]);
}
if ((ctrl->rankmap[channel] & 3) && (ctrl->rankmap[channel] & 0xc)
&& dimm->dimm[channel][0].reference_card <= 5 && dimm->dimm[channel][1].reference_card <= 5) {
const int ref_card_offset_table[6][6] = {
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 1, 1, },
{ 2, 2, 2, 1, 0, 0, },
{ 2, 2, 2, 1, 0, 0, },
};
ctrl->ref_card_offset[channel] = ref_card_offset_table[dimm->dimm[channel][0].reference_card]
[dimm->dimm[channel][1].reference_card];
} else
ctrl->ref_card_offset[channel] = 0;
}
if (!dimms)
die("No DIMMs were found");
}
static void dram_find_common_params(ramctr_timing *ctrl)
{
size_t valid_dimms;
int channel, slot;
dimm_info *dimms = &ctrl->info;
ctrl->cas_supported = 0xff;
valid_dimms = 0;
FOR_ALL_CHANNELS for (slot = 0; slot < 2; slot++) {
const dimm_attr *dimm = &dimms->dimm[channel][slot];
if (dimm->dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
valid_dimms++;
/* Find all possible CAS combinations */
ctrl->cas_supported &= dimm->cas_supported;
/* Find the smallest common latencies supported by all DIMMs */
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
}
if (!ctrl->cas_supported)
die("Unsupported DIMM combination. "
"DIMMS do not support common CAS latency");
if (!valid_dimms)
die("No valid DIMMs found");
}
/* CAS write latency. To be programmed in MR2.
* See DDR3 SPEC for MR2 documentation. */
static u8 get_CWL(u32 tCK)
{
/* Get CWL based on tCK using the following rule: */
switch (tCK) {
case TCK_1333MHZ:
return 12;
case TCK_1200MHZ:
case TCK_1100MHZ:
return 11;
case TCK_1066MHZ:
case TCK_1000MHZ:
return 10;
case TCK_933MHZ:
case TCK_900MHZ:
return 9;
case TCK_800MHZ:
case TCK_700MHZ:
return 8;
case TCK_666MHZ:
return 7;
case TCK_533MHZ:
return 6;
default:
return 5;
}
}
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK)
{
u32 FRQ;
FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
static u32 get_REFI(u32 tCK)
{
/* Get REFI based on MCU frequency using the following rule:
* _________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320 };
return frq_refi_map[get_FRQ(tCK) - 3];
}
static u8 get_XSOffset(u32 tCK)
{
/* Get XSOffset based on MCU frequency using the following rule:
* _________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
return frq_xs_map[get_FRQ(tCK) - 3];
}
static u8 get_MOD(u32 tCK)
{
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
return frq_mod_map[get_FRQ(tCK) - 3];
}
static u8 get_WLO(u32 tCK)
{
/* Get WLO based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
return frq_wlo_map[get_FRQ(tCK) - 3];
}
static u8 get_CKE(u32 tCK)
{
/* Get CKE based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
return frq_cke_map[get_FRQ(tCK) - 3];
}
static u8 get_XPDLL(u32 tCK)
{
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
return frq_xpdll_map[get_FRQ(tCK) - 3];
}
static u8 get_XP(u32 tCK)
{
/* Get XP based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
return frq_xp_map[get_FRQ(tCK) - 3];
}
static u8 get_AONPD(u32 tCK)
{
/* Get AONPD based on MCU frequency using the following rule:
* ________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
return frq_aonpd_map[get_FRQ(tCK) - 3];
}
static u32 get_COMP2(u32 tCK)
{
/* Get COMP2 based on MCU frequency using the following rule:
* ___________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
*/
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
0xC6369CC, 0xC42514C, 0xC21410C
};
return frq_comp2_map[get_FRQ(tCK) - 3];
}
static u32 get_XOVER_CLK(u8 rankmap)
{
return rankmap << 24;
}
static u32 get_XOVER_CMD(u8 rankmap)
{
u32 reg;
// enable xover cmd
reg = 0x4000;
// enable xover ctl
if (rankmap & 0x3)
reg |= 0x20000;
if (rankmap & 0xc)
reg |= 0x4000000;
return reg;
}
static void dram_timing(ramctr_timing * ctrl)
{
u8 val;
u32 val32;
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->reg_320c_range_threshold = 13;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->reg_320c_range_threshold = 16;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->reg_320c_range_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->reg_320c_range_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
val32 = (1000 << 8) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS latency */
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - 4)) & 1)
&& (ctrl->cas_supported >> (val - 4))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - 4)))) {
printk(BIOS_ERR, "CAS %uT not supported. ", val);
val = 18;
/* Find highest supported CAS latency */
while (!((ctrl->cas_supported >> (val - 4)) & 1))
val--;
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
}
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing * ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else {
die ("No lock frequency found");
}
/* Frequency mulitplier. */
u32 FRQ = get_FRQ(ctrl->tCK);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
while (reg1 & 0x80000000) {
printk(BIOS_DEBUG, " PLL busy...");
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done\n");
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_xover(ramctr_timing * ctrl)
{
u32 reg;
int channel;
FOR_ALL_CHANNELS {
// enable xover clk
reg = get_XOVER_CLK(ctrl->rankmap[channel]);
printram("XOVER CLK [%x] = %x\n", channel * 0x100 + 0xc14,
reg);
MCHBAR32(channel * 0x100 + 0xc14) = reg;
// enable xover ctl & xover cmd
reg = get_XOVER_CMD(ctrl->rankmap[channel]);
printram("XOVER CMD [%x] = %x\n", 0x100 * channel + 0x320c,
reg);
MCHBAR32(0x100 * channel + 0x320c) = reg;
}
}
static void dram_timing_regs(ramctr_timing * ctrl)
{
u32 reg, addr, val32, cpu, stretch;
struct cpuid_result cpures;
int channel;
FOR_ALL_CHANNELS {
// DBP
reg = 0;
reg |= ctrl->tRCD;
reg |= (ctrl->tRP << 4);
reg |= (ctrl->CAS << 8);
reg |= (ctrl->CWL << 12);
reg |= (ctrl->tRAS << 16);
printram("DBP [%x] = %x\n", 0x400 * channel + 0x4000, reg);
MCHBAR32(0x400 * channel + 0x4000) = reg;
// RAP
reg = 0;
reg |= ctrl->tRRD;
reg |= (ctrl->tRTP << 4);
reg |= (ctrl->tCKE << 8);
reg |= (ctrl->tWTR << 12);
reg |= (ctrl->tFAW << 16);
reg |= (ctrl->tWR << 24);
reg |= (3 << 30);
printram("RAP [%x] = %x\n", 0x400 * channel + 0x4004, reg);
MCHBAR32(0x400 * channel + 0x4004) = reg;
// OTHP
addr = 0x400 * channel + 0x400c;
reg = 0;
reg |= ctrl->tXPDLL;
reg |= (ctrl->tXP << 5);
reg |= (ctrl->tAONPD << 8);
reg |= 0xa0000;
printram("OTHP [%x] = %x\n", addr, reg);
MCHBAR32(addr) = reg;
MCHBAR32(0x400 * channel + 0x4014) = 0;
MCHBAR32(addr) |= 0x00020000;
// ODT stretch
reg = 0;
cpures = cpuid(1);
cpu = cpures.eax;
if (IS_IVY_CPU(cpu)
|| (IS_SANDY_CPU(cpu) && IS_SANDY_CPU_D2(cpu))) {
stretch = 2;
addr = 0x400 * channel + 0x400c;
printram("ODT stretch [%x] = %x\n",
0x400 * channel + 0x400c, reg);
reg = MCHBAR32(addr);
if (((ctrl->rankmap[channel] & 3) == 0)
|| (ctrl->rankmap[channel] & 0xc) == 0) {
// Rank 0 - operate on rank 2
reg = (reg & ~0xc0000) | (stretch << 18);
// Rank 2 - operate on rank 0
reg = (reg & ~0x30000) | (stretch << 16);
printram("ODT stretch [%x] = %x\n", addr, reg);
MCHBAR32(addr) = reg;
}
} else if (IS_SANDY_CPU(cpu) && IS_SANDY_CPU_C(cpu)) {
stretch = 3;
addr = 0x400 * channel + 0x401c;
reg = MCHBAR32(addr);
if (((ctrl->rankmap[channel] & 3) == 0)
|| (ctrl->rankmap[channel] & 0xc) == 0) {
// Rank 0 - operate on rank 2
reg = (reg & ~0x3000) | (stretch << 12);
// Rank 2 - operate on rank 0
reg = (reg & ~0xc00) | (stretch << 10);
printram("ODT stretch [%x] = %x\n", addr, reg);
MCHBAR32(addr) = reg;
}
} else {
stretch = 0;
}
// REFI
reg = 0;
val32 = ctrl->tREFI;
reg = (reg & ~0xffff) | val32;
val32 = ctrl->tRFC;
reg = (reg & ~0x1ff0000) | (val32 << 16);
val32 = (u32) (ctrl->tREFI * 9) / 1024;
reg = (reg & ~0xfe000000) | (val32 << 25);
printram("REFI [%x] = %x\n", 0x400 * channel + 0x4298,
reg);
MCHBAR32(0x400 * channel + 0x4298) = reg;
MCHBAR32(0x400 * channel + 0x4294) |= 0xff;
// SRFTP
reg = 0;
val32 = tDLLK;
reg = (reg & ~0xfff) | val32;
val32 = ctrl->tXSOffset;
reg = (reg & ~0xf000) | (val32 << 12);
val32 = tDLLK - ctrl->tXSOffset;
reg = (reg & ~0x3ff0000) | (val32 << 16);
val32 = ctrl->tMOD - 8;
reg = (reg & ~0xf0000000) | (val32 << 28);
printram("SRFTP [%x] = %x\n", 0x400 * channel + 0x42a4,
reg);
MCHBAR32(0x400 * channel + 0x42a4) = reg;
}
}
static void dram_dimm_mapping(ramctr_timing *ctrl)
{
u32 reg, val32;
int channel;
dimm_info *info = &ctrl->info;
FOR_ALL_CHANNELS {
dimm_attr *dimmA = 0;
dimm_attr *dimmB = 0;
reg = 0;
val32 = 0;
if (info->dimm[channel][0].size_mb >=
info->dimm[channel][1].size_mb) {
// dimm 0 is bigger, set it to dimmA
dimmA = &info->dimm[channel][0];
dimmB = &info->dimm[channel][1];
reg |= (0 << 16);
} else {
// dimm 1 is bigger, set it to dimmA
dimmA = &info->dimm[channel][1];
dimmB = &info->dimm[channel][0];
reg |= (1 << 16);
}
// dimmA
if (dimmA && (dimmA->ranks > 0)) {
val32 = dimmA->size_mb / 256;
reg = (reg & ~0xff) | val32;
val32 = dimmA->ranks - 1;
reg = (reg & ~0x20000) | (val32 << 17);
val32 = (dimmA->width / 8) - 1;
reg = (reg & ~0x80000) | (val32 << 19);
}
// dimmB
if (dimmB && (dimmB->ranks > 0)) {
val32 = dimmB->size_mb / 256;
reg = (reg & ~0xff00) | (val32 << 8);
val32 = dimmB->ranks - 1;
reg = (reg & ~0x40000) | (val32 << 18);
val32 = (dimmB->width / 8) - 1;
reg = (reg & ~0x100000) | (val32 << 20);
}
reg = (reg & ~0x200000) | (1 << 21); // rank interleave
reg = (reg & ~0x400000) | (1 << 22); // enhanced interleave
// Save MAD-DIMM register
if ((dimmA && (dimmA->ranks > 0))
|| (dimmB && (dimmB->ranks > 0))) {
ctrl->mad_dimm[channel] = reg;
} else {
ctrl->mad_dimm[channel] = 0;
}
}
}
static void dram_dimm_set_mapping(ramctr_timing * ctrl)
{
int channel;
FOR_ALL_CHANNELS {
MCHBAR32(0x5004 + channel * 4) = ctrl->mad_dimm[channel];
}
}
static void dram_zones(ramctr_timing * ctrl, int training)
{
u32 reg, ch0size, ch1size;
u8 val;
reg = 0;
val = 0;
if (training) {
ch0size = ctrl->channel_size_mb[0] ? 256 : 0;
ch1size = ctrl->channel_size_mb[1] ? 256 : 0;
} else {
ch0size = ctrl->channel_size_mb[0];
ch1size = ctrl->channel_size_mb[1];
}
if (ch0size >= ch1size) {
reg = MCHBAR32(0x5014);
val = ch1size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0xff0000) | (2 * val) << 16;
MCHBAR32(0x5014) = reg;
MCHBAR32(0x5000) = 0x24;
} else {
reg = MCHBAR32(0x5014);
val = ch0size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0xff0000) | (2 * val) << 16;
MCHBAR32(0x5014) = reg;
MCHBAR32(0x5000) = 0x21;
}
}
static void dram_memorymap(ramctr_timing * ctrl, int me_uma_size)
{
u32 reg, val, reclaim;
u32 tom, gfxstolen, gttsize;
size_t tsegsize, mmiosize, toludbase, touudbase, gfxstolenbase, gttbase,
tsegbase, mestolenbase;
size_t tsegbasedelta, remapbase, remaplimit;
uint16_t ggc;
mmiosize = get_mmio_size();
ggc = pci_read_config16(NORTHBRIDGE, GGC);
if (!(ggc & 2)) {
gfxstolen = ((ggc >> 3) & 0x1f) * 32;
gttsize = ((ggc >> 8) & 0x3);
} else {
gfxstolen = 0;
gttsize = 0;
}
tsegsize = CONFIG_SMM_TSEG_SIZE >> 20;
tom = ctrl->channel_size_mb[0] + ctrl->channel_size_mb[1];
mestolenbase = tom - me_uma_size;
toludbase = MIN(4096 - mmiosize + gfxstolen + gttsize + tsegsize,
tom - me_uma_size);
gfxstolenbase = toludbase - gfxstolen;
gttbase = gfxstolenbase - gttsize;
tsegbase = gttbase - tsegsize;
// Round tsegbase down to nearest address aligned to tsegsize
tsegbasedelta = tsegbase & (tsegsize - 1);
tsegbase &= ~(tsegsize - 1);
gttbase -= tsegbasedelta;
gfxstolenbase -= tsegbasedelta;
toludbase -= tsegbasedelta;
// Test if it is possible to reclaim a hole in the RAM addressing
if (tom - me_uma_size > toludbase) {
// Reclaim is possible
reclaim = 1;
remapbase = MAX(4096, tom - me_uma_size);
remaplimit =
remapbase + MIN(4096, tom - me_uma_size) - toludbase - 1;
touudbase = remaplimit + 1;
} else {
// Reclaim not possible
reclaim = 0;
touudbase = tom - me_uma_size;
}
// Update memory map in pci-e configuration space
printk(BIOS_DEBUG, "Update PCI-E configuration space:\n");
// TOM (top of memory)
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa0);
val = tom & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa0, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa0, reg);
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa4);
val = tom & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa4, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa4, reg);
// TOLUD (top of low used dram)
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xbc);
val = toludbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xbc, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xbc, reg);
// TOUUD LSB (top of upper usable dram)
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa8);
val = touudbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa8, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa8, reg);
// TOUUD MSB
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xac);
val = touudbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xac, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xac, reg);
if (reclaim) {
// REMAP BASE
pcie_write_config32(PCI_DEV(0, 0, 0), 0x90, remapbase << 20);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x94, remapbase >> 12);
// REMAP LIMIT
pcie_write_config32(PCI_DEV(0, 0, 0), 0x98, remaplimit << 20);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x9c, remaplimit >> 12);
}
// TSEG
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb8);
val = tsegbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb8, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb8, reg);
// GFX stolen memory
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb0);
val = gfxstolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb0, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb0, reg);
// GTT stolen memory
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb4);
val = gttbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb4, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb4, reg);
if (me_uma_size) {
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x7c);
val = (0x80000 - me_uma_size) & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x7c, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x7c, reg);
// ME base
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x70);
val = mestolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x70, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x70, reg);
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x74);
val = mestolenbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x74, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x74, reg);
// ME mask
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x78);
val = (0x80000 - me_uma_size) & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
reg = (reg & ~0x400) | (1 << 10); // set lockbit on ME mem
reg = (reg & ~0x800) | (1 << 11); // set ME memory enable
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x78, reg);
pcie_write_config32(PCI_DEV(0, 0, 0), 0x78, reg);
}
}
static void dram_ioregs(ramctr_timing * ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(0x5084) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK);
MCHBAR32(0x3714) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(0x1810 + channel * 0x100) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(0x5f08) |= 0x100;
udelay(20);
printram("done\n");
}
static void wait_428c(int channel)
{
while (1) {
if (read32(DEFAULT_MCHBAR + 0x428c + (channel << 10)) & 0x50)
return;
}
}
static void write_reset(ramctr_timing * ctrl)
{
int channel, slotrank;
/* choose a populated channel. */
channel = (ctrl->rankmap[0]) ? 0 : 1;
wait_428c(channel);
/* choose a populated rank. */
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x80c01);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x400001);
wait_428c(channel);
}
static void dram_jedecreset(ramctr_timing * ctrl)
{
u32 reg, addr;
int channel;
while (!(MCHBAR32(0x5084) & 0x10000));
do {
reg = MCHBAR32(0x428c);
} while ((reg & 0x14) == 0);
// Set state of memory controller
reg = 0x112;
MCHBAR32(0x5030) = reg;
MCHBAR32(0x4ea0) = 0;
reg |= 2; //ddr reset
MCHBAR32(0x5030) = reg;
// Assert dimm reset signal
reg = MCHBAR32(0x5030);
reg &= ~0x2;
MCHBAR32(0x5030) = reg;
// Wait 200us
udelay(200);
// Deassert dimm reset signal
MCHBAR32(0x5030) |= 2;
// Wait 500us
udelay(500);
// Enable DCLK
MCHBAR32(0x5030) |= 4;
// XXX Wait 20ns
udelay(1);
FOR_ALL_CHANNELS {
// Set valid rank CKE
reg = 0;
reg = (reg & ~0xf) | ctrl->rankmap[channel];
addr = 0x400 * channel + 0x42a0;
MCHBAR32(addr) = reg;
// Wait 10ns for ranks to settle
//udelay(0.01);
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
MCHBAR32(addr) = reg;
// Write reset using a NOP
write_reset(ctrl);
}
}
static odtmap get_ODT(ramctr_timing *ctrl, u8 rank, int channel)
{
/* Get ODT based on rankmap: */
int dimms_per_ch = (ctrl->rankmap[channel] & 1)
+ ((ctrl->rankmap[channel] >> 2) & 1);
if (dimms_per_ch == 1) {
return (const odtmap){60, 60};
} else {
return (const odtmap){120, 30};
}
}
static void write_mrreg(ramctr_timing *ctrl, int channel, int slotrank,
int reg, u32 val)
{
wait_428c(channel);
if (ctrl->rank_mirror[channel][slotrank]) {
/* DDR3 Rank1 Address mirror
* swap the following pins:
* A3<->A4, A5<->A6, A7<->A8, BA0<->BA1 */
reg = ((reg >> 1) & 1) | ((reg << 1) & 2);
val = (val & ~0x1f8) | ((val >> 1) & 0xa8)
| ((val & 0xa8) << 1);
}
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command MRS */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x0f000);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | (reg << 20) | val | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
}
static u32 make_mr0(ramctr_timing * ctrl, u8 rank)
{
u16 mr0reg, mch_cas, mch_wr;
static const u8 mch_wr_t[12] = { 1, 2, 3, 4, 0, 5, 0, 6, 0, 7, 0, 0 };
/* DLL Reset - self clearing - set after CLK frequency has been changed */
mr0reg = 0x100;
// Convert CAS to MCH register friendly
if (ctrl->CAS < 12) {
mch_cas = (u16) ((ctrl->CAS - 4) << 1);
} else {
mch_cas = (u16) (ctrl->CAS - 12);
mch_cas = ((mch_cas << 1) | 0x1);
}
// Convert tWR to MCH register friendly
mch_wr = mch_wr_t[ctrl->tWR - 5];
mr0reg = (mr0reg & ~0x4) | (mch_cas & 0x1);
mr0reg = (mr0reg & ~0x70) | ((mch_cas & 0xe) << 3);
mr0reg = (mr0reg & ~0xe00) | (mch_wr << 9);
// Precharge PD - Fast (desktop) 0x1 or slow (mobile) 0x0 - mostly power-saving feature
mr0reg = (mr0reg & ~0x1000) | (!ctrl->mobile << 12);
return mr0reg;
}
static void dram_mr0(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 0,
make_mr0(ctrl, rank));
}
static u32 encode_odt(u32 odt)
{
switch (odt) {
case 30:
return (1 << 9) | (1 << 2); // RZQ/8, RZQ/4
case 60:
return (1 << 2); // RZQ/4
case 120:
return (1 << 6); // RZQ/2
default:
case 0:
return 0;
}
}
static u32 make_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
odtmap odt;
u32 mr1reg;
odt = get_ODT(ctrl, rank, channel);
mr1reg = 0x2;
mr1reg |= encode_odt(odt.rttnom);
return mr1reg;
}
static void dram_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
u16 mr1reg;
mr1reg = make_mr1(ctrl, rank, channel);
write_mrreg(ctrl, channel, rank, 1, mr1reg);
}
static void dram_mr2(ramctr_timing *ctrl, u8 rank, int channel)
{
u16 pasr, cwl, mr2reg;
odtmap odt;
int srt;
pasr = 0;
cwl = ctrl->CWL - 5;
odt = get_ODT(ctrl, rank, channel);
srt = ctrl->extended_temperature_range && !ctrl->auto_self_refresh;
mr2reg = 0;
mr2reg = (mr2reg & ~0x7) | pasr;
mr2reg = (mr2reg & ~0x38) | (cwl << 3);
mr2reg = (mr2reg & ~0x40) | (ctrl->auto_self_refresh << 6);
mr2reg = (mr2reg & ~0x80) | (srt << 7);
mr2reg |= (odt.rttwr / 60) << 9;
write_mrreg(ctrl, channel, rank, 2, mr2reg);
}
static void dram_mr3(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 3, 0);
}
static void dram_mrscommands(ramctr_timing * ctrl)
{
u8 slotrank;
u32 reg, addr;
int channel;
FOR_ALL_POPULATED_CHANNELS {
FOR_ALL_POPULATED_RANKS {
// MR2
dram_mr2(ctrl, slotrank, channel);
// MR3
dram_mr3(ctrl, slotrank, channel);
// MR1
dram_mr1(ctrl, slotrank, channel);
// MR0
dram_mr0(ctrl, slotrank, channel);
}
}
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4e20, 0x7);
write32(DEFAULT_MCHBAR + 0x4e30, 0xf1001);
write32(DEFAULT_MCHBAR + 0x4e00, 0x60002);
write32(DEFAULT_MCHBAR + 0x4e10, 0);
/* DRAM command ZQCL */
write32(DEFAULT_MCHBAR + 0x4e24, 0x1f003);
write32(DEFAULT_MCHBAR + 0x4e34, 0x1901001);
write32(DEFAULT_MCHBAR + 0x4e04, 0x60400);
write32(DEFAULT_MCHBAR + 0x4e14, 0x288);
/* execute command queue on all channels ? */
write32(DEFAULT_MCHBAR + 0x4e84, 0x40004);
// Drain
FOR_ALL_CHANNELS {
// Wait for ref drained
wait_428c(channel);
}
// Refresh enable
MCHBAR32(0x5030) |= 8;
FOR_ALL_POPULATED_CHANNELS {
addr = 0x400 * channel + 0x4020;
reg = MCHBAR32(addr);
reg &= ~0x200000;
MCHBAR32(addr) = reg;
wait_428c(channel);
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
// Drain
wait_428c(channel);
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x1);
// Drain
wait_428c(channel);
}
}
const u32 lane_registers[] = {
0x0000, 0x0200, 0x0400, 0x0600,
0x1000, 0x1200, 0x1400, 0x1600,
0x0800
};
static void program_timings(ramctr_timing * ctrl, int channel)
{
u32 reg32, reg_4024, reg_c14, reg_c18, reg_4028;
int lane;
int slotrank, slot;
int full_shift = 0;
u16 slot320c[NUM_SLOTS];
FOR_ALL_POPULATED_RANKS {
if (full_shift < -ctrl->timings[channel][slotrank].val_320c)
full_shift = -ctrl->timings[channel][slotrank].val_320c;
}
for (slot = 0; slot < NUM_SLOTS; slot++)
switch ((ctrl->rankmap[channel] >> (2 * slot)) & 3) {
case 0:
default:
slot320c[slot] = 0x7f;
break;
case 1:
slot320c[slot] =
ctrl->timings[channel][2 * slot + 0].val_320c +
full_shift;
break;
case 2:
slot320c[slot] =
ctrl->timings[channel][2 * slot + 1].val_320c +
full_shift;
break;
case 3:
slot320c[slot] =
(ctrl->timings[channel][2 * slot].val_320c +
ctrl->timings[channel][2 * slot +
1].val_320c) / 2 +
full_shift;
break;
}
/* enable CMD XOVER */
reg32 = get_XOVER_CMD(ctrl->rankmap[channel]);
reg32 |= ((slot320c[0] & 0x3f) << 6) | ((slot320c[0] & 0x40) << 9);
reg32 |= (slot320c[1] & 0x7f) << 18;
reg32 |= (full_shift & 0x3f) | ((full_shift & 0x40) << 6);
MCHBAR32(0x320c + 0x100 * channel) = reg32;
/* enable CLK XOVER */
reg_c14 = get_XOVER_CLK(ctrl->rankmap[channel]);
reg_c18 = 0;
FOR_ALL_POPULATED_RANKS {
int shift =
ctrl->timings[channel][slotrank].val_320c + full_shift;
int offset_val_c14;
if (shift < 0)
shift = 0;
offset_val_c14 = ctrl->reg_c14_offset + shift;
/* set CLK phase shift */
reg_c14 |= (offset_val_c14 & 0x3f) << (6 * slotrank);
reg_c18 |= ((offset_val_c14 >> 6) & 1) << slotrank;
}
MCHBAR32(0xc14 + channel * 0x100) = reg_c14;
MCHBAR32(0xc18 + channel * 0x100) = reg_c18;
reg_4028 = MCHBAR32(0x4028 + 0x400 * channel);
reg_4028 &= 0xffff0000;
reg_4024 = 0;
FOR_ALL_POPULATED_RANKS {
int post_timA_min_high = 7, post_timA_max_high = 0;
int pre_timA_min_high = 7, pre_timA_max_high = 0;
int shift_402x = 0;
int shift =
ctrl->timings[channel][slotrank].val_320c + full_shift;
if (shift < 0)
shift = 0;
FOR_ALL_LANES {
if (post_timA_min_high >
((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) >> 6))
post_timA_min_high =
((ctrl->timings[channel][slotrank].
lanes[lane].timA + shift) >> 6);
if (pre_timA_min_high >
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6))
pre_timA_min_high =
(ctrl->timings[channel][slotrank].
lanes[lane].timA >> 6);
if (post_timA_max_high <
((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) >> 6))
post_timA_max_high =
((ctrl->timings[channel][slotrank].
lanes[lane].timA + shift) >> 6);
if (pre_timA_max_high <
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6))
pre_timA_max_high =
(ctrl->timings[channel][slotrank].
lanes[lane].timA >> 6);
}
if (pre_timA_max_high - pre_timA_min_high <
post_timA_max_high - post_timA_min_high)
shift_402x = +1;
else if (pre_timA_max_high - pre_timA_min_high >
post_timA_max_high - post_timA_min_high)
shift_402x = -1;
reg_4028 |=
(ctrl->timings[channel][slotrank].val_4028 + shift_402x -
post_timA_min_high) << (4 * slotrank);
reg_4024 |=
(ctrl->timings[channel][slotrank].val_4024 +
shift_402x) << (8 * slotrank);
FOR_ALL_LANES {
MCHBAR32(lane_registers[lane] + 0x10 + 0x100 * channel +
4 * slotrank)
=
(((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift) & 0x3f)
|
((ctrl->timings[channel][slotrank].lanes[lane].
rising + shift) << 8)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timA + shift -
(post_timA_min_high << 6)) & 0x1c0) << 10)
| ((ctrl->timings[channel][slotrank].lanes[lane].
falling + shift) << 20));
MCHBAR32(lane_registers[lane] + 0x20 + 0x100 * channel +
4 * slotrank)
=
(((ctrl->timings[channel][slotrank].lanes[lane].
timC + shift) & 0x3f)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timB + shift) & 0x3f) << 8)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timB + shift) & 0x1c0) << 9)
|
(((ctrl->timings[channel][slotrank].lanes[lane].
timC + shift) & 0x40) << 13));
}
}
MCHBAR32(0x4024 + 0x400 * channel) = reg_4024;
MCHBAR32(0x4028 + 0x400 * channel) = reg_4028;
}
static void test_timA(ramctr_timing * ctrl, int channel, int slotrank)
{
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x4040c01);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x100f | ((ctrl->CAS + 36) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
}
static int does_lane_work(ramctr_timing * ctrl, int channel, int slotrank,
int lane)
{
u32 timA = ctrl->timings[channel][slotrank].lanes[lane].timA;
return ((read32
(DEFAULT_MCHBAR + lane_registers[lane] + channel * 0x100 + 4 +
((timA / 32) & 1) * 4)
>> (timA % 32)) & 1);
}
struct run {
int middle;
int end;
int start;
int all;
int length;
};
static struct run get_longest_zero_run(int *seq, int sz)
{
int i, ls;
int bl = 0, bs = 0;
struct run ret;
ls = 0;
for (i = 0; i < 2 * sz; i++)
if (seq[i % sz]) {
if (i - ls > bl) {
bl = i - ls;
bs = ls;
}
ls = i + 1;
}
if (bl == 0) {
ret.middle = sz / 2;
ret.start = 0;
ret.end = sz;
ret.all = 1;
return ret;
}
ret.start = bs % sz;
ret.end = (bs + bl - 1) % sz;
ret.middle = (bs + (bl - 1) / 2) % sz;
ret.length = bl;
ret.all = 0;
return ret;
}
static void discover_timA_coarse(ramctr_timing * ctrl, int channel,
int slotrank, int *upperA)
{
int timA;
int statistics[NUM_LANES][128];
int lane;
for (timA = 0; timA < 128; timA++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timA = timA;
}
program_timings(ctrl, channel);
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timA] =
!does_lane_work(ctrl, channel, slotrank, lane);
printram("Astat: %d, %d, %d: %x, %x\n",
channel, slotrank, lane, timA,
statistics[lane][timA]);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], 128);
ctrl->timings[channel][slotrank].lanes[lane].timA = rn.middle;
upperA[lane] = rn.end;
if (upperA[lane] < rn.middle)
upperA[lane] += 128;
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].timA);
printram("Aend: %d, %d, %d: %x\n", channel, slotrank,
lane, upperA[lane]);
}
}
static void discover_timA_fine(ramctr_timing * ctrl, int channel, int slotrank,
int *upperA)
{
int timA_delta;
int statistics[NUM_LANES][51];
int lane, i;
memset(statistics, 0, sizeof(statistics));
for (timA_delta = -25; timA_delta <= 25; timA_delta++) {
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
timA = upperA[lane] + timA_delta + 0x40;
program_timings(ctrl, channel);
for (i = 0; i < 100; i++) {
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timA_delta + 25] +=
does_lane_work(ctrl, channel, slotrank,
lane);
}
}
}
FOR_ALL_LANES {
int last_zero, first_all;
for (last_zero = -25; last_zero <= 25; last_zero++)
if (statistics[lane][last_zero + 25])
break;
last_zero--;
for (first_all = -25; first_all <= 25; first_all++)
if (statistics[lane][first_all + 25] == 100)
break;
printram("lane %d: %d, %d\n", lane, last_zero,
first_all);
ctrl->timings[channel][slotrank].lanes[lane].timA =
(last_zero + first_all) / 2 + upperA[lane];
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].timA);
}
}
static int discover_402x(ramctr_timing *ctrl, int channel, int slotrank,
int *upperA)
{
int works[NUM_LANES];
int lane;
while (1) {
int all_works = 1, some_works = 0;
program_timings(ctrl, channel);
test_timA(ctrl, channel, slotrank);
FOR_ALL_LANES {
works[lane] =
!does_lane_work(ctrl, channel, slotrank, lane);
if (works[lane])
some_works = 1;
else
all_works = 0;
}
if (all_works)
return 0;
if (!some_works) {
if (ctrl->timings[channel][slotrank].val_4024 < 2) {
printk(BIOS_EMERG, "402x discovery failed (1): %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
ctrl->timings[channel][slotrank].val_4024 -= 2;
printram("4024 -= 2;\n");
continue;
}
ctrl->timings[channel][slotrank].val_4028 += 2;
printram("4028 += 2;\n");
if (ctrl->timings[channel][slotrank].val_4028 >= 0x10) {
printk(BIOS_EMERG, "402x discovery failed (2): %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
FOR_ALL_LANES if (works[lane]) {
ctrl->timings[channel][slotrank].lanes[lane].timA +=
128;
upperA[lane] += 128;
printram("increment %d, %d, %d\n", channel,
slotrank, lane);
}
}
return 0;
}
struct timA_minmax {
int timA_min_high, timA_max_high;
};
static void pre_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
struct timA_minmax *mnmx)
{
int lane;
mnmx->timA_min_high = 7;
mnmx->timA_max_high = 0;
FOR_ALL_LANES {
if (mnmx->timA_min_high >
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
mnmx->timA_min_high =
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
if (mnmx->timA_max_high <
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
mnmx->timA_max_high =
(ctrl->timings[channel][slotrank].lanes[lane].
timA >> 6);
}
}
static void post_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
struct timA_minmax *mnmx)
{
struct timA_minmax post;
int shift_402x = 0;
/* Get changed maxima. */
pre_timA_change(ctrl, channel, slotrank, &post);
if (mnmx->timA_max_high - mnmx->timA_min_high <
post.timA_max_high - post.timA_min_high)
shift_402x = +1;
else if (mnmx->timA_max_high - mnmx->timA_min_high >
post.timA_max_high - post.timA_min_high)
shift_402x = -1;
else
shift_402x = 0;
ctrl->timings[channel][slotrank].val_4028 += shift_402x;
ctrl->timings[channel][slotrank].val_4024 += shift_402x;
printram("4024 += %d;\n", shift_402x);
printram("4028 += %d;\n", shift_402x);
}
/* Compensate the skew between DQS and DQs.
* To ease PCB design a small skew between Data Strobe signals and
* Data Signals is allowed.
* The controller has to measure and compensate this skew for every byte-lane.
* By delaying either all DQs signals or DQS signal, a full phase
* shift can be introduced.
* It is assumed that one byte-lane's DQs signals have the same routing delay.
*
* To measure the actual skew, the DRAM is placed in "read leveling" mode.
* In read leveling mode the DRAM-chip outputs an alternating periodic pattern.
* The memory controller iterates over all possible values to do a full phase shift
* and issues read commands.
* With DQS and DQs in phase the data read is expected to alternate on every byte:
* 0xFF 0x00 0xFF ...
* Once the controller has detected this pattern a bit in the result register is
* set for the current phase shift.
*/
static int read_training(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
int err;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
int all_high, some_high;
int upperA[NUM_LANES];
struct timA_minmax mnmx;
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
write32(DEFAULT_MCHBAR + 0x3400, (slotrank << 2) | 0x8001);
ctrl->timings[channel][slotrank].val_4028 = 4;
ctrl->timings[channel][slotrank].val_4024 = 55;
program_timings(ctrl, channel);
discover_timA_coarse(ctrl, channel, slotrank, upperA);
all_high = 1;
some_high = 0;
FOR_ALL_LANES {
if (ctrl->timings[channel][slotrank].lanes[lane].
timA >= 0x40)
some_high = 1;
else
all_high = 0;
}
if (all_high) {
ctrl->timings[channel][slotrank].val_4028--;
printram("4028--;\n");
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].
timA -= 0x40;
upperA[lane] -= 0x40;
}
} else if (some_high) {
ctrl->timings[channel][slotrank].val_4024++;
ctrl->timings[channel][slotrank].val_4028++;
printram("4024++;\n");
printram("4028++;\n");
}
program_timings(ctrl, channel);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
err = discover_402x(ctrl, channel, slotrank, upperA);
if (err)
return err;
post_timA_change(ctrl, channel, slotrank, &mnmx);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
discover_timA_fine(ctrl, channel, slotrank, upperA);
post_timA_change(ctrl, channel, slotrank, &mnmx);
pre_timA_change(ctrl, channel, slotrank, &mnmx);
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timA -= mnmx.timA_min_high * 0x40;
}
ctrl->timings[channel][slotrank].val_4028 -= mnmx.timA_min_high;
printram("4028 -= %d;\n", mnmx.timA_min_high);
post_timA_change(ctrl, channel, slotrank, &mnmx);
printram("4/8: %d, %d, %x, %x\n", channel, slotrank,
ctrl->timings[channel][slotrank].val_4024,
ctrl->timings[channel][slotrank].val_4028);
printram("final results:\n");
FOR_ALL_LANES
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
lane,
ctrl->timings[channel][slotrank].lanes[lane].timA);
write32(DEFAULT_MCHBAR + 0x3400, 0);
toggle_io_reset();
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel
+ 4 * lane, 0);
}
return 0;
}
static void test_timC(ramctr_timing * ctrl, int channel, int slotrank)
{
int lane;
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel + 4 * lane, 0);
read32(DEFAULT_MCHBAR + 0x4140 + 0x400 * channel + 4 * lane);
}
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(max((ctrl->tFAW >> 2) + 1, ctrl->tRRD) << 10)
| 4 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | (6 << 16));
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8041001);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 8);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x80411f4);
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 8);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
(max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1) << 10)
| 8 | (ctrl->CAS << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x244);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x40011f4 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
}
static int discover_timC(ramctr_timing *ctrl, int channel, int slotrank)
{
int timC;
int statistics[NUM_LANES][MAX_TIMC + 1];
int lane;
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
for (timC = 0; timC <= MAX_TIMC; timC++) {
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
timC = timC;
program_timings(ctrl, channel);
test_timC(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timC] =
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
0x400 * channel);
printram("Cstat: %d, %d, %d, %x, %x\n",
channel, slotrank, lane, timC,
statistics[lane][timC]);
}
}
FOR_ALL_LANES {
struct run rn =
get_longest_zero_run(statistics[lane], MAX_TIMC + 1);
ctrl->timings[channel][slotrank].lanes[lane].timC = rn.middle;
if (rn.all) {
printk(BIOS_EMERG, "timC discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("Cval: %d, %d, %d: %x\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].timC);
}
return 0;
}
static int get_precedening_channels(ramctr_timing * ctrl, int target_channel)
{
int channel, ret = 0;
FOR_ALL_POPULATED_CHANNELS if (channel < target_channel)
ret++;
return ret;
}
static void fill_pattern0(ramctr_timing * ctrl, int channel, u32 a, u32 b)
{
unsigned j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + 4 * j), j & 2 ? b : a);
sfence();
}
static int num_of_channels(const ramctr_timing * ctrl)
{
int ret = 0;
int channel;
FOR_ALL_POPULATED_CHANNELS ret++;
return ret;
}
static void fill_pattern1(ramctr_timing * ctrl, int channel)
{
unsigned j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
unsigned channel_step = 0x40 * num_of_channels(ctrl);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + j * 4), 0xffffffff);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + channel_step + j * 4), 0);
sfence();
}
static void precharge(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
FOR_ALL_POPULATED_CHANNELS {
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
16;
ctrl->timings[channel][slotrank].lanes[lane].rising =
16;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
48;
ctrl->timings[channel][slotrank].lanes[lane].rising =
48;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* write MR3 MPR disable */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
}
}
static void test_timB(ramctr_timing * ctrl, int channel, int slotrank)
{
/* enable DQs on this slotrank */
write_mrreg(ctrl, channel, slotrank, 1,
0x80 | make_mr1(ctrl, slotrank, channel));
wait_428c(channel);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWLO) << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
8 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f107);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4000c01 | ((ctrl->CAS + 38) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 4);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x400 * channel + 0x4284, 0x40001);
wait_428c(channel);
/* disable DQs on this slotrank */
write_mrreg(ctrl, channel, slotrank, 1,
0x1080 | make_mr1(ctrl, slotrank, channel));
}
static int discover_timB(ramctr_timing *ctrl, int channel, int slotrank)
{
int timB;
int statistics[NUM_LANES][128];
int lane;
write32(DEFAULT_MCHBAR + 0x3400, 0x108052 | (slotrank << 2));
for (timB = 0; timB < 128; timB++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timB = timB;
}
program_timings(ctrl, channel);
test_timB(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][timB] =
!((read32
(DEFAULT_MCHBAR + lane_registers[lane] +
channel * 0x100 + 4 + ((timB / 32) & 1) * 4)
>> (timB % 32)) & 1);
printram("Bstat: %d, %d, %d: %x, %x\n",
channel, slotrank, lane, timB,
statistics[lane][timB]);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], 128);
/* timC is a direct function of timB's 6 LSBs.
* Some tests increments the value of timB by a small value,
* which might cause the 6bit value to overflow, if it's close
* to 0x3F. Increment the value by a small offset if it's likely
* to overflow, to make sure it won't overflow while running
* tests and bricks the system due to a non matching timC.
*
* TODO: find out why some tests (edge write discovery)
* increment timB. */
if ((rn.start & 0x3F) == 0x3E)
rn.start += 2;
else if ((rn.start & 0x3F) == 0x3F)
rn.start += 1;
ctrl->timings[channel][slotrank].lanes[lane].timB = rn.start;
if (rn.all) {
printk(BIOS_EMERG, "timB discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("Bval: %d, %d, %d: %x\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].timB);
}
return 0;
}
static int get_timB_high_adjust(u64 val)
{
int i;
/* good */
if (val == 0xffffffffffffffffLL)
return 0;
if (val >= 0xf000000000000000LL) {
/* needs negative adjustment */
for (i = 0; i < 8; i++)
if (val << (8 * (7 - i) + 4))
return -i;
} else {
/* needs positive adjustment */
for (i = 0; i < 8; i++)
if (val >> (8 * (7 - i) + 4))
return i;
}
return 8;
}
static void adjust_high_timB(ramctr_timing * ctrl)
{
int channel, slotrank, lane, old;
write32(DEFAULT_MCHBAR + 0x3400, 0x200);
FOR_ALL_POPULATED_CHANNELS {
fill_pattern1(ctrl, channel);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 1);
}
FOR_ALL_POPULATED_CHANNELS FOR_ALL_POPULATED_RANKS {
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x10001);
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8040c01);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x8);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x8041003);
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x3e2);
/* DRAM command NOP */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x8);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
/* DRAM command PREA */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | ((ctrl->tRP) << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0xc01 | ((ctrl->tRCD) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x3f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x4000c01 |
((ctrl->tRP +
ctrl->timings[channel][slotrank].val_4024 +
ctrl->timings[channel][slotrank].val_4028) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60008);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
wait_428c(channel);
FOR_ALL_LANES {
u64 res =
read32(DEFAULT_MCHBAR + lane_registers[lane] +
0x100 * channel + 4);
res |=
((u64) read32(DEFAULT_MCHBAR + lane_registers[lane] +
0x100 * channel + 8)) << 32;
old = ctrl->timings[channel][slotrank].lanes[lane].timB;
ctrl->timings[channel][slotrank].lanes[lane].timB +=
get_timB_high_adjust(res) * 64;
printram("High adjust %d:%016llx\n", lane, res);
printram("Bval+: %d, %d, %d, %x -> %x\n", channel,
slotrank, lane, old,
ctrl->timings[channel][slotrank].lanes[lane].
timB);
}
}
write32(DEFAULT_MCHBAR + 0x3400, 0);
}
static void write_op(ramctr_timing * ctrl, int channel)
{
int slotrank;
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
/* Compensate the skew between CMD/ADDR/CLK and DQ/DQS lanes.
* DDR3 adopted the fly-by topology. The data and strobes signals reach
* the chips at different times with respect to command, address and
* clock signals.
* By delaying either all DQ/DQs or all CMD/ADDR/CLK signals, a full phase
* shift can be introduced.
* It is assumed that the CLK/ADDR/CMD signals have the same routing delay.
*
* To find the required phase shift the DRAM is placed in "write leveling" mode.
* In this mode the DRAM-chip samples the CLK on every DQS edge and feeds back the
* sampled value on the data lanes (DQs).
*/
static int write_training(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
int err;
FOR_ALL_POPULATED_CHANNELS
write32(DEFAULT_MCHBAR + 0x4008 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4008 +
0x400 * channel) | 0x8000000);
FOR_ALL_POPULATED_CHANNELS {
write_op(ctrl, channel);
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel) | 0x200000);
}
/* refresh disable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
FOR_ALL_POPULATED_CHANNELS {
write_op(ctrl, channel);
}
/* enable write leveling on all ranks
* disable all DQ outputs
* only NOP is allowed in this mode */
FOR_ALL_CHANNELS
FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel, slotrank, 1,
make_mr1(ctrl, slotrank, channel) | 0x1080);
write32(DEFAULT_MCHBAR + 0x3400, 0x108052);
toggle_io_reset();
/* set any valid value for timB, it gets corrected later */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_timB(ctrl, channel, slotrank);
if (err)
return err;
}
/* disable write leveling on all ranks */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel,
slotrank, 1, make_mr1(ctrl, slotrank, channel));
write32(DEFAULT_MCHBAR + 0x3400, 0);
FOR_ALL_POPULATED_CHANNELS
wait_428c(channel);
/* refresh enable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) | 8);
FOR_ALL_POPULATED_CHANNELS {
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
~0x00200000 & read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel));
read32(DEFAULT_MCHBAR + 0x428c + 0x400 * channel);
wait_428c(channel);
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel, 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
toggle_io_reset();
printram("CPE\n");
precharge(ctrl);
printram("CPF\n");
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0xaaaaaaaa, 0x55555555);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_timC(ctrl, channel, slotrank);
if (err)
return err;
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
/* measure and adjust timB timings */
adjust_high_timB(ctrl);
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
return 0;
}
static int test_320c(ramctr_timing * ctrl, int channel, int slotrank)
{
struct ram_rank_timings saved_rt = ctrl->timings[channel][slotrank];
int timC_delta;
int lanes_ok = 0;
int ctr = 0;
int lane;
for (timC_delta = -5; timC_delta <= 5; timC_delta++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].timC =
saved_rt.lanes[lane].timC + timC_delta;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 4 * lane + 0x4f40, 0);
}
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
((max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1)) << 10)
| 8 | (ctrl->tRCD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | ctr | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x8001020 | ((ctrl->CWL + ctrl->tWTR + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4244 + 0x400 * channel, 0x389abcd);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x20e42);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x4001020 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4248 + 0x400 * channel, 0x389abcd);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x20e42);
/* DRAM command PRE */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel, 0xf1001);
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
FOR_ALL_LANES {
u32 r32 =
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
0x400 * channel);
if (r32 == 0)
lanes_ok |= 1 << lane;
}
ctr++;
if (lanes_ok == ((1 << NUM_LANES) - 1))
break;
}
ctrl->timings[channel][slotrank] = saved_rt;
printram("3lanes: %x\n", lanes_ok);
return lanes_ok != ((1 << NUM_LANES) - 1);
}
#include "raminit_patterns.h"
static void fill_pattern5(ramctr_timing * ctrl, int channel, int patno)
{
unsigned i, j;
unsigned channel_offset =
get_precedening_channels(ctrl, channel) * 0x40;
unsigned channel_step = 0x40 * num_of_channels(ctrl);
if (patno) {
u8 base8 = 0x80 >> ((patno - 1) % 8);
u32 base = base8 | (base8 << 8) | (base8 << 16) | (base8 << 24);
for (i = 0; i < 32; i++) {
for (j = 0; j < 16; j++) {
u32 val = use_base[patno - 1][i] & (1 << (j / 2)) ? base : 0;
if (invert[patno - 1][i] & (1 << (j / 2)))
val = ~val;
write32((void *)(0x04000000 + channel_offset + i * channel_step +
j * 4), val);
}
}
} else {
for (i = 0; i < sizeof(pattern) / sizeof(pattern[0]); i++) {
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + i * channel_step +
j * 4), pattern[i][j]);
}
sfence();
}
}
static void reprogram_320c(ramctr_timing * ctrl)
{
int channel, slotrank;
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel) | 0x200000);
}
/* refresh disable */
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
/* choose an existing rank. */
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
/* DRAM command ZQCS */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
wait_428c(channel);
}
/* jedec reset */
dram_jedecreset(ctrl);
/* mrs commands. */
dram_mrscommands(ctrl);
toggle_io_reset();
}
#define MIN_C320C_LEN 13
static int try_cmd_stretch(ramctr_timing *ctrl, int channel, int cmd_stretch)
{
struct ram_rank_timings saved_timings[NUM_CHANNELS][NUM_SLOTRANKS];
int slotrank;
int c320c;
int stat[NUM_SLOTRANKS][256];
int delta = 0;
printram("Trying cmd_stretch %d on channel %d\n", cmd_stretch, channel);
FOR_ALL_POPULATED_RANKS {
saved_timings[channel][slotrank] =
ctrl->timings[channel][slotrank];
}
ctrl->cmd_stretch[channel] = cmd_stretch;
MCHBAR32(0x4004 + 0x400 * channel) =
ctrl->tRRD
| (ctrl->tRTP << 4)
| (ctrl->tCKE << 8)
| (ctrl->tWTR << 12)
| (ctrl->tFAW << 16)
| (ctrl->tWR << 24)
| (ctrl->cmd_stretch[channel] << 30);
if (ctrl->cmd_stretch[channel] == 2)
delta = 2;
else if (ctrl->cmd_stretch[channel] == 0)
delta = 4;
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].val_4024 -= delta;
}
for (c320c = -127; c320c <= 127; c320c++) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].val_320c = c320c;
}
program_timings(ctrl, channel);
reprogram_320c(ctrl);
FOR_ALL_POPULATED_RANKS {
stat[slotrank][c320c + 127] =
test_320c(ctrl, channel, slotrank);
printram("3stat: %d, %d, %d: %x\n",
channel, slotrank, c320c,
stat[slotrank][c320c + 127]);
}
}
FOR_ALL_POPULATED_RANKS {
struct run rn =
get_longest_zero_run(stat[slotrank], 255);
ctrl->timings[channel][slotrank].val_320c =
rn.middle - 127;
printram("3val: %d, %d: %d\n", channel,
slotrank,
ctrl->timings[channel][slotrank].val_320c);
if (rn.all || rn.length < MIN_C320C_LEN) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank] =
saved_timings[channel][slotrank];
}
return MAKE_ERR;
}
}
return 0;
}
/* Adjust CMD phase shift and try multiple command rates.
* A command rate of 2T doubles the time needed for address and
* command decode. */
static int command_training(ramctr_timing *ctrl)
{
int channel;
int err;
FOR_ALL_POPULATED_CHANNELS {
fill_pattern5(ctrl, channel, 0);
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
}
FOR_ALL_POPULATED_CHANNELS {
/* try command rate 1T and 2T */
err = try_cmd_stretch(ctrl, channel, 0);
if (err) {
err = try_cmd_stretch(ctrl, channel, 2);
if (err) {
printk(BIOS_EMERG, "c320c discovery failed\n");
return err;
}
printram("Using CMD rate 2T on channel %u\n", channel);
} else
printram("Using CMD rate 1T on channel %u\n", channel);
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
reprogram_320c(ctrl);
return 0;
}
static int discover_edges_real(ramctr_timing *ctrl, int channel, int slotrank,
int *edges)
{
int edge;
int statistics[NUM_LANES][MAX_EDGE_TIMING + 1];
int lane;
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rising =
edge;
ctrl->timings[channel][slotrank].lanes[lane].falling =
edge;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
4 * lane, 0);
read32(DEFAULT_MCHBAR + 0x400 * channel + 4 * lane +
0x4140);
}
wait_428c(channel);
/* DRAM command MRS
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x40411f4);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
(0xc01 | (ctrl->tMOD << 16)));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
wait_428c(channel);
FOR_ALL_LANES {
statistics[lane][edge] =
read32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
lane * 4);
}
}
FOR_ALL_LANES {
struct run rn =
get_longest_zero_run(statistics[lane], MAX_EDGE_TIMING + 1);
edges[lane] = rn.middle;
if (rn.all) {
printk(BIOS_EMERG, "edge discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("eval %d, %d, %d: %02x\n", channel, slotrank,
lane, edges[lane]);
}
return 0;
}
static int discover_edges(ramctr_timing *ctrl)
{
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
int err;
write32(DEFAULT_MCHBAR + 0x3400, 0);
toggle_io_reset();
FOR_ALL_POPULATED_CHANNELS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 4 * lane +
0x400 * channel + 0x4080, 0);
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0, 0);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x400 * channel +
lane * 4 + 0x4140);
}
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
16;
ctrl->timings[channel][slotrank].lanes[lane].rising =
16;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* MR3 enable MPR
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
48;
ctrl->timings[channel][slotrank].lanes[lane].rising =
48;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_428c(channel);
/* DRAM command MRS
* MR3 enable MPR
* write MR3 MPR enable
* in this mode only RD and RDA are allowed
* all reads return a predefined pattern */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x360004);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x4041003);
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24) | 0);
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x1001 | ((ctrl->CAS + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
/* DRAM command MRS
* MR3 disable MPR */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f000);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tMOD << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x360000);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel +
lane * 4,
~read32(DEFAULT_MCHBAR + 0x4040 +
0x400 * channel + lane * 4) & 0xff);
}
fill_pattern0(ctrl, channel, 0, 0xffffffff);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
}
/* FIXME: under some conditions (older chipsets?) vendor BIOS sets both edges to the same value. */
write32(DEFAULT_MCHBAR + 0x4eb0, 0x300);
printram("discover falling edges:\n[%x] = %x\n", 0x4eb0, 0x300);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_real(ctrl, channel, slotrank,
falling_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0x200);
printram("discover rising edges:\n[%x] = %x\n", 0x4eb0, 0x200);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_real(ctrl, channel, slotrank,
rising_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
falling_edges[channel][slotrank][lane];
ctrl->timings[channel][slotrank].lanes[lane].rising =
rising_edges[channel][slotrank][lane];
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
return 0;
}
static int discover_edges_write_real(ramctr_timing *ctrl, int channel,
int slotrank, int *edges)
{
int edge;
u32 raw_statistics[MAX_EDGE_TIMING + 1];
int statistics[MAX_EDGE_TIMING + 1];
const int reg3000b24[] = { 0, 0xc, 0x2c };
int lane, i;
int lower[NUM_LANES];
int upper[NUM_LANES];
int pat;
FOR_ALL_LANES {
lower[lane] = 0;
upper[lane] = MAX_EDGE_TIMING;
}
for (i = 0; i < 3; i++) {
write32(DEFAULT_MCHBAR + 0x3000 + 0x100 * channel,
reg3000b24[i] << 24);
printram("[%x] = 0x%08x\n",
0x3000 + 0x100 * channel, reg3000b24[i] << 24);
for (pat = 0; pat < NUM_PATTERNS; pat++) {
fill_pattern5(ctrl, channel, pat);
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
printram("using pattern %d\n", pat);
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].
rising = edge;
ctrl->timings[channel][slotrank].lanes[lane].
falling = edge;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4340 +
0x400 * channel + 4 * lane, 0);
read32(DEFAULT_MCHBAR + 0x400 * channel +
4 * lane + 0x4140);
}
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
0x4 | (ctrl->tRCD << 16)
| (max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1) <<
10));
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel,
0x240);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
0x1f201);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x8005020 | ((ctrl->tWTR + ctrl->CWL + 8) <<
16));
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel,
0x242);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
0x4005020 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
(slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel,
0x242);
/* DRAM command PRE */
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
0x1f002);
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
0xc01 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
0xc0001);
wait_428c(channel);
FOR_ALL_LANES {
read32(DEFAULT_MCHBAR + 0x4340 +
0x400 * channel + lane * 4);
}
raw_statistics[edge] =
MCHBAR32(0x436c + 0x400 * channel);
}
FOR_ALL_LANES {
struct run rn;
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++)
statistics[edge] =
! !(raw_statistics[edge] & (1 << lane));
rn = get_longest_zero_run(statistics,
MAX_EDGE_TIMING + 1);
printram("edges: %d, %d, %d: 0x%02x-0x%02x-0x%02x, 0x%02x-0x%02x\n",
channel, slotrank, i, rn.start, rn.middle,
rn.end, rn.start + ctrl->edge_offset[i],
rn.end - ctrl->edge_offset[i]);
lower[lane] =
max(rn.start + ctrl->edge_offset[i], lower[lane]);
upper[lane] =
min(rn.end - ctrl->edge_offset[i], upper[lane]);
edges[lane] = (lower[lane] + upper[lane]) / 2;
if (rn.all || (lower[lane] > upper[lane])) {
printk(BIOS_EMERG, "edge write discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
}
}
}
write32(DEFAULT_MCHBAR + 0x3000, 0);
printram("CPA\n");
return 0;
}
static int discover_edges_write(ramctr_timing *ctrl)
{
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
int err;
/* FIXME: under some conditions (older chipsets?) vendor BIOS sets both edges to the same value. */
write32(DEFAULT_MCHBAR + 0x4eb0, 0x300);
printram("discover falling edges write:\n[%x] = %x\n", 0x4eb0, 0x300);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_write_real(ctrl, channel, slotrank,
falling_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0x200);
printram("discover rising edges write:\n[%x] = %x\n", 0x4eb0, 0x200);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = discover_edges_write_real(ctrl, channel, slotrank,
rising_edges[channel][slotrank]);
if (err)
return err;
}
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].falling =
falling_edges[channel][slotrank][lane];
ctrl->timings[channel][slotrank].lanes[lane].rising =
rising_edges[channel][slotrank][lane];
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
0);
}
return 0;
}
static void test_timC_write(ramctr_timing *ctrl, int channel, int slotrank)
{
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
(max((ctrl->tFAW >> 2) + 1, ctrl->tRRD)
<< 10) | (ctrl->tRCD << 16) | 4);
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
(slotrank << 24) | 0x60000);
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f201);
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
0x80011e0 |
((ctrl->tWTR + ctrl->CWL + 8) << 16));
write32(DEFAULT_MCHBAR + 0x4204 +
0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 +
0x400 * channel, 0x242);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 +
0x400 * channel, 0x1f105);
write32(DEFAULT_MCHBAR + 0x4238 +
0x400 * channel,
0x40011e0 | (max(ctrl->tRTP, 8) << 16));
write32(DEFAULT_MCHBAR + 0x4208 +
0x400 * channel, (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 +
0x400 * channel, 0x242);
/* DRAM command PRE */
write32(DEFAULT_MCHBAR + 0x422c +
0x400 * channel, 0x1f002);
write32(DEFAULT_MCHBAR + 0x423c +
0x400 * channel,
0x1001 | (ctrl->tRP << 16));
write32(DEFAULT_MCHBAR + 0x420c +
0x400 * channel,
(slotrank << 24) | 0x60400);
write32(DEFAULT_MCHBAR + 0x421c +
0x400 * channel, 0);
write32(DEFAULT_MCHBAR + 0x4284 +
0x400 * channel, 0xc0001);
wait_428c(channel);
}
static int discover_timC_write(ramctr_timing *ctrl)
{
const u8 rege3c_b24[3] = { 0, 0xf, 0x2f };
int i, pat;
int lower[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int upper[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
lower[channel][slotrank][lane] = 0;
upper[channel][slotrank][lane] = MAX_TIMC;
}
write32(DEFAULT_MCHBAR + 0x4ea8, 1);
printram("discover timC write:\n");
for (i = 0; i < 3; i++)
FOR_ALL_POPULATED_CHANNELS {
write32(DEFAULT_MCHBAR + 0xe3c + (channel * 0x100),
(rege3c_b24[i] << 24)
| (read32(DEFAULT_MCHBAR + 0xe3c + (channel * 0x100))
& ~0x3f000000));
udelay(2);
for (pat = 0; pat < NUM_PATTERNS; pat++) {
FOR_ALL_POPULATED_RANKS {
int timC;
u32 raw_statistics[MAX_TIMC + 1];
int statistics[MAX_TIMC + 1];
/* Make sure rn.start < rn.end */
statistics[MAX_TIMC] = 1;
fill_pattern5(ctrl, channel, pat);
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
for (timC = 0; timC < MAX_TIMC; timC++) {
FOR_ALL_LANES
ctrl->timings[channel][slotrank].lanes[lane].timC = timC;
program_timings(ctrl, channel);
test_timC_write (ctrl, channel, slotrank);
raw_statistics[timC] =
MCHBAR32(0x436c + 0x400 * channel);
}
FOR_ALL_LANES {
struct run rn;
for (timC = 0; timC < MAX_TIMC; timC++)
statistics[timC] =
!!(raw_statistics[timC] &
(1 << lane));
rn = get_longest_zero_run(statistics,
MAX_TIMC + 1);
if (rn.all) {
printk(BIOS_EMERG, "timC write discovery failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("timC: %d, %d, %d: 0x%02x-0x%02x-0x%02x, 0x%02x-0x%02x\n",
channel, slotrank, i, rn.start,
rn.middle, rn.end,
rn.start + ctrl->timC_offset[i],
rn.end - ctrl->timC_offset[i]);
lower[channel][slotrank][lane] =
max(rn.start + ctrl->timC_offset[i],
lower[channel][slotrank][lane]);
upper[channel][slotrank][lane] =
min(rn.end - ctrl->timC_offset[i],
upper[channel][slotrank][lane]);
}
}
}
}
FOR_ALL_CHANNELS {
write32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c,
0 | (read32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c) &
~0x3f000000));
udelay(2);
}
write32(DEFAULT_MCHBAR + 0x4ea8, 0);
printram("CPB\n");
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
printram("timC %d, %d, %d: %x\n", channel,
slotrank, lane,
(lower[channel][slotrank][lane] +
upper[channel][slotrank][lane]) / 2);
ctrl->timings[channel][slotrank].lanes[lane].timC =
(lower[channel][slotrank][lane] +
upper[channel][slotrank][lane]) / 2;
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
return 0;
}
static void normalize_training(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
int mat = 0;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
int delta;
FOR_ALL_LANES mat =
max(ctrl->timings[channel][slotrank].lanes[lane].timA, mat);
delta = (mat >> 6) - ctrl->timings[channel][slotrank].val_4028;
ctrl->timings[channel][slotrank].val_4024 += delta;
ctrl->timings[channel][slotrank].val_4028 += delta;
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
}
static void write_controller_mr(ramctr_timing * ctrl)
{
int channel, slotrank;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
write32(DEFAULT_MCHBAR + 0x0004 + (channel << 8) +
lane_registers[slotrank], make_mr0(ctrl, slotrank));
write32(DEFAULT_MCHBAR + 0x0008 + (channel << 8) +
lane_registers[slotrank],
make_mr1(ctrl, slotrank, channel));
}
}
static int channel_test(ramctr_timing *ctrl)
{
int channel, slotrank, lane;
slotrank = 0;
FOR_ALL_POPULATED_CHANNELS
if (read32(DEFAULT_MCHBAR + 0x42a0 + (channel << 10)) & 0xa000) {
printk(BIOS_EMERG, "Mini channel test failed (1): %d\n",
channel);
return MAKE_ERR;
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0x12345678, 0x98765432);
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
}
for (slotrank = 0; slotrank < 4; slotrank++)
FOR_ALL_CHANNELS
if (ctrl->rankmap[channel] & (1 << slotrank)) {
FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + (0x4f40 + 4 * lane), 0);
write32(DEFAULT_MCHBAR + (0x4d40 + 4 * lane), 0);
}
wait_428c(channel);
/* DRAM command ACT */
write32(DEFAULT_MCHBAR + 0x4220 + (channel << 10), 0x0001f006);
write32(DEFAULT_MCHBAR + 0x4230 + (channel << 10), 0x0028a004);
write32(DEFAULT_MCHBAR + 0x4200 + (channel << 10),
0x00060000 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4210 + (channel << 10), 0x00000244);
/* DRAM command WR */
write32(DEFAULT_MCHBAR + 0x4224 + (channel << 10), 0x0001f201);
write32(DEFAULT_MCHBAR + 0x4234 + (channel << 10), 0x08281064);
write32(DEFAULT_MCHBAR + 0x4204 + (channel << 10),
0x00000000 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4214 + (channel << 10), 0x00000242);
/* DRAM command RD */
write32(DEFAULT_MCHBAR + 0x4228 + (channel << 10), 0x0001f105);
write32(DEFAULT_MCHBAR + 0x4238 + (channel << 10), 0x04281064);
write32(DEFAULT_MCHBAR + 0x4208 + (channel << 10),
0x00000000 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x4218 + (channel << 10), 0x00000242);
/* DRAM command PRE */
write32(DEFAULT_MCHBAR + 0x422c + (channel << 10), 0x0001f002);
write32(DEFAULT_MCHBAR + 0x423c + (channel << 10), 0x00280c01);
write32(DEFAULT_MCHBAR + 0x420c + (channel << 10),
0x00060400 | (slotrank << 24));
write32(DEFAULT_MCHBAR + 0x421c + (channel << 10), 0x00000240);
write32(DEFAULT_MCHBAR + 0x4284 + (channel << 10), 0x000c0001);
wait_428c(channel);
FOR_ALL_LANES
if (read32(DEFAULT_MCHBAR + 0x4340 + (channel << 10) + 4 * lane)) {
printk(BIOS_EMERG, "Mini channel test failed (2): %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
}
return 0;
}
static void set_scrambling_seed(ramctr_timing * ctrl)
{
int channel;
/* FIXME: we hardcode seeds. Do we need to use some PRNG for them?
I don't think so. */
static u32 seeds[NUM_CHANNELS][3] = {
{0x00009a36, 0xbafcfdcf, 0x46d1ab68},
{0x00028bfa, 0x53fe4b49, 0x19ed5483}
};
FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(0x4020 + 0x400 * channel) &= ~0x10000000;
write32(DEFAULT_MCHBAR + 0x4034, seeds[channel][0]);
write32(DEFAULT_MCHBAR + 0x403c, seeds[channel][1]);
write32(DEFAULT_MCHBAR + 0x4038, seeds[channel][2]);
}
}
static void set_4f8c(void)
{
struct cpuid_result cpures;
u32 cpu;
cpures = cpuid(1);
cpu = (cpures.eax);
if (IS_SANDY_CPU(cpu) && (IS_SANDY_CPU_D0(cpu) || IS_SANDY_CPU_D1(cpu))) {
MCHBAR32(0x4f8c) = 0x141D1519;
} else {
MCHBAR32(0x4f8c) = 0x551D1519;
}
}
static void prepare_training(ramctr_timing * ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
// Always drive command bus
MCHBAR32(0x4004 + 0x400 * channel) |= 0x20000000;
}
udelay(1);
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
}
}
static void set_4008c(ramctr_timing * ctrl)
{
int channel, slotrank;
u32 reg;
FOR_ALL_POPULATED_CHANNELS {
u32 b20, b4_8_12;
int min_320c = 10000;
int max_320c = -10000;
FOR_ALL_POPULATED_RANKS {
max_320c = max(ctrl->timings[channel][slotrank].val_320c, max_320c);
min_320c = min(ctrl->timings[channel][slotrank].val_320c, min_320c);
}
if (max_320c - min_320c > 51)
b20 = 0;
else
b20 = ctrl->ref_card_offset[channel];
if (ctrl->reg_320c_range_threshold < max_320c - min_320c)
b4_8_12 = 0x3330;
else
b4_8_12 = 0x2220;
reg = read32(DEFAULT_MCHBAR + 0x400c + (channel << 10));
write32(DEFAULT_MCHBAR + 0x400c + (channel << 10),
(reg & 0xFFF0FFFF)
| (ctrl->ref_card_offset[channel] << 16)
| (ctrl->ref_card_offset[channel] << 18));
write32(DEFAULT_MCHBAR + 0x4008 + (channel << 10),
0x0a000000
| (b20 << 20)
| ((ctrl->ref_card_offset[channel] + 2) << 16)
| b4_8_12);
}
}
static void set_42a0(ramctr_timing * ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
write32(DEFAULT_MCHBAR + (0x42a0 + 0x400 * channel),
0x00001000 | ctrl->rankmap[channel]);
MCHBAR32(0x4004 + 0x400 * channel) &= ~0x20000000; // OK
}
}
static int encode_5d10(int ns)
{
return (ns + 499) / 500;
}
/* FIXME: values in this function should be hardware revision-dependent. */
static void final_registers(ramctr_timing * ctrl)
{
int channel;
int t1_cycles = 0, t1_ns = 0, t2_ns;
int t3_ns;
u32 r32;
write32(DEFAULT_MCHBAR + 0x4cd4, 0x00000046);
write32(DEFAULT_MCHBAR + 0x400c, (read32(DEFAULT_MCHBAR + 0x400c) & 0xFFFFCFFF) | 0x1000); // OK
write32(DEFAULT_MCHBAR + 0x440c, (read32(DEFAULT_MCHBAR + 0x440c) & 0xFFFFCFFF) | 0x1000); // OK
write32(DEFAULT_MCHBAR + 0x4cb0, 0x00000740);
write32(DEFAULT_MCHBAR + 0x4380, 0x00000aaa); // OK
write32(DEFAULT_MCHBAR + 0x4780, 0x00000aaa); // OK
write32(DEFAULT_MCHBAR + 0x4f88, 0x5f7003ff); // OK
write32(DEFAULT_MCHBAR + 0x5064, 0x00073000 | ctrl->reg_5064b0); // OK
FOR_ALL_CHANNELS {
switch (ctrl->rankmap[channel]) {
/* Unpopulated channel. */
case 0:
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0);
break;
/* Only single-ranked dimms. */
case 1:
case 4:
case 5:
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0x373131);
break;
/* Dual-ranked dimms present. */
default:
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0x9b6ea1);
break;
}
}
write32 (DEFAULT_MCHBAR + 0x5880, 0xca9171e5);
write32 (DEFAULT_MCHBAR + 0x5888,
(read32 (DEFAULT_MCHBAR + 0x5888) & ~0xffffff) | 0xe4d5d0);
write32 (DEFAULT_MCHBAR + 0x58a8, read32 (DEFAULT_MCHBAR + 0x58a8) & ~0x1f);
write32 (DEFAULT_MCHBAR + 0x4294,
(read32 (DEFAULT_MCHBAR + 0x4294) & ~0x30000)
| (1 << 16));
write32 (DEFAULT_MCHBAR + 0x4694,
(read32 (DEFAULT_MCHBAR + 0x4694) & ~0x30000)
| (1 << 16));
MCHBAR32(0x5030) |= 1; // OK
MCHBAR32(0x5030) |= 0x80; // OK
MCHBAR32(0x5f18) = 0xfa; // OK
/* Find a populated channel. */
FOR_ALL_POPULATED_CHANNELS
break;
t1_cycles = ((read32(DEFAULT_MCHBAR + 0x4290 + channel * 0x400) >> 8) & 0xff);
r32 = read32(DEFAULT_MCHBAR + 0x5064);
if (r32 & 0x20000)
t1_cycles += (r32 & 0xfff);
t1_cycles += (read32(DEFAULT_MCHBAR + channel * 0x400 + 0x42a4) & 0xfff);
t1_ns = t1_cycles * ctrl->tCK / 256 + 544;
if (!(r32 & 0x20000))
t1_ns += 500;
t2_ns = 10 * ((read32(DEFAULT_MCHBAR + 0x5f10) >> 8) & 0xfff);
if ( read32(DEFAULT_MCHBAR + 0x5f00) & 8 )
{
t3_ns = 10 * ((read32(DEFAULT_MCHBAR + 0x5f20) >> 8) & 0xfff);
t3_ns += 10 * (read32(DEFAULT_MCHBAR + 0x5f18) & 0xff);
}
else
{
t3_ns = 500;
}
printk(BIOS_DEBUG, "t123: %d, %d, %d\n",
t1_ns, t2_ns, t3_ns);
write32 (DEFAULT_MCHBAR + 0x5d10,
((encode_5d10(t1_ns) + encode_5d10(t2_ns)) << 16)
| (encode_5d10(t1_ns) << 8)
| ((encode_5d10(t3_ns) + encode_5d10(t2_ns) + encode_5d10(t1_ns)) << 24)
| (read32(DEFAULT_MCHBAR + 0x5d10) & 0xC0C0C0C0)
| 0xc);
}
static void save_timings(ramctr_timing *ctrl)
{
/* Save the MRC S3 restore data to cbmem */
store_current_mrc_cache(ctrl, sizeof(*ctrl));
}
static void restore_timings(ramctr_timing * ctrl)
{
int channel, slotrank, lane;
FOR_ALL_POPULATED_CHANNELS
MCHBAR32(0x4004 + 0x400 * channel) =
ctrl->tRRD
| (ctrl->tRTP << 4)
| (ctrl->tCKE << 8)
| (ctrl->tWTR << 12)
| (ctrl->tFAW << 16)
| (ctrl->tWR << 24)
| (ctrl->cmd_stretch[channel] << 30);
udelay(1);
FOR_ALL_POPULATED_CHANNELS {
wait_428c(channel);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel
+ 4 * lane, 0);
}
FOR_ALL_POPULATED_CHANNELS
write32(DEFAULT_MCHBAR + 0x4008 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4008 +
0x400 * channel) | 0x8000000);
FOR_ALL_POPULATED_CHANNELS {
udelay (1);
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
read32(DEFAULT_MCHBAR + 0x4020 +
0x400 * channel) | 0x200000);
}
printram("CPE\n");
write32(DEFAULT_MCHBAR + 0x3400, 0);
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
printram("CP5b\n");
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
u32 reg, addr;
while (!(MCHBAR32(0x5084) & 0x10000));
do {
reg = MCHBAR32(0x428c);
} while ((reg & 0x14) == 0);
// Set state of memory controller
MCHBAR32(0x5030) = 0x116;
MCHBAR32(0x4ea0) = 0;
// Wait 500us
udelay(500);
FOR_ALL_CHANNELS {
// Set valid rank CKE
reg = 0;
reg = (reg & ~0xf) | ctrl->rankmap[channel];
addr = 0x400 * channel + 0x42a0;
MCHBAR32(addr) = reg;
// Wait 10ns for ranks to settle
//udelay(0.01);
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
MCHBAR32(addr) = reg;
// Write reset using a NOP
write_reset(ctrl);
}
/* mrs commands. */
dram_mrscommands(ctrl);
printram("CP5c\n");
write32(DEFAULT_MCHBAR + 0x3000, 0);
FOR_ALL_CHANNELS {
write32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c,
0 | (read32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c) &
~0x3f000000));
udelay(2);
}
write32(DEFAULT_MCHBAR + 0x4ea8, 0);
}
static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(0x5034) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(0x4e80) = 0x5500;
/* Set scheduler parameters */
MCHBAR32(0x4c20) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(0x5030) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}
static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
{
int me_uma_size;
int cbmem_was_inited;
ramctr_timing ctrl;
int fast_boot;
spd_raw_data spds[4];
struct mrc_data_container *mrc_cache;
ramctr_timing *ctrl_cached;
int err;
MCHBAR32(0x5f00) |= 1;
report_platform_info();
/* Wait for ME to be ready */
intel_early_me_init();
me_uma_size = intel_early_me_uma_size();
printk(BIOS_DEBUG, "Starting native Platform init\n");
u32 reg_5d10;
wait_txt_clear();
wrmsr(0x000002e6, (msr_t) { .lo = 0, .hi = 0 });
reg_5d10 = read32(DEFAULT_MCHBAR + 0x5d10); // !!! = 0x00000000
if ((pcie_read_config16(SOUTHBRIDGE, 0xa2) & 0xa0) == 0x20 /* 0x0004 */
&& reg_5d10 && !s3resume) {
write32(DEFAULT_MCHBAR + 0x5d10, 0);
/* Need reset. */
outb(0x6, 0xcf9);
halt();
}
memset(&ctrl, 0, sizeof(ctrl));
early_pch_init_native();
early_thermal_init();
/* try to find timings in MRC cache */
mrc_cache = find_current_mrc_cache();
if (!mrc_cache || (mrc_cache->mrc_data_size < sizeof(ctrl))) {
if (s3resume) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
ctrl_cached = NULL;
} else {
ctrl_cached = (ramctr_timing *)mrc_cache->mrc_data;
}
/* verify MRC cache for fast boot */
if (!s3resume && ctrl_cached) {
/* Load SPD unique information data. */
memset(spds, 0, sizeof(spds));
mainboard_get_spd(spds, 1);
/* check SPD CRC16 to make sure the DIMMs haven't been replaced */
fast_boot = verify_crc16_spds_ddr3(spds, ctrl_cached);
if (!fast_boot)
printk(BIOS_DEBUG, "Stored timings CRC16 mismatch.\n");
} else {
fast_boot = s3resume;
}
if (fast_boot) {
printk(BIOS_DEBUG, "Trying stored timings.\n");
memcpy(&ctrl, ctrl_cached, sizeof(ctrl));
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
if (err) {
if (s3resume) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
/* no need to erase bad mrc cache here, it gets overwritten on
* successful boot. */
printk(BIOS_ERR, "Stored timings are invalid !\n");
fast_boot = 0;
}
}
if (!fast_boot) {
ctrl.mobile = mobile;
ctrl.tCK = min_tck;
/* Get DDR3 SPD data */
memset(spds, 0, sizeof(spds));
mainboard_get_spd(spds, 0);
dram_find_spds_ddr3(spds, &ctrl);
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
}
if (err) {
/* fallback: disable failing channel */
printk(BIOS_ERR, "RAM training failed, trying fallback.\n");
printram("Disable failing channel.\n");
/* Reset DDR3 frequency */
dram_find_spds_ddr3(spds, &ctrl);
/* disable failing channel */
disable_channel(&ctrl, GET_ERR_CHANNEL(err));
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
}
if (err)
die("raminit failed");
/* FIXME: should be hardware revision-dependent. */
write32(DEFAULT_MCHBAR + 0x5024, 0x00a030ce);
set_scrambling_seed(&ctrl);
set_42a0(&ctrl);
final_registers(&ctrl);
/* Zone config */
dram_zones(&ctrl, 0);
if (!fast_boot)
quick_ram_check();
intel_early_me_status();
intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
intel_early_me_status();
report_memory_config();
cbmem_was_inited = !cbmem_recovery(s3resume);
if (!fast_boot)
save_timings(&ctrl);
if (s3resume && !cbmem_was_inited) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
fill_smbios17(&ctrl);
}
#define HOST_BRIDGE PCI_DEVFN(0, 0)
#define DEFAULT_TCK TCK_800MHZ
static unsigned int get_mem_min_tck(void)
{
u32 reg32;
u8 rev;
const struct device *dev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
dev = dev_find_slot(0, HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->max_mem_clock_mhz == 0) {
rev = pci_read_config8(PCI_DEV(0, 0, 0), PCI_DEVICE_ID);
if ((rev & BASE_REV_MASK) == BASE_REV_SNB) {
/* read Capabilities A Register DMFC bits */
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_A);
reg32 &= 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
/* reserved: */
default:
break;
}
} else {
/* read Capabilities B Register DMFC bits */
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_B);
reg32 = (reg32 >> 4) & 0x7;
switch (reg32) {
case 7: return TCK_533MHZ;
case 6: return TCK_666MHZ;
case 5: return TCK_800MHZ;
case 4: return TCK_933MHZ;
case 3: return TCK_1066MHZ;
case 2: return TCK_1200MHZ;
case 1: return TCK_1333MHZ;
/* reserved: */
default:
break;
}
}
return DEFAULT_TCK;
} else {
if (cfg->max_mem_clock_mhz >= 1066)
return TCK_1066MHZ;
else if (cfg->max_mem_clock_mhz >= 933)
return TCK_933MHZ;
else if (cfg->max_mem_clock_mhz >= 800)
return TCK_800MHZ;
else if (cfg->max_mem_clock_mhz >= 666)
return TCK_666MHZ;
else if (cfg->max_mem_clock_mhz >= 533)
return TCK_533MHZ;
else
return TCK_400MHZ;
}
}
#define DEFAULT_PCI_MMIO_SIZE 2048
static unsigned int get_mmio_size(void)
{
const struct device *dev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
dev = dev_find_slot(0, HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->pci_mmio_size == 0)
return DEFAULT_PCI_MMIO_SIZE;
else
return cfg->pci_mmio_size;
}
void perform_raminit(int s3resume)
{
post_code(0x3a);
timestamp_add_now(TS_BEFORE_INITRAM);
init_dram_ddr3(1, get_mem_min_tck(), s3resume);
}