blob: be72023dac8ca4b3cac4c439feb0e621961ec004 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <commonlib/bsd/mem_chip_info.h>
#include <console/console.h>
#include <soc/dramc_common.h>
#include <mrc_cache.h>
#include <soc/dramc_param.h>
#include <soc/emi.h>
#include <soc/mmu_operations.h>
#include <symbols.h>
#include <timer.h>
/* This must be defined in chromeos.fmd in same name and size. */
#define CAL_REGION_RW_MRC_CACHE "RW_MRC_CACHE"
#define CAL_REGION_RW_MRC_CACHE_SIZE 0x2000
_Static_assert(sizeof(struct dramc_param) <= CAL_REGION_RW_MRC_CACHE_SIZE,
"sizeof(struct dramc_param) exceeds " CAL_REGION_RW_MRC_CACHE);
const char *get_dram_geometry_str(u32 ddr_geometry);
const char *get_dram_type_str(u32 ddr_type);
static const struct ddr_base_info *curr_ddr_info;
static int mt_mem_test(const struct dramc_data *dparam)
{
if (CONFIG(MEMORY_TEST)) {
u8 *addr = _dram;
const struct ddr_base_info *ddr_info = &dparam->ddr_info;
for (u8 rank = RANK_0; rank < ddr_info->support_ranks; rank++) {
int result = complex_mem_test(addr, 0x2000);
if (result != 0) {
printk(BIOS_ERR,
"[MEM] complex R/W mem test failed: %d\n", result);
return -1;
}
printk(BIOS_DEBUG, "[MEM] rank %u complex R/W mem test passed\n", rank);
addr += ddr_info->rank_size[rank];
}
}
return 0;
}
const char *get_dram_geometry_str(u32 ddr_geometry)
{
const char *s;
switch (ddr_geometry) {
case DDR_TYPE_2CH_2RK_4GB_2_2:
s = "2CH_2RK_4GB_2_2";
break;
case DDR_TYPE_2CH_2RK_6GB_3_3:
s = "2CH_2RK_6GB_3_3";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4:
s = "2CH_2RK_8GB_4_4";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4_BYTE:
s = "2CH_2RK_8GB_4_4_BYTE";
break;
case DDR_TYPE_2CH_1RK_4GB_4_0:
s = "2CH_1RK_4GB_4_0";
break;
case DDR_TYPE_2CH_2RK_6GB_2_4:
s = "2CH_2RK_6GB_2_4";
break;
default:
s = "";
break;
}
return s;
}
const char *get_dram_type_str(u32 ddr_type)
{
const char *s;
switch (ddr_type) {
case DDR_TYPE_DISCRETE:
s = "DSC";
break;
case DDR_TYPE_EMCP:
s = "EMCP";
break;
default:
s = "";
break;
}
return s;
}
size_t mtk_dram_size(void)
{
size_t size = 0;
if (!curr_ddr_info)
return 0;
for (unsigned int i = 0; i < RANK_MAX; ++i)
size += curr_ddr_info->mrr_info.mr8_density[i];
return size;
}
static void fill_dram_info(struct mem_chip_info *mc, const struct ddr_base_info *ddr)
{
unsigned int c, r;
mc->num_entries = CHANNEL_MAX * ddr->mrr_info.rank_nums;
mc->struct_version = MEM_CHIP_STRUCT_VERSION;
struct mem_chip_entry *entry = mc->entries;
for (c = 0; c < CHANNEL_MAX; c++) {
for (r = 0; r < ddr->mrr_info.rank_nums; r++) {
entry->channel = c;
entry->rank = r;
entry->type = MEM_CHIP_LPDDR4X;
entry->channel_io_width = DQ_DATA_WIDTH_LP4;
entry->density_mbits = ddr->mrr_info.mr8_density[r] / CHANNEL_MAX /
(MiB / 8);
entry->io_width = DQ_DATA_WIDTH_LP4;
entry->manufacturer_id = ddr->mrr_info.mr5_vendor_id;
entry->revision_id[0] = ddr->mrr_info.mr6_revision_id;
entry->revision_id[1] = ddr->mrr_info.mr7_revision_id;
entry++;
}
}
}
static void add_mem_chip_info(int unused)
{
struct mem_chip_info *mc;
size_t size;
if (!CONFIG(USE_CBMEM_DRAM_INFO)) {
printk(BIOS_DEBUG,
"DRAM-K: CBMEM DRAM info is unsupported (USE_CBMEM_DRAM_INFO)\n");
return;
}
size = mem_chip_info_size(CHANNEL_MAX * curr_ddr_info->mrr_info.rank_nums);
mc = cbmem_add(CBMEM_ID_MEM_CHIP_INFO, size);
assert(mc);
memset(mc, 0, size);
fill_dram_info(mc, curr_ddr_info);
}
CBMEM_CREATION_HOOK(add_mem_chip_info);
static int run_dram_blob(struct dramc_param *dparam)
{
/* Load and run the provided blob for full-calibration if available */
struct prog dram = PROG_INIT(PROG_REFCODE, CONFIG_CBFS_PREFIX "/dram");
dump_param_header(dparam);
if (cbfs_prog_stage_load(&dram)) {
printk(BIOS_ERR, "DRAM-K: CBFS load program failed\n");
return -2;
}
dparam->do_putc = do_putchar;
prog_set_entry(&dram, prog_entry(&dram), dparam);
prog_run(&dram);
if (dparam->header.status != DRAMC_SUCCESS) {
printk(BIOS_ERR, "DRAM-K: calibration failed: status = %d\n",
dparam->header.status);
return -3;
}
if (!(dparam->header.config & DRAMC_CONFIG_FAST_K)
&& !(dparam->header.flags & DRAMC_FLAG_HAS_SAVED_DATA)) {
printk(BIOS_ERR,
"DRAM-K: Full calibration executed without saving parameters. "
"Please ensure the blob is built properly.\n");
return -4;
}
return 0;
}
static int dram_run_fast_calibration(struct dramc_param *dparam)
{
const u16 config = CONFIG(MEDIATEK_DRAM_DVFS) ? DRAMC_ENABLE_DVFS : DRAMC_DISABLE_DVFS;
if (dparam->dramc_datas.ddr_info.config_dvfs != config) {
printk(BIOS_WARNING,
"DRAM-K: Incompatible config for calibration data from flash "
"(expected: %#x, saved: %#x)\n",
config, dparam->dramc_datas.ddr_info.config_dvfs);
return -1;
}
printk(BIOS_INFO, "DRAM-K: DRAM calibration data valid pass\n");
if (CONFIG(MEDIATEK_DRAM_SCRAMBLE))
dparam->header.config |= DRAMC_CONFIG_SCRAMBLE;
if (CONFIG(MEDIATEK_DRAM_BLOB_FAST_INIT)) {
printk(BIOS_INFO, "DRAM-K: Run fast calibration run in blob mode\n");
/*
* The loaded config should not contain FAST_K (done in full calibration),
* so we have to set that now to indicate the blob taking the config instead
* of generating a new config.
*/
dparam->header.config |= DRAMC_CONFIG_FAST_K;
if (run_dram_blob(dparam) < 0)
return -3;
} else {
init_dram_by_params(dparam);
}
if (mt_mem_test(&dparam->dramc_datas) < 0)
return -4;
return 0;
}
static int dram_run_full_calibration(struct dramc_param *dparam)
{
initialize_dramc_param(dparam);
return run_dram_blob(dparam);
}
static void mem_init_set_default_config(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
u32 type, geometry;
memset(dparam, 0, sizeof(*dparam));
type = dram_info->ddr_type;
geometry = dram_info->ddr_geometry;
dparam->dramc_datas.ddr_info.sdram.ddr_type = type;
if (CONFIG(MEDIATEK_DRAM_DVFS))
dparam->dramc_datas.ddr_info.config_dvfs = DRAMC_ENABLE_DVFS;
if (CONFIG(MEDIATEK_DRAM_SCRAMBLE))
dparam->header.config |= DRAMC_CONFIG_SCRAMBLE;
dparam->dramc_datas.ddr_info.sdram.ddr_geometry = geometry;
printk(BIOS_INFO, "DRAM-K: ddr_type: %s, config_dvfs: %d, ddr_geometry: %s\n",
get_dram_type_str(type),
dparam->dramc_datas.ddr_info.config_dvfs,
get_dram_geometry_str(geometry));
}
static void mt_mem_init_run(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
const ssize_t mrc_cache_size = sizeof(*dparam);
ssize_t data_size;
struct stopwatch sw;
int ret;
/* Load calibration params from flash and run fast calibration */
data_size = mrc_cache_load_current(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
if (data_size == mrc_cache_size) {
printk(BIOS_INFO, "DRAM-K: Running fast calibration\n");
stopwatch_init(&sw);
ret = dram_run_fast_calibration(dparam);
if (ret != 0) {
printk(BIOS_ERR, "DRAM-K: Failed to run fast calibration "
"in %lld msecs, error: %d\n",
stopwatch_duration_msecs(&sw), ret);
/* Erase flash data after fast calibration failed */
memset(dparam, 0xa5, mrc_cache_size);
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_INFO, "DRAM-K: Fast calibration passed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
return;
}
} else {
printk(BIOS_WARNING, "DRAM-K: Invalid data in flash (size: %#zx, expected: %#zx)\n",
data_size, mrc_cache_size);
}
/* Run full calibration */
printk(BIOS_INFO, "DRAM-K: Running full calibration\n");
mem_init_set_default_config(dparam, dram_info);
stopwatch_init(&sw);
int err = dram_run_full_calibration(dparam);
if (err == 0) {
printk(BIOS_INFO, "DRAM-K: Full calibration passed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_ERR, "DRAM-K: Full calibration failed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
}
}
void mt_mem_init(struct dramc_param *dparam)
{
const struct sdram_info *sdram_param = get_sdram_config();
mt_mem_init_run(dparam, sdram_param);
}
void mtk_dram_init(void)
{
/* dramc_param is too large to fit in stack. */
static struct dramc_param dramc_parameter;
mt_mem_init(&dramc_parameter);
curr_ddr_info = &dramc_parameter.dramc_datas.ddr_info;
mtk_mmu_after_dram();
}