blob: 0ec6ea92cdfc65c2f0583e7bc3795773e46e7f97 [file] [log] [blame]
/* Taken from depthcharge: src/base/device_tree.c */
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <assert.h>
#include <commonlib/device_tree.h>
#include <ctype.h>
#include <endian.h>
#include <stdbool.h>
#include <stdint.h>
#ifdef __COREBOOT__
#include <console/console.h>
#else
#include <stdio.h>
#define printk(level, ...) printf(__VA_ARGS__)
#endif
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <limits.h>
#define FDT_PATH_MAX_DEPTH 10 // should be a good enough upper bound
#define FDT_PATH_MAX_LEN 128 // should be a good enough upper bound
#define FDT_MAX_MEMORY_NODES 4 // should be a good enough upper bound
#define FDT_MAX_MEMORY_REGIONS 16 // should be a good enough upper bound
/*
* libpayload's malloc() has a linear allocation complexity, which means that it
* degrades massively if we make a few thousand small allocations. Preventing
* that problem with a custom scratchpad is well-worth some increase in BSS
* size (64 * 2000 + 40 * 10000 = ~1/2 MB).
*/
/* Try to give these a healthy margin above what the average kernel DT needs. */
#define LP_ALLOC_NODE_SCRATCH_COUNT 2000
#define LP_ALLOC_PROP_SCRATCH_COUNT 10000
static struct device_tree_node *alloc_node(void)
{
#ifndef __COREBOOT__
static struct device_tree_node scratch[LP_ALLOC_NODE_SCRATCH_COUNT];
static int counter = 0;
if (counter < ARRAY_SIZE(scratch))
return &scratch[counter++];
#endif
return xzalloc(sizeof(struct device_tree_node));
}
static struct device_tree_property *alloc_prop(void)
{
#ifndef __COREBOOT__
static struct device_tree_property scratch[LP_ALLOC_PROP_SCRATCH_COUNT];
static int counter = 0;
if (counter < ARRAY_SIZE(scratch))
return &scratch[counter++];
#endif
return xzalloc(sizeof(struct device_tree_property));
}
/*
* Functions for picking apart flattened trees.
*/
static int fdt_skip_nops(const void *blob, uint32_t offset)
{
uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
int index = 0;
while (be32toh(ptr[index]) == FDT_TOKEN_NOP)
index++;
return index * sizeof(uint32_t);
}
int fdt_next_property(const void *blob, uint32_t offset,
struct fdt_property *prop)
{
struct fdt_header *header = (struct fdt_header *)blob;
uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
// skip NOP tokens
offset += fdt_skip_nops(blob, offset);
int index = 0;
if (be32toh(ptr[index++]) != FDT_TOKEN_PROPERTY)
return 0;
uint32_t size = be32toh(ptr[index++]);
uint32_t name_offset = be32toh(ptr[index++]);
name_offset += be32toh(header->strings_offset);
if (prop) {
prop->name = (char *)((uint8_t *)blob + name_offset);
prop->data = &ptr[index];
prop->size = size;
}
index += DIV_ROUND_UP(size, sizeof(uint32_t));
return index * sizeof(uint32_t);
}
/*
* fdt_next_node_name reads a node name
*
* @params blob address of FDT
* @params offset offset to the node to read the name from
* @params name parameter to hold the name that has been read or NULL
*
* @returns Either 0 on error or offset to the properties that come after the node name
*/
int fdt_next_node_name(const void *blob, uint32_t offset, const char **name)
{
// skip NOP tokens
offset += fdt_skip_nops(blob, offset);
char *ptr = ((char *)blob) + offset;
if (be32dec(ptr) != FDT_TOKEN_BEGIN_NODE)
return 0;
ptr += 4;
if (name)
*name = ptr;
return ALIGN_UP(strlen(ptr) + 1, 4) + 4;
}
/*
* A utility function to skip past nodes in flattened trees.
*/
int fdt_skip_node(const void *blob, uint32_t start_offset)
{
uint32_t offset = start_offset;
const char *name;
int size = fdt_next_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
while ((size = fdt_next_property(blob, offset, NULL)))
offset += size;
while ((size = fdt_skip_node(blob, offset)))
offset += size;
// skip NOP tokens
offset += fdt_skip_nops(blob, offset);
return offset - start_offset + sizeof(uint32_t);
}
/*
* fdt_read_prop reads a property inside a node
*
* @params blob address of FDT
* @params node_offset offset to the node to read the property from
* @params prop_name name of the property to read
* @params fdt_prop property is saved inside this parameter
*
* @returns Either 0 if no property has been found or an offset that points to the location
* of the property
*/
u32 fdt_read_prop(const void *blob, u32 node_offset, const char *prop_name,
struct fdt_property *fdt_prop)
{
u32 offset = node_offset;
offset += fdt_next_node_name(blob, offset, NULL); // skip node name
size_t size;
while ((size = fdt_next_property(blob, offset, fdt_prop))) {
if (strcmp(fdt_prop->name, prop_name) == 0)
return offset;
offset += size;
}
return 0; // property not found
}
/*
* fdt_read_reg_prop reads the reg property inside a node
*
* @params blob address of FDT
* @params node_offset offset to the node to read the reg property from
* @params addr_cells number of cells used for one address
* @params size_cells number of cells used for one size
* @params regions all regions that are read inside the reg property are saved inside
* this array
* @params regions_count maximum number of entries that can be saved inside the regions array.
*
* Returns: Either 0 on error or returns the number of regions put into the regions array.
*/
u32 fdt_read_reg_prop(const void *blob, u32 node_offset, u32 addr_cells, u32 size_cells,
struct device_tree_region regions[], size_t regions_count)
{
struct fdt_property prop;
u32 offset = fdt_read_prop(blob, node_offset, "reg", &prop);
if (!offset) {
printk(BIOS_DEBUG, "no reg property found in node_offset: %x\n", node_offset);
return 0;
}
// we found the reg property, now need to parse all regions in 'reg'
size_t count = prop.size / (4 * addr_cells + 4 * size_cells);
if (count > regions_count) {
printk(BIOS_ERR, "reg property at node_offset: %x has more entries (%zd) than regions array can hold (%zd)\n", node_offset, count, regions_count);
count = regions_count;
}
if (addr_cells > 2 || size_cells > 2) {
printk(BIOS_ERR, "addr_cells (%d) or size_cells (%d) bigger than 2\n",
addr_cells, size_cells);
return 0;
}
uint32_t *ptr = prop.data;
for (int i = 0; i < count; i++) {
if (addr_cells == 1)
regions[i].addr = be32dec(ptr);
else if (addr_cells == 2)
regions[i].addr = be64dec(ptr);
ptr += addr_cells;
if (size_cells == 1)
regions[i].size = be32dec(ptr);
else if (size_cells == 2)
regions[i].size = be64dec(ptr);
ptr += size_cells;
}
return count; // return the number of regions found in the reg property
}
static u32 fdt_read_cell_props(const void *blob, u32 node_offset, u32 *addrcp, u32 *sizecp)
{
struct fdt_property prop;
u32 offset = node_offset;
size_t size;
while ((size = fdt_next_property(blob, offset, &prop))) {
if (addrcp && !strcmp(prop.name, "#address-cells"))
*addrcp = be32dec(prop.data);
if (sizecp && !strcmp(prop.name, "#size-cells"))
*sizecp = be32dec(prop.data);
offset += size;
}
return offset;
}
/*
* fdt_find_node searches for a node relative to another node
*
* @params blob address of FDT
*
* @params parent_node_offset offset to node from which to traverse the tree
*
* @params path null terminated array of node names specifying a
* relative path (e.g: { "cpus", "cpu0", NULL })
*
* @params addrcp/sizecp If any address-cells and size-cells properties are found that are
* part of the parent node of the node we are looking, addrcp and sizecp
* are set to these respectively.
*
* @returns: Either 0 if no node has been found or the offset to the node found
*/
static u32 fdt_find_node(const void *blob, u32 parent_node_offset, char **path,
u32 *addrcp, u32 *sizecp)
{
if (*path == NULL)
return parent_node_offset; // node found
size_t size = fdt_next_node_name(blob, parent_node_offset, NULL); // skip node name
/*
* get address-cells and size-cells properties while skipping the others.
* According to spec address-cells and size-cells are not inherited, but we
* intentionally follow the Linux implementation here and treat them as inheritable.
*/
u32 node_offset = fdt_read_cell_props(blob, parent_node_offset + size, addrcp, sizecp);
const char *node_name;
// walk all children nodes
while ((size = fdt_next_node_name(blob, node_offset, &node_name))) {
if (!strcmp(*path, node_name)) {
// traverse one level deeper into the path
return fdt_find_node(blob, node_offset, path + 1, addrcp, sizecp);
}
// node is not the correct one. skip current node
node_offset += fdt_skip_node(blob, node_offset);
}
// we have searched everything and could not find a fitting node
return 0;
}
/*
* fdt_find_node_by_path finds a node behind a given node path
*
* @params blob address of FDT
* @params path absolute path to the node that should be searched for
*
* @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
* value found in the node of the node specified by node_offset. Either
* may be NULL to ignore. If no #address-cells and #size-cells is found
* default values of #address-cells=2 and #size-cells=1 are returned.
*
* @returns Either 0 on error or the offset to the node found behind the path
*/
u32 fdt_find_node_by_path(const void *blob, const char *path, u32 *addrcp, u32 *sizecp)
{
// sanity check
if (path[0] != '/') {
printk(BIOS_ERR, "devicetree path must start with a /\n");
return 0;
}
if (!blob) {
printk(BIOS_ERR, "devicetree blob is NULL\n");
return 0;
}
if (addrcp)
*addrcp = 2;
if (sizecp)
*sizecp = 1;
struct fdt_header *fdt_hdr = (struct fdt_header *)blob;
/*
* split path into separate nodes
* e.g: "/cpus/cpu0" -> { "cpus", "cpu0" }
*/
char *path_array[FDT_PATH_MAX_DEPTH];
size_t path_size = strlen(path);
assert(path_size < FDT_PATH_MAX_LEN);
char path_copy[FDT_PATH_MAX_LEN];
memcpy(path_copy, path, path_size + 1);
char *cur = path_copy;
int i;
for (i = 0; i < FDT_PATH_MAX_DEPTH; i++) {
path_array[i] = strtok_r(NULL, "/", &cur);
if (!path_array[i])
break;
}
assert(i < FDT_PATH_MAX_DEPTH);
return fdt_find_node(blob, be32toh(fdt_hdr->structure_offset), path_array, addrcp, sizecp);
}
/*
* fdt_find_subnodes_by_prefix finds a node with a given prefix relative to a parent node
*
* @params blob The FDT to search.
*
* @params node_offset offset to the node of which the children should be searched
*
* @params prefix A string to search for a node with a given prefix. This can for example
* be 'cpu' to look for all nodes matching this prefix. Only children of
* node_offset are searched. Therefore in order to search all nodes matching
* the 'cpu' prefix, node_offset should probably point to the 'cpus' node.
* An empty prefix ("") searches for all children nodes of node_offset.
*
* @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
* value found in the node of the node specified by node_offset. Either
* may be NULL to ignore. If no #address-cells and #size-cells is found
* addrcp and sizecp are left untouched.
*
* @params results Array of offsets pointing to each node matching the given prefix.
* @params results_len Number of entries allocated for the 'results' array
*
* @returns offset to last node found behind path or 0 if no node has been found
*/
size_t fdt_find_subnodes_by_prefix(const void *blob, u32 node_offset, const char *prefix,
u32 *addrcp, u32 *sizecp, u32 *results, size_t results_len)
{
// sanity checks
if (!blob || !results || !prefix) {
printk(BIOS_ERR, "%s: input parameter cannot be null/\n", __func__);
return 0;
}
u32 offset = node_offset;
// we don't care about the name of the current node
u32 size = fdt_next_node_name(blob, offset, NULL);
if (!size) {
printk(BIOS_ERR, "%s: node_offset: %x does not point to a node\n",
__func__, node_offset);
return 0;
}
offset += size;
/*
* update addrcp and sizecp if the node contains an address-cells and size-cells
* property. Otherwise use addrcp and sizecp provided by caller.
*/
offset = fdt_read_cell_props(blob, offset, addrcp, sizecp);
size_t count_results = 0;
int prefix_len = strlen(prefix);
const char *node_name;
// walk all children nodes of offset
while ((size = fdt_next_node_name(blob, offset, &node_name))) {
if (count_results >= results_len) {
printk(BIOS_WARNING,
"%s: results_len (%zd) smaller than count_results (%zd)\n",
__func__, results_len, count_results);
break;
}
if (!strncmp(prefix, node_name, prefix_len)) {
// we found a node that matches the prefix
results[count_results++] = offset;
}
// node does not match the prefix. skip current node
offset += fdt_skip_node(blob, offset);
}
// return last occurrence
return count_results;
}
static const char *fdt_read_alias_prop(const void *blob, const char *alias_name)
{
u32 node_offset = fdt_find_node_by_path(blob, "/aliases", NULL, NULL);
if (!node_offset) {
printk(BIOS_DEBUG, "no /aliases node found\n");
return NULL;
}
struct fdt_property alias_prop;
if (!fdt_read_prop(blob, node_offset, alias_name, &alias_prop)) {
printk(BIOS_DEBUG, "property %s in /aliases node not found\n", alias_name);
return NULL;
}
return (const char *)alias_prop.data;
}
/*
* Find a node in the tree from a string device tree path.
*
* @params blob Address to the FDT
* @params alias_name node name alias that should be searched for.
* @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
* value found in the node of the node specified by node_offset. Either
* may be NULL to ignore. If no #address-cells and #size-cells is found
* default values of #address-cells=2 and #size-cells=1 are returned.
*
* @returns offset to last node found behind path or 0 if no node has been found
*/
u32 fdt_find_node_by_alias(const void *blob, const char *alias_name, u32 *addrcp, u32 *sizecp)
{
const char *node_name = fdt_read_alias_prop(blob, alias_name);
if (!node_name) {
printk(BIOS_DEBUG, "alias %s not found\n", alias_name);
return 0;
}
u32 node_offset = fdt_find_node_by_path(blob, node_name, addrcp, sizecp);
if (!node_offset) {
// This should not happen (invalid devicetree)
printk(BIOS_WARNING,
"Could not find node '%s', which alias was referring to '%s'\n",
node_name, alias_name);
return 0;
}
return node_offset;
}
/*
* Functions for printing flattened trees.
*/
static void print_indent(int depth)
{
printk(BIOS_DEBUG, "%*s", depth * 8, "");
}
static void print_property(const struct fdt_property *prop, int depth)
{
int is_string = prop->size > 0 &&
((char *)prop->data)[prop->size - 1] == '\0';
if (is_string) {
for (int i = 0; i < prop->size - 1; i++) {
if (!isprint(((char *)prop->data)[i])) {
is_string = 0;
break;
}
}
}
print_indent(depth);
if (is_string) {
printk(BIOS_DEBUG, "%s = \"%s\";\n",
prop->name, (const char *)prop->data);
} else {
printk(BIOS_DEBUG, "%s = < ", prop->name);
for (int i = 0; i < MIN(128, prop->size); i += 4) {
uint32_t val = 0;
for (int j = 0; j < MIN(4, prop->size - i); j++)
val |= ((uint8_t *)prop->data)[i + j] <<
(24 - j * 8);
printk(BIOS_DEBUG, "%#.2x ", val);
}
if (prop->size > 128)
printk(BIOS_DEBUG, "...");
printk(BIOS_DEBUG, ">;\n");
}
}
static int print_flat_node(const void *blob, uint32_t start_offset, int depth)
{
int offset = start_offset;
const char *name;
int size;
size = fdt_next_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
print_indent(depth);
printk(BIOS_DEBUG, "%s {\n", name);
struct fdt_property prop;
while ((size = fdt_next_property(blob, offset, &prop))) {
print_property(&prop, depth + 1);
offset += size;
}
printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
while ((size = print_flat_node(blob, offset, depth + 1)))
offset += size;
print_indent(depth);
printk(BIOS_DEBUG, "}\n");
return offset - start_offset + sizeof(uint32_t);
}
void fdt_print_node(const void *blob, uint32_t offset)
{
print_flat_node(blob, offset, 0);
}
/*
* fdt_read_memory_regions finds memory ranges from a flat device-tree
*
* @params blob address of FDT
* @params regions all regions that are read inside the reg property of
* memory nodes are saved inside this array
* @params regions_count maximum number of entries that can be saved inside
* the regions array.
*
* Returns: Either 0 on error or returns the number of regions put into the regions array.
*/
size_t fdt_read_memory_regions(const void *blob,
struct device_tree_region regions[],
size_t regions_count)
{
u32 node, root, addrcp, sizecp;
u32 nodes[FDT_MAX_MEMORY_NODES] = {0};
size_t region_idx = 0;
size_t node_count = 0;
if (!fdt_is_valid(blob))
return 0;
node = fdt_find_node_by_path(blob, "/memory", &addrcp, &sizecp);
if (node) {
region_idx += fdt_read_reg_prop(blob, node, addrcp, sizecp,
regions, regions_count);
if (region_idx >= regions_count) {
printk(BIOS_WARNING, "FDT: Too many memory regions\n");
goto out;
}
}
root = fdt_find_node_by_path(blob, "/", &addrcp, &sizecp);
node_count = fdt_find_subnodes_by_prefix(blob, root, "memory@",
&addrcp, &sizecp, nodes,
FDT_MAX_MEMORY_NODES);
if (node_count >= FDT_MAX_MEMORY_NODES) {
printk(BIOS_WARNING, "FDT: Too many memory nodes\n");
/* Can still reading the regions for those we got */
}
for (size_t i = 0; i < MIN(node_count, FDT_MAX_MEMORY_NODES); i++) {
region_idx += fdt_read_reg_prop(blob, nodes[i], addrcp, sizecp,
&regions[region_idx],
regions_count - region_idx);
if (region_idx >= regions_count) {
printk(BIOS_WARNING, "FDT: Too many memory regions\n");
goto out;
}
}
out:
for (size_t i = 0; i < MIN(region_idx, regions_count); i++) {
printk(BIOS_DEBUG, "FDT: Memory region [%#llx - %#llx]\n",
regions[i].addr, regions[i].addr + regions[i].size);
}
return region_idx;
}
/*
* fdt_get_memory_top finds top of memory from a flat device-tree
*
* @params blob address of FDT
*
* Returns: Either 0 on error or returns the maximum memory address
*/
uint64_t fdt_get_memory_top(const void *blob)
{
struct device_tree_region regions[FDT_MAX_MEMORY_REGIONS] = {0};
uint64_t top = 0;
uint64_t total = 0;
size_t count;
if (!fdt_is_valid(blob))
return 0;
count = fdt_read_memory_regions(blob, regions, FDT_MAX_MEMORY_REGIONS);
for (size_t i = 0; i < MIN(count, FDT_MAX_MEMORY_REGIONS); i++) {
top = MAX(top, regions[i].addr + regions[i].size);
total += regions[i].size;
}
printk(BIOS_DEBUG, "FDT: Found %u MiB of RAM\n",
(uint32_t)(total / MiB));
return top;
}
/*
* Functions to turn a flattened tree into an unflattened one.
*/
static int dt_prop_is_phandle(struct device_tree_property *prop)
{
return !(strcmp("phandle", prop->prop.name) &&
strcmp("linux,phandle", prop->prop.name));
}
static int fdt_unflatten_node(const void *blob, uint32_t start_offset,
struct device_tree *tree,
struct device_tree_node **new_node)
{
struct list_node *last;
int offset = start_offset;
const char *name;
int size;
size = fdt_next_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
struct device_tree_node *node = alloc_node();
*new_node = node;
node->name = name;
struct fdt_property fprop;
last = &node->properties;
while ((size = fdt_next_property(blob, offset, &fprop))) {
struct device_tree_property *prop = alloc_prop();
prop->prop = fprop;
if (dt_prop_is_phandle(prop)) {
node->phandle = be32dec(prop->prop.data);
if (node->phandle > tree->max_phandle)
tree->max_phandle = node->phandle;
}
list_insert_after(&prop->list_node, last);
last = &prop->list_node;
offset += size;
}
struct device_tree_node *child;
last = &node->children;
while ((size = fdt_unflatten_node(blob, offset, tree, &child))) {
list_insert_after(&child->list_node, last);
last = &child->list_node;
offset += size;
}
return offset - start_offset + sizeof(uint32_t);
}
static int fdt_unflatten_map_entry(const void *blob, uint32_t offset,
struct device_tree_reserve_map_entry **new)
{
const uint64_t *ptr = (const uint64_t *)(((uint8_t *)blob) + offset);
const uint64_t start = be64toh(ptr[0]);
const uint64_t size = be64toh(ptr[1]);
if (!size)
return 0;
struct device_tree_reserve_map_entry *entry = xzalloc(sizeof(*entry));
*new = entry;
entry->start = start;
entry->size = size;
return sizeof(uint64_t) * 2;
}
bool fdt_is_valid(const void *blob)
{
const struct fdt_header *header = (const struct fdt_header *)blob;
uint32_t magic = be32toh(header->magic);
uint32_t version = be32toh(header->version);
uint32_t last_comp_version = be32toh(header->last_comp_version);
if (magic != FDT_HEADER_MAGIC) {
printk(BIOS_ERR, "Invalid device tree magic %#.8x!\n", magic);
return false;
}
if (last_comp_version > FDT_SUPPORTED_VERSION) {
printk(BIOS_ERR, "Unsupported device tree version %u(>=%u)\n",
version, last_comp_version);
return false;
}
if (version > FDT_SUPPORTED_VERSION)
printk(BIOS_NOTICE, "FDT version %u too new, should add support!\n",
version);
return true;
}
struct device_tree *fdt_unflatten(const void *blob)
{
struct device_tree *tree = xzalloc(sizeof(*tree));
const struct fdt_header *header = (const struct fdt_header *)blob;
tree->header = header;
if (!fdt_is_valid(blob))
return NULL;
uint32_t struct_offset = be32toh(header->structure_offset);
uint32_t strings_offset = be32toh(header->strings_offset);
uint32_t reserve_offset = be32toh(header->reserve_map_offset);
uint32_t min_offset = 0;
min_offset = MIN(struct_offset, strings_offset);
min_offset = MIN(min_offset, reserve_offset);
/* Assume everything up to the first non-header component is part of
the header and needs to be preserved. This will protect us against
new elements being added in the future. */
tree->header_size = min_offset;
struct device_tree_reserve_map_entry *entry;
uint32_t offset = reserve_offset;
int size;
struct list_node *last = &tree->reserve_map;
while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
list_insert_after(&entry->list_node, last);
last = &entry->list_node;
offset += size;
}
fdt_unflatten_node(blob, struct_offset, tree, &tree->root);
return tree;
}
/*
* Functions to find the size of the device tree if it was flattened.
*/
static void dt_flat_prop_size(struct device_tree_property *prop,
uint32_t *struct_size, uint32_t *strings_size)
{
/* Starting token. */
*struct_size += sizeof(uint32_t);
/* Size. */
*struct_size += sizeof(uint32_t);
/* Name offset. */
*struct_size += sizeof(uint32_t);
/* Property value. */
*struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
/* Property name. */
*strings_size += strlen(prop->prop.name) + 1;
}
static void dt_flat_node_size(struct device_tree_node *node,
uint32_t *struct_size, uint32_t *strings_size)
{
/* Starting token. */
*struct_size += sizeof(uint32_t);
/* Node name. */
*struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
dt_flat_prop_size(prop, struct_size, strings_size);
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
dt_flat_node_size(child, struct_size, strings_size);
/* End token. */
*struct_size += sizeof(uint32_t);
}
uint32_t dt_flat_size(const struct device_tree *tree)
{
uint32_t size = tree->header_size;
struct device_tree_reserve_map_entry *entry;
list_for_each(entry, tree->reserve_map, list_node)
size += sizeof(uint64_t) * 2;
size += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
size += struct_size;
/* End token. */
size += sizeof(uint32_t);
size += strings_size;
return size;
}
/*
* Functions to flatten a device tree.
*/
static void dt_flatten_map_entry(struct device_tree_reserve_map_entry *entry,
void **map_start)
{
((uint64_t *)*map_start)[0] = htobe64(entry->start);
((uint64_t *)*map_start)[1] = htobe64(entry->size);
*map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
}
static void dt_flatten_prop(struct device_tree_property *prop,
void **struct_start, void *strings_base,
void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
be32enc(dstruct, FDT_TOKEN_PROPERTY);
dstruct += sizeof(uint32_t);
be32enc(dstruct, prop->prop.size);
dstruct += sizeof(uint32_t);
uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
be32enc(dstruct, name_offset);
dstruct += sizeof(uint32_t);
strcpy((char *)dstrings, prop->prop.name);
dstrings += strlen(prop->prop.name) + 1;
memcpy(dstruct, prop->prop.data, prop->prop.size);
dstruct += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
*struct_start = dstruct;
*strings_start = dstrings;
}
static void dt_flatten_node(const struct device_tree_node *node,
void **struct_start, void *strings_base,
void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
be32enc(dstruct, FDT_TOKEN_BEGIN_NODE);
dstruct += sizeof(uint32_t);
strcpy((char *)dstruct, node->name);
dstruct += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
dt_flatten_prop(prop, (void **)&dstruct, strings_base,
(void **)&dstrings);
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
dt_flatten_node(child, (void **)&dstruct, strings_base,
(void **)&dstrings);
be32enc(dstruct, FDT_TOKEN_END_NODE);
dstruct += sizeof(uint32_t);
*struct_start = dstruct;
*strings_start = dstrings;
}
void dt_flatten(const struct device_tree *tree, void *start_dest)
{
uint8_t *dest = (uint8_t *)start_dest;
memcpy(dest, tree->header, tree->header_size);
struct fdt_header *header = (struct fdt_header *)dest;
dest += tree->header_size;
struct device_tree_reserve_map_entry *entry;
list_for_each(entry, tree->reserve_map, list_node)
dt_flatten_map_entry(entry, (void **)&dest);
((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
dest += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
uint8_t *struct_start = dest;
header->structure_offset = htobe32(dest - (uint8_t *)start_dest);
header->structure_size = htobe32(struct_size);
dest += struct_size;
*((uint32_t *)dest) = htobe32(FDT_TOKEN_END);
dest += sizeof(uint32_t);
uint8_t *strings_start = dest;
header->strings_offset = htobe32(dest - (uint8_t *)start_dest);
header->strings_size = htobe32(strings_size);
dest += strings_size;
dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
(void **)&strings_start);
header->totalsize = htobe32(dest - (uint8_t *)start_dest);
}
/*
* Functions for printing a non-flattened device tree.
*/
static void print_node(const struct device_tree_node *node, int depth)
{
print_indent(depth);
if (depth == 0) /* root node has no name, print a starting slash */
printk(BIOS_DEBUG, "/");
printk(BIOS_DEBUG, "%s {\n", node->name);
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
print_property(&prop->prop, depth + 1);
printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
print_node(child, depth + 1);
print_indent(depth);
printk(BIOS_DEBUG, "};\n");
}
void dt_print_node(const struct device_tree_node *node)
{
print_node(node, 0);
}
/*
* Functions for reading and manipulating an unflattened device tree.
*/
/*
* Read #address-cells and #size-cells properties from a node.
*
* @param node The device tree node to read from.
* @param addrcp Pointer to store #address-cells in, skipped if NULL.
* @param sizecp Pointer to store #size-cells in, skipped if NULL.
*/
void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp,
u32 *sizecp)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (addrcp && !strcmp("#address-cells", prop->prop.name))
*addrcp = be32dec(prop->prop.data);
if (sizecp && !strcmp("#size-cells", prop->prop.name))
*sizecp = be32dec(prop->prop.data);
}
}
/*
* Find a node from a device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path An array of path component strings that will be looked
* up in order to find the node. Must be terminated with
* a NULL pointer. Example: {'firmware', 'coreboot', NULL}
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*/
struct device_tree_node *dt_find_node(struct device_tree_node *parent,
const char **path, u32 *addrcp,
u32 *sizecp, int create)
{
struct device_tree_node *node, *found = NULL;
/* Update #address-cells and #size-cells for this level. */
dt_read_cell_props(parent, addrcp, sizecp);
if (!*path)
return parent;
/* Find the next node in the path, if it exists. */
list_for_each(node, parent->children, list_node) {
if (!strcmp(node->name, *path)) {
found = node;
break;
}
}
/* Otherwise create it or return NULL. */
if (!found) {
if (!create)
return NULL;
found = alloc_node();
found->name = strdup(*path);
if (!found->name)
return NULL;
list_insert_after(&found->list_node, &parent->children);
}
return dt_find_node(found, path + 1, addrcp, sizecp, create);
}
/*
* Find a node in the tree from a string device tree path.
*
* @param tree The device tree to search.
* @param path A string representing a path in the device tree, with
* nodes separated by '/'. Example: "/firmware/coreboot"
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*
* It is the caller responsibility to provide a path string that doesn't end
* with a '/' and doesn't contain any "//". If the path does not start with a
* '/', the first segment is interpreted as an alias. */
struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
const char *path, u32 *addrcp,
u32 *sizecp, int create)
{
char *sub_path;
char *duped_str;
struct device_tree_node *parent;
char *next_slash;
/* Hopefully enough depth for any node. */
const char *path_array[15];
int i;
struct device_tree_node *node = NULL;
if (path[0] == '/') { /* regular path */
if (path[1] == '\0') { /* special case: "/" is root node */
dt_read_cell_props(tree->root, addrcp, sizecp);
return tree->root;
}
sub_path = duped_str = strdup(&path[1]);
if (!sub_path)
return NULL;
parent = tree->root;
} else { /* alias */
char *alias;
alias = duped_str = strdup(path);
if (!alias)
return NULL;
sub_path = strchr(alias, '/');
if (sub_path)
*sub_path = '\0';
parent = dt_find_node_by_alias(tree, alias);
if (!parent) {
printk(BIOS_DEBUG,
"Could not find node '%s', alias '%s' does not exist\n",
path, alias);
free(duped_str);
return NULL;
}
if (!sub_path) {
/* it's just the alias, no sub-path */
free(duped_str);
return parent;
}
sub_path++;
}
next_slash = sub_path;
path_array[0] = sub_path;
for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
next_slash = strchr(next_slash, '/');
if (!next_slash)
break;
*next_slash++ = '\0';
path_array[i] = next_slash;
}
if (!next_slash) {
path_array[i] = NULL;
node = dt_find_node(parent, path_array,
addrcp, sizecp, create);
}
free(duped_str);
return node;
}
/*
* Find a node from an alias
*
* @param tree The device tree.
* @param alias The alias name.
* @return The found node, or NULL.
*/
struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree,
const char *alias)
{
struct device_tree_node *node;
const char *alias_path;
node = dt_find_node_by_path(tree, "/aliases", NULL, NULL, 0);
if (!node)
return NULL;
alias_path = dt_find_string_prop(node, alias);
if (!alias_path)
return NULL;
return dt_find_node_by_path(tree, alias_path, NULL, NULL, 0);
}
struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root,
uint32_t phandle)
{
if (!root)
return NULL;
if (root->phandle == phandle)
return root;
struct device_tree_node *node;
struct device_tree_node *result;
list_for_each(node, root->children, list_node) {
result = dt_find_node_by_phandle(node, phandle);
if (result)
return result;
}
return NULL;
}
/*
* Check if given node is compatible.
*
* @param node The node which is to be checked for compatible property.
* @param compat The compatible string to match.
* @return 1 = compatible, 0 = not compatible.
*/
static int dt_check_compat_match(struct device_tree_node *node,
const char *compat)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("compatible", prop->prop.name)) {
size_t bytes = prop->prop.size;
const char *str = prop->prop.data;
while (bytes > 0) {
if (!strncmp(compat, str, bytes))
return 1;
size_t len = strnlen(str, bytes) + 1;
if (bytes <= len)
break;
str += len;
bytes -= len;
}
break;
}
}
return 0;
}
/*
* Find a node from a compatible string, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
struct device_tree_node *dt_find_compat(struct device_tree_node *parent,
const char *compat)
{
/* Check if the parent node itself is compatible. */
if (dt_check_compat_match(parent, compat))
return parent;
struct device_tree_node *child;
list_for_each(child, parent->children, list_node) {
struct device_tree_node *found = dt_find_compat(child, compat);
if (found)
return found;
}
return NULL;
}
/*
* Find the next compatible child of a given parent. All children up to the
* child passed in by caller are ignored. If child is NULL, it considers all the
* children to find the first child which is compatible.
*
* @param parent The parent node under which to look.
* @param child The child node to start search from (exclusive). If NULL
* consider all children.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
struct device_tree_node *
dt_find_next_compat_child(struct device_tree_node *parent,
struct device_tree_node *child,
const char *compat)
{
struct device_tree_node *next;
int ignore = 0;
if (child)
ignore = 1;
list_for_each(next, parent->children, list_node) {
if (ignore) {
if (child == next)
ignore = 0;
continue;
}
if (dt_check_compat_match(next, compat))
return next;
}
return NULL;
}
/*
* Find a node with matching property value, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param name The property name to look for.
* @param data The property value to look for.
* @param size The property size.
*/
struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent,
const char *name, void *data,
size_t size)
{
struct device_tree_property *prop;
/* Check if parent itself has the required property value. */
list_for_each(prop, parent->properties, list_node) {
if (!strcmp(name, prop->prop.name)) {
size_t bytes = prop->prop.size;
const void *prop_data = prop->prop.data;
if (size != bytes)
break;
if (!memcmp(data, prop_data, size))
return parent;
break;
}
}
struct device_tree_node *child;
list_for_each(child, parent->children, list_node) {
struct device_tree_node *found = dt_find_prop_value(child, name,
data, size);
if (found)
return found;
}
return NULL;
}
/*
* Write an arbitrary sized big-endian integer into a pointer.
*
* @param dest Pointer to the DT property data buffer to write.
* @param src The integer to write (in CPU endianness).
* @param length the length of the destination integer in bytes.
*/
void dt_write_int(u8 *dest, u64 src, size_t length)
{
while (length--) {
dest[length] = (u8)src;
src >>= 8;
}
}
/*
* Delete a property by name in a given node if it exists.
*
* @param node The device tree node to operate on.
* @param name The name of the property to delete.
*/
void dt_delete_prop(struct device_tree_node *node, const char *name)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
list_remove(&prop->list_node);
return;
}
}
}
/*
* Add an arbitrary property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param data The raw data blob to be stored in the property.
* @param size The size of data in bytes.
*/
void dt_add_bin_prop(struct device_tree_node *node, const char *name,
void *data, size_t size)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
prop->prop.data = data;
prop->prop.size = size;
return;
}
}
prop = alloc_prop();
list_insert_after(&prop->list_node, &node->properties);
prop->prop.name = name;
prop->prop.data = data;
prop->prop.size = size;
}
/*
* Find given string property in a node and return its content.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @return The found string, or NULL.
*/
const char *dt_find_string_prop(const struct device_tree_node *node,
const char *name)
{
const void *content;
size_t size;
dt_find_bin_prop(node, name, &content, &size);
return content;
}
/*
* Find given property in a node.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @param data Pointer to return raw data blob in the property.
* @param size Pointer to return the size of data in bytes.
*/
void dt_find_bin_prop(const struct device_tree_node *node, const char *name,
const void **data, size_t *size)
{
struct device_tree_property *prop;
*data = NULL;
*size = 0;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
*data = prop->prop.data;
*size = prop->prop.size;
return;
}
}
}
/*
* Add a string property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param str The zero-terminated string to be stored in the property.
*/
void dt_add_string_prop(struct device_tree_node *node, const char *name,
const char *str)
{
dt_add_bin_prop(node, name, (char *)str, strlen(str) + 1);
}
/*
* Add a 32-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u32_prop(struct device_tree_node *node, const char *name, u32 val)
{
u32 *val_ptr = xmalloc(sizeof(val));
*val_ptr = htobe32(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 64-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u64_prop(struct device_tree_node *node, const char *name, u64 val)
{
u64 *val_ptr = xmalloc(sizeof(val));
*val_ptr = htobe64(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 'reg' address list property to a node, or update it if it exists.
*
* @param node The device tree node to add to.
* @param regions Array of address values to be stored in the property.
* @param sizes Array of corresponding size values to 'addrs'.
* @param count Number of values in 'addrs' and 'sizes' (must be equal).
* @param addr_cells Value of #address-cells property valid for this node.
* @param size_cells Value of #size-cells property valid for this node.
*/
void dt_add_reg_prop(struct device_tree_node *node, u64 *addrs, u64 *sizes,
int count, u32 addr_cells, u32 size_cells)
{
int i;
size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
u8 *data = xmalloc(length);
u8 *cur = data;
for (i = 0; i < count; i++) {
dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
cur += addr_cells * sizeof(u32);
dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
cur += size_cells * sizeof(u32);
}
dt_add_bin_prop(node, "reg", data, length);
}
/*
* Fixups to apply to a kernel's device tree before booting it.
*/
struct list_node device_tree_fixups;
int dt_apply_fixups(struct device_tree *tree)
{
struct device_tree_fixup *fixup;
list_for_each(fixup, device_tree_fixups, list_node) {
assert(fixup->fixup);
if (fixup->fixup(fixup, tree))
return 1;
}
return 0;
}
int dt_set_bin_prop_by_path(struct device_tree *tree, const char *path,
void *data, size_t data_size, int create)
{
char *path_copy, *prop_name;
struct device_tree_node *dt_node;
path_copy = strdup(path);
if (!path_copy) {
printk(BIOS_ERR, "Failed to allocate a copy of path %s\n",
path);
return 1;
}
prop_name = strrchr(path_copy, '/');
if (!prop_name) {
free(path_copy);
printk(BIOS_ERR, "Path %s does not include '/'\n", path);
return 1;
}
*prop_name++ = '\0'; /* Separate path from the property name. */
dt_node = dt_find_node_by_path(tree, path_copy, NULL,
NULL, create);
if (!dt_node) {
printk(BIOS_ERR, "Failed to %s %s in the device tree\n",
create ? "create" : "find", path_copy);
free(path_copy);
return 1;
}
dt_add_bin_prop(dt_node, prop_name, data, data_size);
free(path_copy);
return 0;
}
/*
* Prepare the /reserved-memory/ node.
*
* Technically, this can be called more than one time, to init and/or retrieve
* the node. But dt_add_u32_prop() may leak a bit of memory if you do.
*
* @tree: Device tree to add/retrieve from.
* @return: The /reserved-memory/ node (or NULL, if error).
*/
struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree)
{
struct device_tree_node *reserved;
u32 addr = 0, size = 0;
reserved = dt_find_node_by_path(tree, "/reserved-memory", &addr,
&size, 1);
if (!reserved)
return NULL;
/* Binding doc says this should have the same #{address,size}-cells as
the root. */
dt_add_u32_prop(reserved, "#address-cells", addr);
dt_add_u32_prop(reserved, "#size-cells", size);
/* Binding doc says this should be empty (1:1 mapping from root). */
dt_add_bin_prop(reserved, "ranges", NULL, 0);
return reserved;
}
/*
* Increment a single phandle in prop at a given offset by a given adjustment.
*
* @param prop Property whose phandle should be adjusted.
* @param adjustment Value that should be added to the existing phandle.
* @param offset Byte offset of the phandle in the property data.
*
* @return New phandle value, or 0 on error.
*/
static uint32_t dt_adjust_phandle(struct device_tree_property *prop,
uint32_t adjustment, uint32_t offset)
{
if (offset + 4 > prop->prop.size)
return 0;
uint32_t phandle = be32dec(prop->prop.data + offset);
if (phandle == 0 ||
phandle == FDT_PHANDLE_ILLEGAL ||
phandle == 0xffffffff)
return 0;
phandle += adjustment;
if (phandle >= FDT_PHANDLE_ILLEGAL)
return 0;
be32enc(prop->prop.data + offset, phandle);
return phandle;
}
/*
* Adjust all phandles in subtree by adding a new base offset.
*
* @param node Root node of the subtree to work on.
* @param base New phandle base to be added to all phandles.
*
* @return New highest phandle in the subtree, or 0 on error.
*/
static uint32_t dt_adjust_all_phandles(struct device_tree_node *node,
uint32_t base)
{
uint32_t new_max = MAX(base, 1); /* make sure we don't return 0 */
struct device_tree_property *prop;
struct device_tree_node *child;
if (!node)
return new_max;
list_for_each(prop, node->properties, list_node)
if (dt_prop_is_phandle(prop)) {
node->phandle = dt_adjust_phandle(prop, base, 0);
if (!node->phandle)
return 0;
new_max = MAX(new_max, node->phandle);
} /* no break -- can have more than one phandle prop */
list_for_each(child, node->children, list_node)
new_max = MAX(new_max, dt_adjust_all_phandles(child, base));
return new_max;
}
/*
* Apply a /__local_fixup__ subtree to the corresponding overlay subtree.
*
* @param node Root node of the overlay subtree to fix up.
* @param node Root node of the /__local_fixup__ subtree.
* @param base Adjustment that was added to phandles in the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_fixup_locals(struct device_tree_node *node,
struct device_tree_node *fixup, uint32_t base)
{
struct device_tree_property *prop;
struct device_tree_property *fixup_prop;
struct device_tree_node *child;
struct device_tree_node *fixup_child;
int i;
/*
* For local fixups the /__local_fixup__ subtree contains the same node
* hierarchy as the main tree we're fixing up. Each property contains
* the fixup offsets for the respective property in the main tree. For
* each property in the fixup node, find the corresponding property in
* the base node and apply fixups to all offsets it specifies.
*/
list_for_each(fixup_prop, fixup->properties, list_node) {
struct device_tree_property *base_prop = NULL;
list_for_each(prop, node->properties, list_node)
if (!strcmp(prop->prop.name, fixup_prop->prop.name)) {
base_prop = prop;
break;
}
/* We should always find a corresponding base prop for a fixup,
and fixup props contain a list of 32-bit fixup offsets. */
if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t))
return -1;
for (i = 0; i < fixup_prop->prop.size; i += sizeof(uint32_t))
if (!dt_adjust_phandle(base_prop, base, be32dec(
fixup_prop->prop.data + i)))
return -1;
}
/* Now recursively descend both the base tree and the /__local_fixups__
subtree in sync to apply all fixups. */
list_for_each(fixup_child, fixup->children, list_node) {
struct device_tree_node *base_child = NULL;
list_for_each(child, node->children, list_node)
if (!strcmp(child->name, fixup_child->name)) {
base_child = child;
break;
}
/* All fixup nodes should have a corresponding base node. */
if (!base_child)
return -1;
if (dt_fixup_locals(base_child, fixup_child, base) < 0)
return -1;
}
return 0;
}
/*
* Update all /__symbols__ properties in an overlay that start with
* "/fragment@X/__overlay__" with corresponding path prefix in the base tree.
*
* @param symbols /__symbols__ done to update.
* @param fragment /fragment@X node that references to should be updated.
* @param base_path Path of base tree node that the fragment overlaid.
*/
static void dt_fix_symbols(struct device_tree_node *symbols,
struct device_tree_node *fragment,
const char *base_path)
{
struct device_tree_property *prop;
char buf[512]; /* Should be enough for maximum DT path length? */
char node_path[64]; /* easily enough for /fragment@XXXX/__overlay__ */
if (!symbols) /* If the overlay has no /__symbols__ node, we're done! */
return;
int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__",
fragment->name);
list_for_each(prop, symbols->properties, list_node)
if (!strncmp(prop->prop.data, node_path, len)) {
prop->prop.size = snprintf(buf, sizeof(buf), "%s%s",
base_path, (char *)prop->prop.data + len) + 1;
free(prop->prop.data);
prop->prop.data = strdup(buf);
}
}
/*
* Fix up overlay according to a property in /__fixup__. If the fixed property
* is a /fragment@X:target, also update /__symbols__ references to fragment.
*
* @params overlay Overlay to fix up.
* @params fixup /__fixup__ property.
* @params phandle phandle value to insert where the fixup points to.
* @params base_path Path to the base DT node that the fixup points to.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_fixup_external(struct device_tree *overlay,
struct device_tree_property *fixup,
uint32_t phandle, const char *base_path,
struct device_tree_node *overlay_symbols)
{
struct device_tree_property *prop;
/* External fixup properties are encoded as "<path>:<prop>:<offset>". */
char *entry = fixup->prop.data;
while ((void *)entry < fixup->prop.data + fixup->prop.size) {
/* okay to destroy fixup property value, won't need it again */
char *node_path = entry;
entry = strchr(node_path, ':');
if (!entry)
return -1;
*entry++ = '\0';
char *prop_name = entry;
entry = strchr(prop_name, ':');
if (!entry)
return -1;
*entry++ = '\0';
struct device_tree_node *ovl_node = dt_find_node_by_path(
overlay, node_path, NULL, NULL, 0);
if (!ovl_node || !isdigit(*entry))
return -1;
struct device_tree_property *ovl_prop = NULL;
list_for_each(prop, ovl_node->properties, list_node)
if (!strcmp(prop->prop.name, prop_name)) {
ovl_prop = prop;
break;
}
/* Move entry to first char after number, must be a '\0'. */
uint32_t offset = skip_atoi(&entry);
if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0])
return -1;
entry++; /* jump over '\0' to potential next fixup */
be32enc(ovl_prop->prop.data + offset, phandle);
/* If this is a /fragment@X:target property, update references
to this fragment in the overlay __symbols__ now. */
if (offset == 0 && !strcmp(prop_name, "target") &&
!strchr(node_path + 1, '/')) /* only toplevel nodes */
dt_fix_symbols(overlay_symbols, ovl_node, base_path);
}
return 0;
}
/*
* Apply all /__fixup__ properties in the overlay. This will destroy the
* property data in /__fixup__ and it should not be accessed again.
*
* @params tree Base device tree that the overlay updates.
* @params symbols /__symbols__ node of the base device tree.
* @params overlay Overlay to fix up.
* @params fixups /__fixup__ node in the overlay.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_fixup_all_externals(struct device_tree *tree,
struct device_tree_node *symbols,
struct device_tree *overlay,
struct device_tree_node *fixups,
struct device_tree_node *overlay_symbols)
{
struct device_tree_property *fix;
/* If we have any external fixups, base tree must have /__symbols__. */
if (!symbols)
return -1;
/*
* Unlike /__local_fixups__, /__fixups__ is not a whole subtree that
* mirrors the node hierarchy. It's just a directory of fixup properties
* that each directly contain all information necessary to apply them.
*/
list_for_each(fix, fixups->properties, list_node) {
/* The name of a fixup property is the label of the node we want
a property to phandle-reference. Look up in /__symbols__. */
const char *path = dt_find_string_prop(symbols, fix->prop.name);
if (!path)
return -1;
/* Find node the label pointed to figure out its phandle. */
struct device_tree_node *node = dt_find_node_by_path(tree, path,
NULL, NULL, 0);
if (!node)
return -1;
/* Write into the overlay property(s) pointing to that node. */
if (dt_fixup_external(overlay, fix, node->phandle,
path, overlay_symbols) < 0)
return -1;
}
return 0;
}
/*
* Copy all nodes and properties from one DT subtree into another. This is a
* shallow copy so both trees will point to the same property data afterwards.
*
* @params dst Destination subtree to copy into.
* @params src Source subtree to copy from.
* @params upd 1 to overwrite same-name properties, 0 to discard them.
*/
static void dt_copy_subtree(struct device_tree_node *dst,
struct device_tree_node *src, int upd)
{
struct device_tree_property *prop;
struct device_tree_property *src_prop;
list_for_each(src_prop, src->properties, list_node) {
if (dt_prop_is_phandle(src_prop) ||
!strcmp(src_prop->prop.name, "name")) {
printk(BIOS_DEBUG,
"WARNING: ignoring illegal overlay prop '%s'\n",
src_prop->prop.name);
continue;
}
struct device_tree_property *dst_prop = NULL;
list_for_each(prop, dst->properties, list_node)
if (!strcmp(prop->prop.name, src_prop->prop.name)) {
dst_prop = prop;
break;
}
if (dst_prop) {
if (!upd) {
printk(BIOS_DEBUG,
"WARNING: ignoring prop update '%s'\n",
src_prop->prop.name);
continue;
}
} else {
dst_prop = alloc_prop();
list_insert_after(&dst_prop->list_node,
&dst->properties);
}
dst_prop->prop = src_prop->prop;
}
struct device_tree_node *node;
struct device_tree_node *src_node;
list_for_each(src_node, src->children, list_node) {
struct device_tree_node *dst_node = NULL;
list_for_each(node, dst->children, list_node)
if (!strcmp(node->name, src_node->name)) {
dst_node = node;
break;
}
if (!dst_node) {
dst_node = alloc_node();
*dst_node = *src_node;
list_insert_after(&dst_node->list_node, &dst->children);
} else {
dt_copy_subtree(dst_node, src_node, upd);
}
}
}
/*
* Apply an overlay /fragment@X node to a base device tree.
*
* @param tree Base device tree.
* @param fragment /fragment@X node.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_import_fragment(struct device_tree *tree,
struct device_tree_node *fragment,
struct device_tree_node *overlay_symbols)
{
/* The actual overlaid nodes/props are in an __overlay__ child node. */
static const char *overlay_path[] = { "__overlay__", NULL };
struct device_tree_node *overlay = dt_find_node(fragment, overlay_path,
NULL, NULL, 0);
/* If it doesn't have an __overlay__ child, it's not a fragment. */
if (!overlay)
return 0;
/* Target node of the fragment can be given by path or by phandle. */
struct device_tree_property *prop;
struct device_tree_property *phandle = NULL;
struct device_tree_property *path = NULL;
list_for_each(prop, fragment->properties, list_node) {
if (!strcmp(prop->prop.name, "target")) {
phandle = prop;
break; /* phandle target has priority, stop looking */
}
if (!strcmp(prop->prop.name, "target-path"))
path = prop;
}
struct device_tree_node *target = NULL;
if (phandle) {
if (phandle->prop.size != sizeof(uint32_t))
return -1;
target = dt_find_node_by_phandle(tree->root,
be32dec(phandle->prop.data));
/* Symbols already updated as part of dt_fixup_external(). */
} else if (path) {
target = dt_find_node_by_path(tree, path->prop.data,
NULL, NULL, 0);
dt_fix_symbols(overlay_symbols, fragment, path->prop.data);
}
if (!target)
return -1;
dt_copy_subtree(target, overlay, 1);
return 0;
}
/*
* Apply a device tree overlay to a base device tree. This will
* destroy/incorporate the overlay data, so it should not be freed or reused.
* See dtc.git/Documentation/dt-object-internal.txt for overlay format details.
*
* @param tree Unflattened base device tree to add the overlay into.
* @param overlay Unflattened overlay device tree to apply to the base.
*
* @return 0 on success, -1 on error.
*/
int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
{
/*
* First, we need to make sure phandles inside the overlay don't clash
* with those in the base tree. We just define the highest phandle value
* in the base tree as the "phandle offset" for this overlay and
* increment all phandles in it by that value.
*/
uint32_t phandle_base = tree->max_phandle;
uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base);
if (!new_max) {
printk(BIOS_ERR, "invalid phandles in overlay\n");
return -1;
}
tree->max_phandle = new_max;
/* Now that we changed phandles in the overlay, we need to update any
nodes referring to them. Those are listed in /__local_fixups__. */
struct device_tree_node *local_fixups = dt_find_node_by_path(overlay,
"/__local_fixups__", NULL, NULL, 0);
if (local_fixups && dt_fixup_locals(overlay->root, local_fixups,
phandle_base) < 0) {
printk(BIOS_ERR, "invalid local fixups in overlay\n");
return -1;
}
/*
* Besides local phandle references (from nodes within the overlay to
* other nodes within the overlay), the overlay may also contain phandle
* references to the base tree. These are stored with invalid values and
* must be updated now. /__symbols__ contains a list of all labels in
* the base tree, and /__fixups__ describes all nodes in the overlay
* that contain external phandle references.
* We also take this opportunity to update all /fragment@X/__overlay__/
* prefixes in the overlay's /__symbols__ node to the correct path that
* the fragment will be placed in later, since this is the only step
* where we have all necessary information for that easily available.
*/
struct device_tree_node *symbols = dt_find_node_by_path(tree,
"/__symbols__", NULL, NULL, 0);
struct device_tree_node *fixups = dt_find_node_by_path(overlay,
"/__fixups__", NULL, NULL, 0);
struct device_tree_node *overlay_symbols = dt_find_node_by_path(overlay,
"/__symbols__", NULL, NULL, 0);
if (fixups && dt_fixup_all_externals(tree, symbols, overlay,
fixups, overlay_symbols) < 0) {
printk(BIOS_ERR, "cannot match external fixups from overlay\n");
return -1;
}
/* After all this fixing up, we can finally merge overlay into the tree
(one fragment at a time, because for some reason it's split up). */
struct device_tree_node *fragment;
list_for_each(fragment, overlay->root->children, list_node)
if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) {
printk(BIOS_ERR, "bad DT fragment '%s'\n",
fragment->name);
return -1;
}
/*
* We need to also update /__symbols__ to include labels from this
* overlay, in case we want to load further overlays with external
* phandle references to it. If the base tree already has a /__symbols__
* we merge them together, otherwise we just insert the overlay's
* /__symbols__ node into the base tree root.
*/
if (overlay_symbols) {
if (symbols)
dt_copy_subtree(symbols, overlay_symbols, 0);
else
list_insert_after(&overlay_symbols->list_node,
&tree->root->children);
}
return 0;
}