blob: 63d7a5e8d20248f1656d0c4b92f33b8933b9678e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
#define __SIMPLE_DEVICE__
#include <assert.h>
#include <bootstate.h>
#include <console/console.h>
#include <device/device.h>
#include <fsp/debug.h>
#include <intelblocks/cpulib.h>
#include <intelblocks/gpio.h>
#include <gpio.h>
#include <intelblocks/itss.h>
#include <intelblocks/p2sb.h>
#include <intelblocks/pcr.h>
#include <security/vboot/vboot_common.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <stdlib.h>
#include <types.h>
#define GPIO_DWx_SIZE(x) (sizeof(uint32_t) * (x))
#define PAD_CFG_OFFSET(x, dw_num) ((x) + GPIO_DWx_SIZE(dw_num))
#define PAD_CFG0_OFFSET(x) PAD_CFG_OFFSET(x, 0)
#define PAD_CFG1_OFFSET(x) PAD_CFG_OFFSET(x, 1)
#define PAD_CFG2_OFFSET(x) PAD_CFG_OFFSET(x, 2)
#define PAD_CFG3_OFFSET(x) PAD_CFG_OFFSET(x, 3)
#define PAD_DW0_MASK (PAD_CFG0_TX_STATE | \
PAD_CFG0_TX_DISABLE | PAD_CFG0_RX_DISABLE | PAD_CFG0_MODE_MASK |\
PAD_CFG0_ROUTE_MASK | PAD_CFG0_RXTENCFG_MASK | \
PAD_CFG0_RXINV_MASK | PAD_CFG0_PREGFRXSEL | \
PAD_CFG0_TRIG_MASK | PAD_CFG0_RXRAW1_MASK | PAD_CFG0_NAFVWE_ENABLE |\
PAD_CFG0_RXPADSTSEL_MASK | PAD_CFG0_RESET_MASK)
#if CONFIG(SOC_INTEL_COMMON_BLOCK_GPIO_PADCFG_PADTOL)
#define PAD_DW1_MASK (PAD_CFG1_IOSTERM_MASK | \
PAD_CFG1_PULL_MASK | \
PAD_CFG1_TOL_MASK | \
PAD_CFG1_IOSSTATE_MASK)
#else
#define PAD_DW1_MASK (PAD_CFG1_IOSTERM_MASK | \
PAD_CFG1_PULL_MASK | \
PAD_CFG1_IOSSTATE_MASK)
#endif
#define PAD_DW2_MASK (PAD_CFG2_DEBOUNCE_MASK)
#define PAD_DW3_MASK (0)
#define MISCCFG_GPE0_DW0_SHIFT 8
#define MISCCFG_GPE0_DW0_MASK (0xf << MISCCFG_GPE0_DW0_SHIFT)
#define MISCCFG_GPE0_DW1_SHIFT 12
#define MISCCFG_GPE0_DW1_MASK (0xf << MISCCFG_GPE0_DW1_SHIFT)
#define MISCCFG_GPE0_DW2_SHIFT 16
#define MISCCFG_GPE0_DW2_MASK (0xf << MISCCFG_GPE0_DW2_SHIFT)
#define GPI_SMI_STS_OFFSET(comm, group) ((comm)->gpi_smi_sts_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_SMI_EN_OFFSET(comm, group) ((comm)->gpi_smi_en_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_NMI_STS_OFFSET(comm, group) ((comm)->gpi_nmi_sts_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_NMI_EN_OFFSET(comm, group) ((comm)->gpi_nmi_en_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_IS_OFFSET(comm, group) ((comm)->gpi_int_sts_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_IE_OFFSET(comm, group) ((comm)->gpi_int_en_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_GPE_STS_OFFSET(comm, group) ((comm)->gpi_gpe_sts_reg_0 + \
((group) * sizeof(uint32_t)))
#define GPI_GPE_EN_OFFSET(comm, group) ((comm)->gpi_gpe_en_reg_0 + \
((group) * sizeof(uint32_t)))
static inline size_t relative_pad_in_comm(const struct pad_community *comm,
gpio_t gpio)
{
return gpio - comm->first_pad;
}
/* find the group within the community that the pad is a part of */
static inline size_t gpio_group_index(const struct pad_community *comm,
unsigned int relative_pad)
{
size_t i;
if (!comm->groups)
die("Failed to get comm->groups.");
/* find the base pad number for this pad's group */
for (i = 0; i < comm->num_groups; i++) {
if (relative_pad >= comm->groups[i].first_pad &&
relative_pad < comm->groups[i].first_pad +
comm->groups[i].size) {
return i;
}
}
printk(BIOS_ERR, "%s: pad %d is not found in community %s!\n",
__func__, relative_pad, comm->name);
BUG();
return i;
}
static inline size_t gpio_group_index_scaled(const struct pad_community *comm,
unsigned int relative_pad, size_t scale)
{
return gpio_group_index(comm, relative_pad) * scale;
}
static inline size_t gpio_within_group(const struct pad_community *comm,
unsigned int relative_pad)
{
size_t i;
i = gpio_group_index(comm, relative_pad);
return relative_pad - comm->groups[i].first_pad;
}
static inline uint32_t gpio_bitmask_within_group(
const struct pad_community *comm,
unsigned int relative_pad)
{
return 1U << gpio_within_group(comm, relative_pad);
}
static const struct pad_community *gpio_get_community(gpio_t pad)
{
size_t gpio_communities;
size_t i;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++, comm++) {
if (pad >= comm->first_pad && pad <= comm->last_pad)
return comm;
}
printk(BIOS_ERR, "%s pad %d not found\n", __func__, pad);
die("Invalid GPIO pad number\n");
return NULL;
}
static void gpio_configure_owner(const struct pad_config *cfg,
const struct pad_community *comm)
{
uint32_t hostsw_own;
uint16_t hostsw_own_offset;
int pin;
pin = relative_pad_in_comm(comm, cfg->pad);
/* Based on the gpio pin number configure the corresponding bit in
* HOSTSW_OWN register. Value of 0x1 indicates GPIO Driver onwership.
*/
hostsw_own_offset = comm->host_own_reg_0;
hostsw_own_offset += gpio_group_index_scaled(comm, pin,
sizeof(uint32_t));
hostsw_own = pcr_read32(comm->port, hostsw_own_offset);
/* The 4th bit in pad_config 1 (RO) is used to indicate if the pad
* needs GPIO driver ownership. Set the bit if GPIO driver ownership
* requested, otherwise clear the bit.
*/
if (cfg->pad_config[1] & PAD_CFG_OWN_GPIO_DRIVER)
hostsw_own |= gpio_bitmask_within_group(comm, pin);
else
hostsw_own &= ~gpio_bitmask_within_group(comm, pin);
pcr_write32(comm->port, hostsw_own_offset, hostsw_own);
}
static void gpi_enable_gpe(const struct pad_config *cfg,
const struct pad_community *comm, int group, int pin)
{
uint16_t en_reg;
uint32_t en_value;
/* Do not configure GPE_EN if PAD is not configured for SCI/wake */
if (((cfg->pad_config[0]) & PAD_CFG0_ROUTE_SCI) != PAD_CFG0_ROUTE_SCI)
return;
/* Get comm offset and bit mask to be set as per pin */
en_reg = GPI_GPE_EN_OFFSET(comm, group);
en_value = gpio_bitmask_within_group(comm, pin);
/* Set enable bits */
pcr_or32(comm->port, en_reg, en_value);
if (CONFIG(DEBUG_GPIO)) {
printk(BIOS_DEBUG, "GPE_EN[0x%02x, %02zd]: Reg: 0x%x, Value = 0x%x\n",
comm->port, relative_pad_in_comm(comm, cfg->pad), en_reg,
pcr_read32(comm->port, en_reg));
}
}
static void gpi_enable_smi(const struct pad_config *cfg,
const struct pad_community *comm, int group, int pin)
{
uint16_t sts_reg;
uint16_t en_reg;
uint32_t en_value;
if (((cfg->pad_config[0]) & PAD_CFG0_ROUTE_SMI) != PAD_CFG0_ROUTE_SMI)
return;
sts_reg = GPI_SMI_STS_OFFSET(comm, group);
en_reg = GPI_SMI_EN_OFFSET(comm, group);
en_value = gpio_bitmask_within_group(comm, pin);
/* Write back 1 to reset the sts bit */
pcr_rmw32(comm->port, sts_reg, en_value, 0);
/* Set enable bits */
pcr_or32(comm->port, en_reg, en_value);
}
static void gpi_enable_nmi(const struct pad_config *cfg,
const struct pad_community *comm, int group, int pin)
{
uint16_t sts_reg;
uint16_t en_reg;
uint32_t en_value;
if (((cfg->pad_config[0]) & PAD_CFG0_ROUTE_NMI) != PAD_CFG0_ROUTE_NMI)
return;
/* Do not configure NMI if the platform doesn't support it */
if (!comm->gpi_nmi_sts_reg_0 || !comm->gpi_nmi_en_reg_0)
return;
sts_reg = GPI_NMI_STS_OFFSET(comm, group);
en_reg = GPI_NMI_EN_OFFSET(comm, group);
en_value = gpio_bitmask_within_group(comm, pin);
/* Write back 1 to reset the sts bit */
pcr_rmw32(comm->port, sts_reg, en_value, 0);
/* Set enable bits */
pcr_or32(comm->port, en_reg, en_value);
}
/* 120 GSIs is the default for IOxAPIC */
static uint32_t gpio_ioapic_irqs_used[120 / (sizeof(uint32_t) * BITS_PER_BYTE) + 1];
static void set_ioapic_used(uint32_t irq)
{
size_t word_offset = irq / 32;
size_t bit_offset = irq % 32;
assert(word_offset < ARRAY_SIZE(gpio_ioapic_irqs_used));
gpio_ioapic_irqs_used[word_offset] |= BIT(bit_offset);
}
bool gpio_routes_ioapic_irq(uint32_t irq)
{
size_t word_offset = irq / 32;
size_t bit_offset = irq % 32;
assert(word_offset < ARRAY_SIZE(gpio_ioapic_irqs_used));
return (gpio_ioapic_irqs_used[word_offset] & BIT(bit_offset)) != 0;
}
static void gpio_configure_itss(const struct pad_config *cfg, uint16_t port,
uint16_t pad_cfg_offset)
{
/* No ITSS configuration in SMM. */
if (ENV_SMM)
return;
int irq;
/* Set up ITSS polarity if pad is routed to APIC.
*
* The ITSS takes only active high interrupt signals. Therefore,
* if the pad configuration indicates an inversion assume the
* intent is for the ITSS polarity. Before forwarding on the
* request to the APIC there's an inversion setting for how the
* signal is forwarded to the APIC. Honor the inversion setting
* in the GPIO pad configuration so that a hardware active low
* signal looks that way to the APIC (double inversion).
*/
if (!(cfg->pad_config[0] & PAD_CFG0_ROUTE_SWAPPED) &&
!(cfg->pad_config[0] & PAD_CFG0_ROUTE_IOAPIC))
return;
irq = pcr_read32(port, PAD_CFG1_OFFSET(pad_cfg_offset));
irq &= PAD_CFG1_IRQ_MASK;
if (!irq) {
printk(BIOS_ERR, "GPIO %u doesn't support APIC routing,\n",
cfg->pad);
return;
}
if (CONFIG(SOC_INTEL_COMMON_BLOCK_GPIO_ITSS_POL_CFG) &&
!(cfg->pad_config[0] & PAD_CFG0_ROUTE_SWAPPED))
itss_set_irq_polarity(irq, !!(cfg->pad_config[0] &
PAD_CFG0_RX_POL_INVERT));
set_ioapic_used(irq);
}
/* Number of DWx config registers can be different for different SOCs */
static uint16_t pad_config_offset(const struct pad_community *comm, gpio_t pad)
{
size_t offset;
offset = relative_pad_in_comm(comm, pad);
offset *= GPIO_DWx_SIZE(GPIO_NUM_PAD_CFG_REGS);
return offset + comm->pad_cfg_base;
}
static uint32_t gpio_pad_reset_config_override(const struct pad_community *comm,
uint32_t config_value)
{
const struct reset_mapping *rst_map = comm->reset_map;
int i;
if (rst_map == NULL || comm->num_reset_vals == 0)
return config_value;/* Logical reset values equal chipset
values */
for (i = 0; i < comm->num_reset_vals; i++, rst_map++) {
if ((config_value & PAD_CFG0_RESET_MASK) == rst_map->logical) {
config_value &= ~PAD_CFG0_RESET_MASK;
config_value |= rst_map->chipset;
return config_value;
}
}
printk(BIOS_ERR, "%s: Logical to Chipset mapping not found\n",
__func__);
return config_value;
}
static const int mask[4] = {
PAD_DW0_MASK, PAD_DW1_MASK, PAD_DW2_MASK, PAD_DW3_MASK
};
static void gpio_configure_pad(const struct pad_config *cfg)
{
const struct pad_community *comm;
uint16_t config_offset;
uint32_t pad_conf, soc_pad_conf;
int i, pin, group;
if (!cfg) {
printk(BIOS_ERR, "%s: cfg value is NULL\n", __func__);
return;
}
comm = gpio_get_community(cfg->pad);
if (!comm) {
printk(BIOS_ERR, "%s: Could not find community for pad: 0x%x\n",
__func__, cfg->pad);
return;
}
config_offset = pad_config_offset(comm, cfg->pad);
pin = relative_pad_in_comm(comm, cfg->pad);
group = gpio_group_index(comm, pin);
for (i = 0; i < GPIO_NUM_PAD_CFG_REGS; i++) {
pad_conf = pcr_read32(comm->port,
PAD_CFG_OFFSET(config_offset, i));
soc_pad_conf = cfg->pad_config[i];
if (i == 0)
soc_pad_conf = gpio_pad_reset_config_override(comm,
soc_pad_conf);
soc_pad_conf &= mask[i];
soc_pad_conf |= pad_conf & ~mask[i];
/* Patch GPIO settings for SoC specifically */
soc_pad_conf = soc_gpio_pad_config_fixup(cfg, i, soc_pad_conf);
if (CONFIG(DEBUG_GPIO))
printk(BIOS_DEBUG,
"gpio_padcfg [0x%02x, %02d] DW%d [0x%08x : 0x%08x"
" : 0x%08x]\n",
comm->port, pin, i,
pad_conf,/* old value */
cfg->pad_config[i],/* value passed from gpio table */
soc_pad_conf);/*new value*/
pcr_write32(comm->port, PAD_CFG_OFFSET(config_offset, i),
soc_pad_conf);
}
gpio_configure_itss(cfg, comm->port, config_offset);
gpio_configure_owner(cfg, comm);
gpi_enable_smi(cfg, comm, group, pin);
gpi_enable_nmi(cfg, comm, group, pin);
gpi_enable_gpe(cfg, comm, group, pin);
if (cfg->lock_action)
gpio_lock_pad(cfg->pad, cfg->lock_action);
}
void gpio_configure_pads(const struct pad_config *cfg, size_t num_pads)
{
size_t i;
for (i = 0; i < num_pads; i++)
gpio_configure_pad(cfg + i);
}
/*
* This functions checks to see if there is an override config present for the
* provided pad_config. If no override config is present, then the input config
* is returned. Else, it returns the override config.
*/
static const struct pad_config *gpio_get_config(const struct pad_config *c,
const struct pad_config *override_cfg_table,
size_t num)
{
size_t i;
if (override_cfg_table == NULL)
return c;
for (i = 0; i < num; i++) {
if (c->pad == override_cfg_table[i].pad)
return override_cfg_table + i;
}
return c;
}
void gpio_configure_pads_with_override(const struct pad_config *base_cfg,
size_t base_num_pads,
const struct pad_config *override_cfg,
size_t override_num_pads)
{
size_t i;
const struct pad_config *c;
for (i = 0; i < base_num_pads; i++) {
c = gpio_get_config(base_cfg + i, override_cfg,
override_num_pads);
gpio_configure_pad(c);
}
}
struct pad_config *new_padbased_table(void)
{
struct pad_config *padbased_table;
padbased_table = malloc(sizeof(struct pad_config) * TOTAL_PADS);
memset(padbased_table, 0, sizeof(struct pad_config) * TOTAL_PADS);
return padbased_table;
}
void gpio_padbased_override(struct pad_config *padbased_table,
const struct pad_config *override_cfg,
size_t override_num_pads)
{
for (size_t i = 0; i < override_num_pads; i++) {
/* Prevent overflow hack */
ASSERT(override_cfg[i].pad < TOTAL_PADS);
padbased_table[override_cfg[i].pad] = override_cfg[i];
}
}
void gpio_configure_pads_with_padbased(struct pad_config *padbased_table)
{
size_t i;
const struct pad_config *cfg = padbased_table;
for (i = 0; i < TOTAL_PADS; i++) {
/* Consider unmapped pin as default setting, skip */
if (cfg[i].pad == 0 && cfg[i].pad_config[0] == 0)
continue;
gpio_configure_pad(&cfg[i]);
}
}
void *gpio_dwx_address(const gpio_t pad)
{
/* Calculate Address of DW0 register for given GPIO
* pad - GPIO number
* returns - address of GPIO
*/
const struct pad_community *comm = gpio_get_community(pad);
uint16_t config_offset;
config_offset = pad_config_offset(comm, pad);
return pcr_reg_address(comm->port, config_offset);
}
uint8_t gpio_get_pad_portid(const gpio_t pad)
{
/* Get the port id of given pad
* pad - GPIO number
* returns - given pad port id
*/
const struct pad_community *comm = gpio_get_community(pad);
return comm->port;
}
void gpio_input_pulldown(gpio_t gpio)
{
struct pad_config cfg = PAD_CFG_GPI(gpio, DN_20K, DEEP);
gpio_configure_pad(&cfg);
}
void gpio_input_pullup(gpio_t gpio)
{
struct pad_config cfg = PAD_CFG_GPI(gpio, UP_20K, DEEP);
gpio_configure_pad(&cfg);
}
void gpio_input(gpio_t gpio)
{
struct pad_config cfg = PAD_CFG_GPI(gpio, NONE, DEEP);
gpio_configure_pad(&cfg);
}
void gpio_output(gpio_t gpio, int value)
{
struct pad_config cfg = PAD_CFG_GPO(gpio, value, DEEP);
gpio_configure_pad(&cfg);
}
int gpio_get(gpio_t gpio_num)
{
const struct pad_community *comm = gpio_get_community(gpio_num);
uint16_t config_offset;
uint32_t reg;
config_offset = pad_config_offset(comm, gpio_num);
reg = pcr_read32(comm->port, config_offset);
return !!(reg & PAD_CFG0_RX_STATE);
}
int gpio_tx_get(gpio_t gpio_num)
{
const struct pad_community *comm = gpio_get_community(gpio_num);
uint16_t config_offset;
uint32_t reg;
config_offset = pad_config_offset(comm, gpio_num);
reg = pcr_read32(comm->port, config_offset);
return !!(reg & PAD_CFG0_TX_STATE);
}
static void
gpio_pad_config_lock_using_sbi(const struct gpio_lock_config *pad_info,
uint8_t pid, uint16_t offset, const uint32_t bit_mask)
{
int status;
uint8_t response;
uint32_t data;
struct pcr_sbi_msg msg = {
.pid = pid,
.offset = offset,
.opcode = GPIO_LOCK_UNLOCK,
.is_posted = false,
.fast_byte_enable = 0xf,
.bar = 0,
.fid = 0,
};
if (!(pad_info->lock_action & GPIO_LOCK_FULL)) {
printk(BIOS_ERR, "%s: Error: no lock_action specified for pad %d!\n",
__func__, pad_info->pad);
return;
}
if ((pad_info->lock_action & GPIO_LOCK_CONFIG) == GPIO_LOCK_CONFIG) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "%s: Locking pad %d configuration\n",
__func__, pad_info->pad);
data = pcr_read32(pid, offset) | bit_mask;
status = pcr_execute_sideband_msg(PCH_DEV_P2SB, &msg, &data, &response);
if (status || response)
printk(BIOS_ERR, "Failed to lock GPIO PAD, response = %d\n", response);
}
if ((pad_info->lock_action & GPIO_LOCK_TX) == GPIO_LOCK_TX) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "%s: Locking pad %d Tx state\n",
__func__, pad_info->pad);
offset += sizeof(uint32_t);
data = pcr_read32(pid, offset) | bit_mask;
msg.offset = offset;
status = pcr_execute_sideband_msg(PCH_DEV_P2SB, &msg, &data, &response);
if (status || response)
printk(BIOS_ERR, "Failed to lock GPIO PAD Tx state, response = %d\n",
response);
}
}
int gpio_lock_pads(const struct gpio_lock_config *pad_list, const size_t count)
{
const struct pad_community *comm;
uint16_t offset;
size_t rel_pad;
gpio_t pad;
if (!CONFIG(SOC_INTEL_COMMON_BLOCK_SMM_LOCK_GPIO_PADS))
return -1;
/*
* FSP-S will unlock all the GPIO pads and hide the P2SB device. With
* the device hidden, we will not be able to send the sideband interface
* message to lock the GPIO configuration. Therefore, we need to unhide
* the P2SB device which can only be done in SMM requiring that this
* function is called from SMM.
*/
if (!ENV_SMM) {
printk(BIOS_ERR, "%s: Error: must be called from SMM!\n", __func__);
return -1;
}
if ((pad_list == NULL) || (count == 0)) {
printk(BIOS_ERR, "%s: Error: pad_list null or count = 0!\n", __func__);
return -1;
}
p2sb_unhide();
for (int x = 0; x < count; x++) {
pad = pad_list[x].pad;
comm = gpio_get_community(pad);
rel_pad = relative_pad_in_comm(comm, pad);
offset = comm->pad_cfg_lock_offset;
if (!offset) {
printk(BIOS_ERR, "%s: Error: offset not defined for pad %d!\n",
__func__, pad);
continue;
}
/* PADCFGLOCK and PADCFGLOCKTX registers for each community are contiguous */
offset += gpio_group_index_scaled(comm, rel_pad, 2 * sizeof(uint32_t));
const uint32_t bit_mask = gpio_bitmask_within_group(comm, rel_pad);
gpio_pad_config_lock_using_sbi(&pad_list[x], comm->port, offset, bit_mask);
}
p2sb_hide();
}
static void
gpio_pad_config_lock_using_pcr(const struct gpio_lock_config *pad_info,
uint8_t pid, uint16_t offset, const uint32_t bit_mask)
{
if ((pad_info->lock_action & GPIO_LOCK_CONFIG) == GPIO_LOCK_CONFIG) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "%s: Locking pad %d configuration\n",
__func__, pad_info->pad);
pcr_or32(pid, offset, bit_mask);
}
if ((pad_info->lock_action & GPIO_LOCK_TX) == GPIO_LOCK_TX) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "%s: Locking pad %d TX state\n",
__func__, pad_info->pad);
pcr_or32(pid, offset + sizeof(uint32_t), bit_mask);
}
}
static int gpio_non_smm_lock_pad(const struct gpio_lock_config *pad_info)
{
const struct pad_community *comm = gpio_get_community(pad_info->pad);
uint16_t offset;
size_t rel_pad;
if (!pad_info) {
printk(BIOS_ERR, "%s: Error: pad_info is null!\n", __func__);
return -1;
}
if (cpu_soc_is_in_untrusted_mode()) {
printk(BIOS_ERR, "%s: Error: IA Untrusted Mode enabled, can't lock pad!\n",
__func__);
return -1;
}
rel_pad = relative_pad_in_comm(comm, pad_info->pad);
offset = comm->pad_cfg_lock_offset;
if (!offset) {
printk(BIOS_ERR, "%s: Error: offset not defined for pad %d!\n",
__func__, pad_info->pad);
return -1;
}
/* PADCFGLOCK and PADCFGLOCKTX registers for each community are contiguous */
offset += gpio_group_index_scaled(comm, rel_pad, 2 * sizeof(uint32_t));
const uint32_t bit_mask = gpio_bitmask_within_group(comm, rel_pad);
if (CONFIG(SOC_INTEL_COMMON_BLOCK_GPIO_LOCK_USING_PCR)) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "Locking pad configuration using PCR\n");
gpio_pad_config_lock_using_pcr(pad_info, comm->port, offset, bit_mask);
} else if (CONFIG(SOC_INTEL_COMMON_BLOCK_GPIO_LOCK_USING_SBI)) {
if (CONFIG(DEBUG_GPIO))
printk(BIOS_INFO, "Locking pad configuration using SBI\n");
gpio_pad_config_lock_using_sbi(pad_info, comm->port, offset, bit_mask);
} else {
printk(BIOS_ERR, "%s: Error: No pad configuration lock method is selected!\n",
__func__);
}
return 0;
}
int gpio_lock_pad(const gpio_t pad, enum gpio_lock_action lock_action)
{
/* Skip locking GPIO PAD in early stages or in recovery mode */
if (ENV_ROMSTAGE_OR_BEFORE || vboot_recovery_mode_enabled())
return -1;
const struct gpio_lock_config pads = {
.pad = pad,
.lock_action = lock_action
};
if (!ENV_SMM && !CONFIG(SOC_INTEL_COMMON_BLOCK_SMM_LOCK_GPIO_PADS))
return gpio_non_smm_lock_pad(&pads);
return gpio_lock_pads(&pads, 1);
}
void gpio_set(gpio_t gpio_num, int value)
{
const struct pad_community *comm = gpio_get_community(gpio_num);
uint16_t config_offset;
config_offset = pad_config_offset(comm, gpio_num);
pcr_rmw32(comm->port, config_offset,
~PAD_CFG0_TX_STATE, (!!value & PAD_CFG0_TX_STATE));
}
uint16_t gpio_acpi_pin(gpio_t gpio_num)
{
const struct pad_community *comm;
size_t group, pin;
if (CONFIG(SOC_INTEL_COMMON_BLOCK_GPIO_MULTI_ACPI_DEVICES))
return relative_pad_in_comm(gpio_get_community(gpio_num),
gpio_num);
comm = gpio_get_community(gpio_num);
pin = relative_pad_in_comm(comm, gpio_num);
group = gpio_group_index(comm, pin);
/* If pad base is not set then use GPIO number as ACPI pin number. */
if (comm->groups[group].acpi_pad_base == PAD_BASE_NONE)
return gpio_num;
/*
* If this group has a non-zero pad base then compute the ACPI pin
* number from the pad base and the relative pad in the group.
*/
return comm->groups[group].acpi_pad_base + gpio_within_group(comm, pin);
}
static void print_gpi_status(const struct gpi_status *sts)
{
int i;
int group;
int index;
int bit_set;
int num_groups;
int abs_bit;
size_t gpio_communities;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++) {
num_groups = comm->num_gpi_regs;
index = comm->gpi_status_offset;
for (group = 0; group < num_groups; group++, index++) {
for (bit_set = comm->max_pads_per_group - 1;
bit_set >= 0; bit_set--) {
if (!(sts->grp[index] & (1 << bit_set)))
continue;
abs_bit = bit_set;
abs_bit += group * comm->max_pads_per_group;
printk(BIOS_DEBUG, "%s %d\n", comm->name,
abs_bit);
}
}
comm++;
}
}
void gpi_clear_get_smi_status(struct gpi_status *sts)
{
int i;
int group;
int index;
uint32_t sts_value;
uint32_t en_value;
size_t gpio_communities;
int num_groups;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++) {
num_groups = comm->num_gpi_regs;
index = comm->gpi_status_offset;
for (group = 0; group < num_groups; group++, index++) {
sts_value = pcr_read32(comm->port,
GPI_SMI_STS_OFFSET(comm, group));
en_value = pcr_read32(comm->port,
GPI_SMI_EN_OFFSET(comm, group));
sts->grp[index] = sts_value & en_value;
/* Clear the set status bits. */
pcr_write32(comm->port, GPI_SMI_STS_OFFSET(comm,
group), sts->grp[index]);
}
comm++;
}
if (CONFIG(DEBUG_SMI))
print_gpi_status(sts);
}
int gpi_status_get(const struct gpi_status *sts, gpio_t pad)
{
uint8_t sts_index;
const struct pad_community *comm = gpio_get_community(pad);
pad = relative_pad_in_comm(comm, pad);
sts_index = comm->gpi_status_offset;
sts_index += gpio_group_index(comm, pad);
return !!(sts->grp[sts_index] & gpio_bitmask_within_group(comm, pad));
}
static int gpio_route_pmc_gpio_gpe(int pmc_gpe_num)
{
size_t num_routes;
const struct pmc_to_gpio_route *routes;
int i;
routes = soc_pmc_gpio_routes(&num_routes);
assert(routes != NULL);
for (i = 0; i < num_routes; i++, routes++) {
if (pmc_gpe_num == routes->pmc)
return routes->gpio;
}
return -1;
}
void gpio_route_gpe(uint8_t gpe0b, uint8_t gpe0c, uint8_t gpe0d)
{
int i;
uint32_t misccfg_mask;
uint32_t misccfg_value;
int ret;
size_t gpio_communities;
const struct pad_community *comm;
/* Get the group here for community specific MISCCFG register.
* If any of these returns -1 then there is some error in devicetree
* where the group is probably hardcoded and does not comply with the
* PMC group defines. So we return from here and MISCFG is set to
* default.
*/
ret = gpio_route_pmc_gpio_gpe(gpe0b);
if (ret == -1)
return;
gpe0b = ret;
ret = gpio_route_pmc_gpio_gpe(gpe0c);
if (ret == -1)
return;
gpe0c = ret;
ret = gpio_route_pmc_gpio_gpe(gpe0d);
if (ret == -1)
return;
gpe0d = ret;
misccfg_value = gpe0b << MISCCFG_GPE0_DW0_SHIFT;
misccfg_value |= gpe0c << MISCCFG_GPE0_DW1_SHIFT;
misccfg_value |= gpe0d << MISCCFG_GPE0_DW2_SHIFT;
/* Program GPIO_MISCCFG */
misccfg_mask = ~(MISCCFG_GPE0_DW2_MASK |
MISCCFG_GPE0_DW1_MASK |
MISCCFG_GPE0_DW0_MASK);
if (CONFIG(DEBUG_GPIO))
printk(BIOS_DEBUG, "misccfg_mask:%x misccfg_value:%x\n",
misccfg_mask, misccfg_value);
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++, comm++)
pcr_rmw32(comm->port, GPIO_MISCCFG,
misccfg_mask, misccfg_value);
}
const char *gpio_acpi_path(gpio_t gpio_num)
{
const struct pad_community *comm = gpio_get_community(gpio_num);
return comm->acpi_path;
}
uint32_t __weak soc_gpio_pad_config_fixup(const struct pad_config *cfg,
int dw_reg, uint32_t reg_val)
{
return reg_val;
}
void gpi_clear_int_cfg(void)
{
int i, group, num_groups;
uint32_t sts_value;
size_t gpio_communities;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++, comm++) {
num_groups = comm->num_gpi_regs;
for (group = 0; group < num_groups; group++) {
/* Clear the enable register */
pcr_write32(comm->port, GPI_IE_OFFSET(comm, group), 0);
/* Read and clear the set status register bits*/
sts_value = pcr_read32(comm->port,
GPI_IS_OFFSET(comm, group));
pcr_write32(comm->port,
GPI_IS_OFFSET(comm, group), sts_value);
}
}
}
/* The function performs GPIO Power Management programming. */
void gpio_pm_configure(const uint8_t *misccfg_pm_values, size_t num)
{
int i;
size_t gpio_communities;
const uint8_t misccfg_pm_mask = (uint8_t)~MISCCFG_GPIO_PM_CONFIG_BITS;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
if (gpio_communities != num)
die("Incorrect GPIO community count!\n");
/* Program GPIO_MISCCFG */
for (i = 0; i < num; i++, comm++)
pcr_rmw8(comm->port, GPIO_MISCCFG,
misccfg_pm_mask, misccfg_pm_values[i]);
}
size_t gpio_get_index_in_group(gpio_t pad)
{
const struct pad_community *comm;
size_t pin;
comm = gpio_get_community(pad);
pin = relative_pad_in_comm(comm, pad);
return gpio_within_group(comm, pin);
}
static uint32_t *snapshot;
static void *allocate_snapshot_space(void)
{
size_t gpio_communities, total = 0, i;
const struct pad_community *comm;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0; i < gpio_communities; i++, comm++)
total += comm->last_pad - comm->first_pad + 1;
if (total == 0)
return NULL;
return malloc(total * GPIO_NUM_PAD_CFG_REGS * sizeof(uint32_t));
}
void gpio_snapshot(void)
{
size_t gpio_communities, index, i, pad, reg;
const struct pad_community *comm;
uint16_t config_offset;
if (snapshot == NULL) {
snapshot = allocate_snapshot_space();
if (snapshot == NULL)
return;
}
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0, index = 0; i < gpio_communities; i++, comm++) {
for (pad = comm->first_pad; pad <= comm->last_pad; pad++) {
config_offset = pad_config_offset(comm, pad);
for (reg = 0; reg < GPIO_NUM_PAD_CFG_REGS; reg++) {
snapshot[index] = pcr_read32(comm->port,
PAD_CFG_OFFSET(config_offset, reg));
index++;
}
}
}
}
size_t gpio_verify_snapshot(void)
{
size_t gpio_communities, index, i, pad, reg;
const struct pad_community *comm;
uint32_t curr_val;
uint16_t config_offset;
size_t changes = 0;
if (snapshot == NULL)
return 0;
comm = soc_gpio_get_community(&gpio_communities);
for (i = 0, index = 0; i < gpio_communities; i++, comm++) {
for (pad = comm->first_pad; pad <= comm->last_pad; pad++) {
config_offset = pad_config_offset(comm, pad);
for (reg = 0; reg < GPIO_NUM_PAD_CFG_REGS; reg++) {
curr_val = pcr_read32(comm->port,
PAD_CFG_OFFSET(config_offset, reg));
if (curr_val != snapshot[index]) {
printk(BIOS_SPEW,
"%zd(DW%zd): Changed from 0x%x to 0x%x\n",
pad, reg, snapshot[index], curr_val);
changes++;
}
index++;
}
}
}
return changes;
}
static void snapshot_cleanup(void *unused)
{
free(snapshot);
}
BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, snapshot_cleanup, NULL);
BOOT_STATE_INIT_ENTRY(BS_PAYLOAD_LOAD, BS_ON_EXIT, snapshot_cleanup, NULL);
bool gpio_get_vw_info(gpio_t pad, unsigned int *vw_index, unsigned int *vw_bit)
{
const struct pad_community *comm;
unsigned int offset = 0;
size_t i;
comm = gpio_get_community(pad);
for (i = 0; i < comm->num_vw_entries; i++) {
if (pad >= comm->vw_entries[i].first_pad && pad <= comm->vw_entries[i].last_pad)
break;
offset += 1 + comm->vw_entries[i].last_pad - comm->vw_entries[i].first_pad;
}
if (i == comm->num_vw_entries)
return false;
offset += pad - comm->vw_entries[i].first_pad;
*vw_index = comm->vw_base + offset / 8;
*vw_bit = offset % 8;
return true;
}
unsigned int gpio_get_pad_cpu_portid(gpio_t pad)
{
const struct pad_community *comm = gpio_get_community(pad);
return comm->cpu_port;
}