blob: 48631884c713c01ea04771602bb6b9f0ce9ba9ef [file] [log] [blame]
/* SPDX-License-Identifier: BSD-3-Clause */
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <gpio.h>
#include <soc/iomap.h>
#include <soc/spi.h>
#include <soc/clock.h>
#include <spi_flash.h>
#include <timer.h>
static const struct blsp_spi spi_reg[] = {
/* BLSP0 registers for SPI interface */
{
BLSP0_SPI_CONFIG_REG,
BLSP0_SPI_IO_CONTROL_REG,
BLSP0_SPI_ERROR_FLAGS_REG,
BLSP0_SPI_ERROR_FLAGS_EN_REG,
BLSP0_QUP_CONFIG_REG,
BLSP0_QUP_ERROR_FLAGS_REG,
BLSP0_QUP_ERROR_FLAGS_EN_REG,
BLSP0_QUP_OPERATIONAL_REG,
BLSP0_QUP_IO_MODES_REG,
BLSP0_QUP_STATE_REG,
BLSP0_QUP_INPUT_FIFOc_REG(0),
BLSP0_QUP_OUTPUT_FIFOc_REG(0),
BLSP0_QUP_MX_INPUT_COUNT_REG,
BLSP0_QUP_MX_OUTPUT_COUNT_REG,
BLSP0_QUP_SW_RESET_REG,
0,
0,
BLSP0_QUP_OPERATIONAL_MASK,
BLSP0_SPI_DEASSERT_WAIT_REG,
},
{0}, {0}, {0},
/* BLSP4 registers for SPI interface */
{
BLSP4_SPI_CONFIG_REG,
BLSP4_SPI_IO_CONTROL_REG,
BLSP4_SPI_ERROR_FLAGS_REG,
BLSP4_SPI_ERROR_FLAGS_EN_REG,
BLSP4_QUP_CONFIG_REG,
BLSP4_QUP_ERROR_FLAGS_REG,
BLSP4_QUP_ERROR_FLAGS_EN_REG,
BLSP4_QUP_OPERATIONAL_REG,
BLSP4_QUP_IO_MODES_REG,
BLSP4_QUP_STATE_REG,
BLSP4_QUP_INPUT_FIFOc_REG(0),
BLSP4_QUP_OUTPUT_FIFOc_REG(0),
BLSP4_QUP_MX_INPUT_COUNT_REG,
BLSP4_QUP_MX_OUTPUT_COUNT_REG,
BLSP4_QUP_SW_RESET_REG,
0,
0,
BLSP4_QUP_OPERATIONAL_MASK,
BLSP4_SPI_DEASSERT_WAIT_REG,
},
/* BLSP5 registers for SPI interface */
{
BLSP5_SPI_CONFIG_REG,
BLSP5_SPI_IO_CONTROL_REG,
BLSP5_SPI_ERROR_FLAGS_REG,
BLSP5_SPI_ERROR_FLAGS_EN_REG,
BLSP5_QUP_CONFIG_REG,
BLSP5_QUP_ERROR_FLAGS_REG,
BLSP5_QUP_ERROR_FLAGS_EN_REG,
BLSP5_QUP_OPERATIONAL_REG,
BLSP5_QUP_IO_MODES_REG,
BLSP5_QUP_STATE_REG,
BLSP5_QUP_INPUT_FIFOc_REG(0),
BLSP5_QUP_OUTPUT_FIFOc_REG(0),
BLSP5_QUP_MX_INPUT_COUNT_REG,
BLSP5_QUP_MX_OUTPUT_COUNT_REG,
BLSP5_QUP_SW_RESET_REG,
0,
0,
BLSP5_QUP_OPERATIONAL_MASK,
BLSP5_SPI_DEASSERT_WAIT_REG,
},
};
static int check_bit_state(void *reg_addr, int mask,
int val, int us_delay)
{
unsigned int count = TIMEOUT_CNT;
while ((read32(reg_addr) & mask) != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
}
return SUCCESS;
}
/*
* Check whether QUPn State is valid
*/
static int check_qup_state_valid(struct qcs_spi_slave *ds)
{
return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_MASK,
QUP_STATE_VALID, 1);
}
/*
* Configure QUPn Core state
*/
static int config_spi_state(struct qcs_spi_slave *ds, unsigned int state)
{
uint32_t val;
int ret = SUCCESS;
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
switch (state) {
case QUP_STATE_RUN:
/* Set the state to RUN */
val = ((read32(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RUN);
write32(ds->regs->qup_state, val);
ret = check_qup_state_valid(ds);
break;
case QUP_STATE_RESET:
/* Set the state to RESET */
val = ((read32(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RESET);
write32(ds->regs->qup_state, val);
ret = check_qup_state_valid(ds);
break;
default:
printk(BIOS_ERR, "unsupported QUP SPI state : %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Set QUPn SPI Mode
*/
static void spi_set_mode(struct qcs_spi_slave *ds, unsigned int mode)
{
unsigned int clk_idle_state;
unsigned int input_first_mode;
uint32_t val;
switch (mode) {
case SPI_MODE0:
clk_idle_state = 0;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case SPI_MODE2:
clk_idle_state = 1;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printk(BIOS_ERR, "unsupported spi mode : %d\n", mode);
return;
}
val = read32(ds->regs->spi_config);
val |= input_first_mode;
write32(ds->regs->spi_config, val);
val = read32(ds->regs->io_control);
if (clk_idle_state)
val |= SPI_IO_CTRL_CLOCK_IDLE_HIGH;
else
val &= ~SPI_IO_CTRL_CLOCK_IDLE_HIGH;
write32(ds->regs->io_control, val);
}
/*
* Reset entire QUP and all mini cores
*/
static void spi_reset(struct qcs_spi_slave *ds)
{
write32(ds->regs->qup_sw_reset, 0x1);
udelay(5);
check_qup_state_valid(ds);
}
static struct qcs_spi_slave spi_slave_pool[3];
static struct qcs_spi_slave *to_qcs_spi(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds;
size_t i;
for (i = 0; i < ARRAY_SIZE(spi_slave_pool); i++) {
ds = spi_slave_pool + i;
if (!ds->allocated)
continue;
if ((ds->slave.bus == slave->bus) &&
(ds->slave.cs == slave->cs))
return ds;
}
return NULL;
}
static void write_force_cs(const struct spi_slave *slave, int assert)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
if (assert)
clrsetbits32(ds->regs->io_control,
SPI_IO_CTRL_FORCE_CS_MSK, SPI_IO_CTRL_FORCE_CS_EN);
else
clrsetbits32(ds->regs->io_control,
SPI_IO_CTRL_FORCE_CS_MSK, SPI_IO_CTRL_FORCE_CS_DIS);
}
/*
* BLSP QUPn SPI Hardware Initialisation
*/
static int spi_hw_init(struct qcs_spi_slave *ds)
{
int ret;
ds->initialized = 0;
/* QUPn module configuration */
spi_reset(ds);
/* Set the QUPn state */
ret = config_spi_state(ds, QUP_STATE_RESET);
if (ret)
return ret;
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits32(ds->regs->qup_config, QUP_CONFIG_MINI_CORE_MSK |
QUP_CONF_INPUT_MSK |
QUP_CONF_OUTPUT_MSK |
QUP_CONF_N_MASK,
QUP_CONFIG_MINI_CORE_SPI |
QUP_CONF_INPUT_ENA |
QUP_CONF_OUTPUT_ENA |
QUP_CONF_N_SPI_8_BIT_WORD);
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits32(ds->regs->spi_config, SPI_CONFIG_LOOP_BACK_MSK |
SPI_CONFIG_NO_SLAVE_OPER_MSK,
SPI_CONFIG_NO_LOOP_BACK |
SPI_CONFIG_NO_SLAVE_OPER);
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
write32(ds->regs->io_control, SPI_IO_CTRL_CLK_ALWAYS_ON |
SPI_IO_CTRL_NO_TRI_STATE | SPI_IO_CTRL_MX_CS_MODE);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits32(ds->regs->qup_io_modes,
QUP_IO_MODES_OUTPUT_BIT_SHIFT_MSK |
QUP_IO_MODES_INPUT_MODE_MSK |
QUP_IO_MODES_OUTPUT_MODE_MSK,
QUP_IO_MODES_OUTPUT_BIT_SHIFT_EN |
QUP_IO_MODES_INPUT_BLOCK_MODE |
QUP_IO_MODES_OUTPUT_BLOCK_MODE);
spi_set_mode(ds, ds->mode);
/* Disable Error mask */
write32(ds->regs->error_flags_en, 0);
write32(ds->regs->qup_error_flags_en, 0);
write32(ds->regs->qup_deassert_wait, 0);
ds->initialized = 1;
return SUCCESS;
}
static int spi_ctrlr_claim_bus(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
unsigned int ret;
ret = spi_hw_init(ds);
if (ret)
return -EIO;
switch (slave->bus) {
case 4:
gpio_configure
(GPIO(37), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_INPUT); // MOSI
gpio_configure
(GPIO(38), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_OUTPUT); // MISO
gpio_configure
(GPIO(117), 2, GPIO_NO_PULL, GPIO_6MA, GPIO_OUTPUT); // CS
gpio_configure
(GPIO(118), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_OUTPUT);// CLK
break;
case 5:
gpio_configure
(GPIO(26), 3, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // MOSI
gpio_configure
(GPIO(27), 3, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // MISO
gpio_configure
(GPIO(28), 4, GPIO_PULL_UP, GPIO_16MA, GPIO_INPUT); // CS
gpio_configure
(GPIO(29), 4, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // CLK
break;
default:
printk(BIOS_ERR, "SPI error: unsupported bus %d "
"(Supported buses 0, 1, 2, 3, 4, 5)\n", slave->bus);
break;
}
write_force_cs(slave, 1);
return SUCCESS;
}
static void spi_ctrlr_release_bus(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
/* Reset the SPI hardware */
write_force_cs(slave, 0);
spi_reset(ds);
ds->initialized = 0;
}
/*
* Function to write data to OUTPUT FIFO
*/
static void spi_write_byte(struct qcs_spi_slave *ds, unsigned char data)
{
/* Wait for space in the FIFO */
while ((read32(ds->regs->qup_operational) & OUTPUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
write32(ds->regs->qup_output_fifo, data);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char spi_read_byte(struct qcs_spi_slave *ds)
{
/* Wait for Data in FIFO */
while (!(read32(ds->regs->qup_operational) & INPUT_FIFO_NOT_EMPTY))
udelay(1);
/* Read a byte of data */
return read32(ds->regs->qup_input_fifo) & 0xff;
}
/*
* Function to check whether Input or Output FIFO
* has data to be serviced
*/
static int check_fifo_status(void *reg_addr)
{
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = read32(reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & OUTPUT_SERVICE_FLAG) |
(val & INPUT_SERVICE_FLAG));
} while (!status_flag);
return SUCCESS;
}
/*
* Function to configure Input and Output enable/disable
*/
static void enable_io_config(struct qcs_spi_slave *ds,
uint32_t write_cnt, uint32_t read_cnt)
{
if (write_cnt) {
clrsetbits32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
} else {
clrsetbits32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
}
if (read_cnt) {
clrsetbits32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
} else {
clrsetbits32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
}
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int __blsp_spi_read(struct qcs_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
struct stopwatch sw;
/* Configure no of bytes to read */
state_config = config_spi_state(ds, QUP_STATE_RESET);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, 0, bytes);
write32(ds->regs->qup_mx_input_count, bytes);
state_config = config_spi_state(ds, QUP_STATE_RUN);
if (state_config)
return state_config;
while (bytes) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = read32(ds->regs->qup_operational);
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= INPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
fifo_count = ((bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : bytes);
for (i = 0; i < fifo_count; i++) {
*data_buffer = spi_read_byte(ds);
data_buffer++;
bytes--;
}
}
}
stopwatch_init_msecs_expire(&sw, 10);
do {
val = read32(ds->regs->qup_operational);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "SPI FIFO read timeout\n");
ret = -ETIMEDOUT;
goto out;
}
} while (!(val & MAX_INPUT_DONE_FLAG));
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int blsp_spi_read(struct qcs_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_read(ds, data_buffer, length);
if (ret != SUCCESS)
return ret;
data_buffer += length;
bytes -= length;
}
return 0;
}
/*
* Function to write data to the Output FIFO
*/
static int __blsp_spi_write(struct qcs_spi_slave *ds, const u8 *cmd_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
struct stopwatch sw;
state_config = config_spi_state(ds, QUP_STATE_RESET);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, write_len, read_len);
/* No of bytes to be written in Output FIFO */
write32(ds->regs->qup_mx_output_count, bytes);
write32(ds->regs->qup_mx_input_count, bytes);
state_config = config_spi_state(ds, QUP_STATE_RUN);
if (state_config)
return state_config;
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = read32(ds->regs->qup_operational);
if (val & OUTPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= OUTPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
spi_write_byte(ds, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= INPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
/* Read dummy data for the data written */
(void)spi_read_byte(ds);
/* Decrement the read count after reading the
* dummy data from the device. This is to make
* sure we read dummy data before we write the
* data to fifo
*/
read_len--;
}
}
}
stopwatch_init_msecs_expire(&sw, 10);
do {
val = read32(ds->regs->qup_operational);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "SPI FIFO write timeout\n");
ret = -ETIMEDOUT;
goto out;
}
} while (!(val & MAX_OUTPUT_DONE_FLAG));
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int blsp_spi_write(struct qcs_spi_slave *ds, u8 *cmd_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_write(ds, cmd_buffer, length);
if (ret != SUCCESS) {
printk(BIOS_ERR, "SPI:DBG write not success\n");
return ret;
}
cmd_buffer += length;
bytes -= length;
}
return 0;
}
/*
* This function is invoked with either tx_buf or rx_buf.
* Calling this function with both null does a chip select change.
*/
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t out_bytes, void *din, size_t in_bytes)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
u8 *txp = (u8 *)dout;
u8 *rxp = (u8 *)din;
int ret;
ret = config_spi_state(ds, QUP_STATE_RESET);
if (ret != SUCCESS)
return ret;
if (dout != NULL) {
ret = blsp_spi_write(ds, txp, (unsigned int)out_bytes);
if (ret != SUCCESS)
goto out;
}
if (din != NULL) {
ret = blsp_spi_read(ds, rxp, in_bytes);
if (ret != SUCCESS)
goto out;
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int spi_ctrlr_setup(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds = NULL;
int i;
unsigned int bus = slave->bus;
unsigned int cs = slave->cs;
int qup = 0;
int blsp = 2;
if (((bus != BLSP4_SPI) && (bus != BLSP5_SPI)) || cs != 0) {
printk(BIOS_ERR,
"SPI error: unsupported bus %d or cs %d\n", bus, cs);
return -1;
}
for (i = 0; i < ARRAY_SIZE(spi_slave_pool); i++) {
if (spi_slave_pool[i].allocated)
continue;
ds = spi_slave_pool + i;
ds->slave.bus = bus;
ds->slave.cs = cs;
ds->regs = &spi_reg[bus];
ds->mode = SPI_MODE0;
ds->freq = 50000000;
if (bus == BLSP4_SPI) {
ds->freq = 1000000;
qup = 4;
blsp = 1;
}
clock_configure_spi(blsp, qup, ds->freq);
clock_enable_spi(blsp, qup);
ds->allocated = 1;
return 0;
}
printk(BIOS_ERR, "SPI error: all %d pools busy\n", i);
return -1;
}
static int xfer_vectors(const struct spi_slave *slave,
struct spi_op vectors[], size_t count)
{
return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer);
}
static const struct spi_ctrlr spi_ctrlr = {
.setup = spi_ctrlr_setup,
.claim_bus = spi_ctrlr_claim_bus,
.release_bus = spi_ctrlr_release_bus,
.xfer = spi_ctrlr_xfer,
.xfer_vector = xfer_vectors,
.max_xfer_size = MAX_PACKET_COUNT,
};
const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = {
{
.ctrlr = &spi_ctrlr,
.bus_start = BLSP5_SPI,
.bus_end = BLSP5_SPI,
},
{
.ctrlr = &spi_ctrlr,
.bus_start = BLSP4_SPI,
.bus_end = BLSP4_SPI,
},
};
const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map);