blob: 1050552c99a74174a4e4e8509e8813e0cf89cbf9 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2016 Rockchip Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <soc/addressmap.h>
#include <soc/clock.h>
#include <soc/grf.h>
#include <soc/i2c.h>
#include <soc/soc.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
struct pll_div {
u32 refdiv;
u32 fbdiv;
u32 postdiv1;
u32 postdiv2;
u32 frac;
};
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};\
_Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\
OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\
#hz "Hz cannot be hit with PLL "\
"divisors on line " STRINGIFY(__LINE__))
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
static const struct pll_div *apll_l_cfgs[] = {
[APLL_L_1600_MHZ] = &apll_l_1600_cfg,
[APLL_L_600_MHZ] = &apll_l_600_cfg,
};
enum {
/* PLL_CON0 */
PLL_FBDIV_MASK = 0xfff,
PLL_FBDIV_SHIFT = 0,
/* PLL_CON1 */
PLL_POSTDIV2_MASK = 0x7,
PLL_POSTDIV2_SHIFT = 12,
PLL_POSTDIV1_MASK = 0x7,
PLL_POSTDIV1_SHIFT = 8,
PLL_REFDIV_MASK = 0x3f,
PLL_REFDIV_SHIFT = 0,
/* PLL_CON2 */
PLL_LOCK_STATUS_MASK = 1,
PLL_LOCK_STATUS_SHIFT = 31,
PLL_FRACDIV_MASK = 0xffffff,
PLL_FRACDIV_SHIFT = 0,
/* PLL_CON3 */
PLL_MODE_MASK = 3,
PLL_MODE_SHIFT = 8,
PLL_MODE_SLOW = 0,
PLL_MODE_NORM,
PLL_MODE_DEEP,
PLL_DSMPD_MASK = 1,
PLL_DSMPD_SHIFT = 3,
PLL_INTEGER_MODE = 1,
/* PMUCRU_CLKSEL_CON0 */
PMU_PCLK_DIV_CON_MASK = 0x1f,
PMU_PCLK_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON1 */
SPI3_PLL_SEL_MASK = 1,
SPI3_PLL_SEL_SHIFT = 7,
SPI3_PLL_SEL_24M = 0,
SPI3_PLL_SEL_PPLL = 1,
SPI3_DIV_CON_MASK = 0x7f,
SPI3_DIV_CON_SHIFT = 0x0,
/* PMUCRU_CLKSEL_CON2 */
I2C_DIV_CON_MASK = 0x7f,
I2C8_DIV_CON_SHIFT = 8,
I2C0_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON3 */
I2C4_DIV_CON_SHIFT = 0,
/* CLKSEL_CON0 */
ACLKM_CORE_L_DIV_CON_MASK = 0x1f,
ACLKM_CORE_L_DIV_CON_SHIFT = 8,
CLK_CORE_L_PLL_SEL_MASK = 3,
CLK_CORE_L_PLL_SEL_SHIFT = 6,
CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
CLK_CORE_L_PLL_SEL_DPLL = 0x10,
CLK_CORE_L_PLL_SEL_GPLL = 0x11,
CLK_CORE_L_DIV_MASK = 0x1f,
CLK_CORE_L_DIV_SHIFT = 0,
/* CLKSEL_CON1 */
PCLK_DBG_L_DIV_MASK = 0x1f,
PCLK_DBG_L_DIV_SHIFT = 0x8,
ATCLK_CORE_L_DIV_MASK = 0x1f,
ATCLK_CORE_L_DIV_SHIFT = 0,
/* CLKSEL_CON14 */
PCLK_PERIHP_DIV_CON_MASK = 0x7,
PCLK_PERIHP_DIV_CON_SHIFT = 12,
HCLK_PERIHP_DIV_CON_MASK = 3,
HCLK_PERIHP_DIV_CON_SHIFT = 8,
ACLK_PERIHP_PLL_SEL_MASK = 1,
ACLK_PERIHP_PLL_SEL_SHIFT = 7,
ACLK_PERIHP_PLL_SEL_CPLL = 0,
ACLK_PERIHP_PLL_SEL_GPLL = 1,
ACLK_PERIHP_DIV_CON_MASK = 0x1f,
ACLK_PERIHP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON23 */
PCLK_PERILP0_DIV_CON_MASK = 0x7,
PCLK_PERILP0_DIV_CON_SHIFT = 12,
HCLK_PERILP0_DIV_CON_MASK = 3,
HCLK_PERILP0_DIV_CON_SHIFT = 8,
ACLK_PERILP0_PLL_SEL_MASK = 1,
ACLK_PERILP0_PLL_SEL_SHIFT = 7,
ACLK_PERILP0_PLL_SEL_CPLL = 0,
ACLK_PERILP0_PLL_SEL_GPLL = 1,
ACLK_PERILP0_DIV_CON_MASK = 0x1f,
ACLK_PERILP0_DIV_CON_SHIFT = 0,
/* CLKSEL_CON25 */
PCLK_PERILP1_DIV_CON_MASK = 0x7,
PCLK_PERILP1_DIV_CON_SHIFT = 8,
HCLK_PERILP1_PLL_SEL_MASK = 1,
HCLK_PERILP1_PLL_SEL_SHIFT = 7,
HCLK_PERILP1_PLL_SEL_CPLL = 0,
HCLK_PERILP1_PLL_SEL_GPLL = 1,
HCLK_PERILP1_DIV_CON_MASK = 0x1f,
HCLK_PERILP1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON26 */
CLK_SARADC_DIV_CON_MASK = 0xff,
CLK_SARADC_DIV_CON_SHIFT = 8,
/* CLKSEL_CON58 */
CLK_SPI_PLL_SEL_MASK = 1,
CLK_SPI_PLL_SEL_CPLL = 0,
CLK_SPI_PLL_SEL_GPLL = 1,
CLK_SPI_PLL_DIV_CON_MASK = 0x7f,
CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
CLK_SPI5_PLL_SEL_SHIFT = 15,
/* CLKSEL_CON59 */
CLK_SPI1_PLL_SEL_SHIFT = 15,
CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
CLK_SPI0_PLL_SEL_SHIFT = 7,
CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON60 */
CLK_SPI4_PLL_SEL_SHIFT = 15,
CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
CLK_SPI2_PLL_SEL_SHIFT = 7,
CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON61 */
CLK_I2C_PLL_SEL_MASK = 1,
CLK_I2C_PLL_SEL_CPLL = 0,
CLK_I2C_PLL_SEL_GPLL = 1,
CLK_I2C5_PLL_SEL_SHIFT = 15,
CLK_I2C5_DIV_CON_SHIFT = 8,
CLK_I2C1_PLL_SEL_SHIFT = 7,
CLK_I2C1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON62 */
CLK_I2C6_PLL_SEL_SHIFT = 15,
CLK_I2C6_DIV_CON_SHIFT = 8,
CLK_I2C2_PLL_SEL_SHIFT = 7,
CLK_I2C2_DIV_CON_SHIFT = 0,
/* CLKSEL_CON63 */
CLK_I2C7_PLL_SEL_SHIFT = 15,
CLK_I2C7_DIV_CON_SHIFT = 8,
CLK_I2C3_PLL_SEL_SHIFT = 7,
CLK_I2C3_DIV_CON_SHIFT = 0,
/* CRU_SOFTRST_CON4 */
RESETN_DDR0_REQ_MASK = 1,
RESETN_DDR0_REQ_SHIFT = 8,
RESETN_DDRPHY0_REQ_MASK = 1,
RESETN_DDRPHY0_REQ_SHIFT = 9,
RESETN_DDR1_REQ_MASK = 1,
RESETN_DDR1_REQ_SHIFT = 12,
RESETN_DDRPHY1_REQ_MASK = 1,
RESETN_DDRPHY1_REQ_SHIFT = 13,
};
#define VCO_MAX_KHZ (3200 * (MHz / KHz))
#define VCO_MIN_KHZ (800 * (MHz / KHz))
#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
/* the div restrictions of pll in integer mode,
* these are defined in * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
*/
#define PLL_DIV_MIN 16
#define PLL_DIV_MAX 3200
/* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
{
/* All 8 PLLs have same VCO and output frequency range restrictions. */
u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
printk(BIOS_DEBUG, "PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
"postdiv2=%d, vco=%u khz, output=%u khz\n",
pll_con, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_khz, output_khz);
assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
/* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
PLL_MODE_SLOW << PLL_MODE_SHIFT));
/* use integer mode */
write32(&pll_con[3],
RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT,
PLL_INTEGER_MODE << PLL_DSMPD_SHIFT));
write32(&pll_con[0], RK_CLRSETBITS(PLL_FBDIV_MASK << PLL_FBDIV_SHIFT,
div->fbdiv << PLL_FBDIV_SHIFT));
write32(&pll_con[1],
RK_CLRSETBITS(PLL_POSTDIV2_MASK << PLL_POSTDIV2_SHIFT |
PLL_POSTDIV1_MASK << PLL_POSTDIV1_SHIFT |
PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
(div->postdiv2 << PLL_POSTDIV2_SHIFT) |
(div->postdiv1 << PLL_POSTDIV1_SHIFT) |
(div->refdiv << PLL_REFDIV_SHIFT)));
/* waiting for pll lock */
while (!(read32(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
/* pll enter normal mode */
write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
PLL_MODE_NORM << PLL_MODE_SHIFT));
}
void rkclk_init(void)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
/* some cru registers changed by bootrom, we'd better reset them to
* reset/default values described in TRM to avoid confusion in kernel.
* Please consider these threee lines as a fix of bootrom bug.
*/
write32(&cru_ptr->clksel_con[12], 0xffff4101);
write32(&cru_ptr->clksel_con[19], 0xffff033f);
write32(&cru_ptr->clksel_con[56], 0x00030003);
/* configure pmu pll(ppll) */
rkclk_set_pll(&pmucru_ptr->ppll_con[0], &ppll_init_cfg);
/* configure pmu pclk */
pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
assert((pclk_div + 1) * PMU_PCLK_HZ == PPLL_HZ && pclk_div < 0x1f);
write32(&pmucru_ptr->pmucru_clksel[0],
RK_CLRSETBITS(PMU_PCLK_DIV_CON_MASK << PMU_PCLK_DIV_CON_SHIFT,
pclk_div << PMU_PCLK_DIV_CON_SHIFT));
/* configure gpll cpll */
rkclk_set_pll(&cru_ptr->gpll_con[0], &gpll_init_cfg);
rkclk_set_pll(&cru_ptr->cpll_con[0], &cpll_init_cfg);
/* configure perihp aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
PERIHP_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
PERIHP_ACLK_HZ && (pclk_div < 0x7));
write32(&cru_ptr->clksel_con[14],
RK_CLRSETBITS(PCLK_PERIHP_DIV_CON_MASK <<
PCLK_PERIHP_DIV_CON_SHIFT |
HCLK_PERIHP_DIV_CON_MASK <<
HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_MASK <<
ACLK_PERIHP_PLL_SEL_SHIFT |
ACLK_PERIHP_DIV_CON_MASK <<
ACLK_PERIHP_DIV_CON_SHIFT,
pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_GPLL <<
ACLK_PERIHP_PLL_SEL_SHIFT |
aclk_div << ACLK_PERIHP_DIV_CON_SHIFT));
/* configure perilp0 aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
PERILP0_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
PERILP0_ACLK_HZ && (pclk_div < 0x7));
write32(&cru_ptr->clksel_con[23],
RK_CLRSETBITS(PCLK_PERILP0_DIV_CON_MASK <<
PCLK_PERILP0_DIV_CON_SHIFT |
HCLK_PERILP0_DIV_CON_MASK <<
HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_MASK <<
ACLK_PERILP0_PLL_SEL_SHIFT |
ACLK_PERILP0_DIV_CON_MASK <<
ACLK_PERILP0_DIV_CON_SHIFT,
pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_GPLL <<
ACLK_PERILP0_PLL_SEL_SHIFT |
aclk_div << ACLK_PERILP0_DIV_CON_SHIFT));
/* perilp1 hclk select gpll as source */
hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
GPLL_HZ && (hclk_div < 0x1f));
pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
PERILP1_HCLK_HZ && (hclk_div < 0x7));
write32(&cru_ptr->clksel_con[25],
RK_CLRSETBITS(PCLK_PERILP1_DIV_CON_MASK <<
PCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_DIV_CON_MASK <<
HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_MASK <<
HCLK_PERILP1_PLL_SEL_SHIFT,
pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_GPLL <<
HCLK_PERILP1_PLL_SEL_SHIFT));
}
void rkclk_configure_cpu(enum apll_l_frequencies apll_l_freq)
{
u32 aclkm_div;
u32 pclk_dbg_div;
u32 atclk_div;
rkclk_set_pll(&cru_ptr->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
aclkm_div < 0x1f);
pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
pclk_dbg_div < 0x1f);
atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
atclk_div < 0x1f);
write32(&cru_ptr->clksel_con[0],
RK_CLRSETBITS(ACLKM_CORE_L_DIV_CON_MASK <<
ACLKM_CORE_L_DIV_CON_SHIFT |
CLK_CORE_L_PLL_SEL_MASK <<
CLK_CORE_L_PLL_SEL_SHIFT |
CLK_CORE_L_DIV_MASK << CLK_CORE_L_DIV_SHIFT,
aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
CLK_CORE_L_PLL_SEL_ALPLL <<
CLK_CORE_L_PLL_SEL_SHIFT |
0 << CLK_CORE_L_DIV_SHIFT));
write32(&cru_ptr->clksel_con[1],
RK_CLRSETBITS(PCLK_DBG_L_DIV_MASK << PCLK_DBG_L_DIV_SHIFT |
ATCLK_CORE_L_DIV_MASK << ATCLK_CORE_L_DIV_SHIFT,
pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
atclk_div << ATCLK_CORE_L_DIV_SHIFT));
}
void rkclk_configure_ddr(unsigned int hz)
{
struct pll_div dpll_cfg;
/* IC ECO bug, need to set this register */
write32(&rk3399_pmusgrf->ddr_rgn_con[16], 0xc000c000);
/* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
switch (hz) {
case 200*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
break;
case 300*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
break;
case 666*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
break;
case 800*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
break;
default:
die("Unsupported SDRAM frequency, add to clock.c!");
}
rkclk_set_pll(&cru_ptr->dpll_con[0], &dpll_cfg);
}
#define SPI_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(CLK_SPI_PLL_SEL_MASK << \
CLK_SPI ##bus## _PLL_SEL_SHIFT | \
CLK_SPI_PLL_DIV_CON_MASK << \
CLK_SPI ##bus## _PLL_DIV_CON_SHIFT, \
CLK_SPI_PLL_SEL_GPLL << \
CLK_SPI ##bus## _PLL_SEL_SHIFT | \
(clk_div - 1) << \
CLK_SPI ##bus## _PLL_DIV_CON_SHIFT)
void rkclk_configure_spi(unsigned int bus, unsigned int hz)
{
int src_clk_div;
int pll;
/* spi3 src clock from ppll, while spi0,1,2,4,5 src clock from gpll */
pll = (bus == 3) ? PPLL_HZ : GPLL_HZ;
src_clk_div = pll / hz;
assert((src_clk_div - 1 < 127) && (src_clk_div * hz == pll));
switch (bus) {
case 0:
write32(&cru_ptr->clksel_con[59],
SPI_CLK_REG_VALUE(0, src_clk_div));
break;
case 1:
write32(&cru_ptr->clksel_con[59],
SPI_CLK_REG_VALUE(1, src_clk_div));
break;
case 2:
write32(&cru_ptr->clksel_con[60],
SPI_CLK_REG_VALUE(2, src_clk_div));
break;
case 3:
write32(&pmucru_ptr->pmucru_clksel[1],
RK_CLRSETBITS(SPI3_PLL_SEL_MASK << SPI3_PLL_SEL_SHIFT |
SPI3_DIV_CON_MASK << SPI3_DIV_CON_SHIFT,
SPI3_PLL_SEL_PPLL << SPI3_PLL_SEL_SHIFT |
(src_clk_div - 1) << SPI3_DIV_CON_SHIFT));
break;
case 4:
write32(&cru_ptr->clksel_con[60],
SPI_CLK_REG_VALUE(4, src_clk_div));
break;
case 5:
write32(&cru_ptr->clksel_con[58],
SPI_CLK_REG_VALUE(5, src_clk_div));
break;
default:
printk(BIOS_ERR, "do not support this spi bus\n");
}
}
#define I2C_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(I2C_DIV_CON_MASK << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_MASK << \
CLK_I2C ##bus## _PLL_SEL_SHIFT, \
(clk_div - 1) << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_GPLL << \
CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define PMU_I2C_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(I2C_DIV_CON_MASK << I2C ##bus## _DIV_CON_SHIFT, \
(clk_div - 1) << I2C ##bus## _DIV_CON_SHIFT)
static void rkclk_configure_i2c(unsigned int bus, unsigned int hz)
{
int src_clk_div;
int pll;
/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
pll = (bus == 0 || bus == 4 || bus == 8) ? PPLL_HZ : GPLL_HZ;
src_clk_div = pll / hz;
assert((src_clk_div - 1 < 127) && (src_clk_div * hz == pll));
switch (bus) {
case 0:
write32(&pmucru_ptr->pmucru_clksel[2],
PMU_I2C_CLK_REG_VALUE(0, src_clk_div));
break;
case 1:
write32(&cru_ptr->clksel_con[61],
I2C_CLK_REG_VALUE(1, src_clk_div));
break;
case 2:
write32(&cru_ptr->clksel_con[62],
I2C_CLK_REG_VALUE(2, src_clk_div));
break;
case 3:
write32(&cru_ptr->clksel_con[63],
I2C_CLK_REG_VALUE(3, src_clk_div));
break;
case 4:
write32(&pmucru_ptr->pmucru_clksel[3],
PMU_I2C_CLK_REG_VALUE(4, src_clk_div));
break;
case 5:
write32(&cru_ptr->clksel_con[61],
I2C_CLK_REG_VALUE(5, src_clk_div));
break;
case 6:
write32(&cru_ptr->clksel_con[62],
I2C_CLK_REG_VALUE(6, src_clk_div));
break;
case 7:
write32(&cru_ptr->clksel_con[63],
I2C_CLK_REG_VALUE(7, src_clk_div));
break;
case 8:
write32(&pmucru_ptr->pmucru_clksel[2],
PMU_I2C_CLK_REG_VALUE(8, src_clk_div));
break;
default:
printk(BIOS_ERR, "do not support this i2c bus\n");
}
}
uint32_t rkclk_i2c_clock_for_bus(unsigned bus)
{
uint32_t freq = 198 * 1000 * 1000;
rkclk_configure_i2c(bus, freq);
return freq;
}
void rkclk_configure_saradc(unsigned int hz)
{
int src_clk_div;
/* saradc src clk from 24MHz */
src_clk_div = 24 * MHz / hz;
assert((src_clk_div - 1 < 255) && (src_clk_div * hz == 24 * MHz));
write32(&cru_ptr->clksel_con[26],
RK_CLRSETBITS(CLK_SARADC_DIV_CON_MASK <<
CLK_SARADC_DIV_CON_SHIFT,
(src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT));
}