blob: 5f298036ef27c4bfb9809fcd5e5412c3f50c3cb5 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011 Samsung Electronics
* Copyright 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <soc/cpu.h>
#include <soc/spi.h>
#include <spi_flash.h>
#include <stdlib.h>
#include <string.h>
#define EXYNOS_SPI_MAX_TRANSFER_BYTES (65535)
#if defined(CONFIG_DEBUG_SPI) && CONFIG_DEBUG_SPI
# define DEBUG_SPI(x,...) printk(BIOS_DEBUG, "EXYNOS_SPI: " x)
#else
# define DEBUG_SPI(x,...)
#endif
struct exynos_spi_slave {
struct spi_slave slave;
struct exynos_spi *regs;
int initialized;
};
/* TODO(hungte) Move the SPI param list to per-board configuration, probably
* Kconfig or mainboard.c */
static struct exynos_spi_slave exynos_spi_slaves[3] = {
// SPI 0
{
.slave = { .bus = 0, },
.regs = (void *)EXYNOS5_SPI0_BASE,
},
// SPI 1
{
.slave = { .bus = 1, .rw = SPI_READ_FLAG, },
.regs = (void *)EXYNOS5_SPI1_BASE,
},
// SPI 2
{
.slave = { .bus = 2,
.rw = SPI_READ_FLAG | SPI_WRITE_FLAG, },
.regs = (void *)EXYNOS5_SPI2_BASE,
},
};
static inline struct exynos_spi_slave *to_exynos_spi(struct spi_slave *slave)
{
return container_of(slave, struct exynos_spi_slave, slave);
}
static void spi_sw_reset(struct exynos_spi *regs, int word)
{
const uint32_t orig_mode_cfg = read32(&regs->mode_cfg);
uint32_t mode_cfg = orig_mode_cfg;
const uint32_t orig_swap_cfg = read32(&regs->swap_cfg);
uint32_t swap_cfg = orig_swap_cfg;
mode_cfg &= ~(SPI_MODE_CH_WIDTH_MASK | SPI_MODE_BUS_WIDTH_MASK);
if (word) {
mode_cfg |= SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD;
swap_cfg |= SPI_RX_SWAP_EN |
SPI_RX_BYTE_SWAP |
SPI_RX_HWORD_SWAP |
SPI_TX_SWAP_EN |
SPI_TX_BYTE_SWAP |
SPI_TX_HWORD_SWAP;
} else {
mode_cfg |= SPI_MODE_CH_WIDTH_BYTE | SPI_MODE_BUS_WIDTH_BYTE;
swap_cfg = 0;
}
if (mode_cfg != orig_mode_cfg)
write32(&regs->mode_cfg, mode_cfg);
if (swap_cfg != orig_swap_cfg)
write32(&regs->swap_cfg, swap_cfg);
clrbits_le32(&regs->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON);
setbits_le32(&regs->ch_cfg, SPI_CH_RST);
clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
setbits_le32(&regs->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON);
}
void spi_init(void)
{
}
static void exynos_spi_init(struct exynos_spi *regs)
{
// Set FB_CLK_SEL.
write32(&regs->fb_clk, SPI_FB_DELAY_180);
// CPOL: Active high.
clrbits_le32(&regs->ch_cfg, SPI_CH_CPOL_L);
// Clear rx and tx channel if set priveously.
clrbits_le32(&regs->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON);
setbits_le32(&regs->swap_cfg,
SPI_RX_SWAP_EN | SPI_RX_BYTE_SWAP | SPI_RX_HWORD_SWAP);
clrbits_le32(&regs->ch_cfg, SPI_CH_HS_EN);
// Do a soft reset, which will also enable both channels.
spi_sw_reset(regs, 1);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
ASSERT(bus >= 0 && bus < 3);
struct exynos_spi_slave *eslave = &exynos_spi_slaves[bus];
if (!eslave->initialized) {
exynos_spi_init(eslave->regs);
eslave->initialized = 1;
}
return &eslave->slave;
}
int spi_claim_bus(struct spi_slave *slave)
{
struct exynos_spi *regs = to_exynos_spi(slave)->regs;
// TODO(hungte) Add some delay if too many transactions happen at once.
clrbits_le32(&regs->cs_reg, SPI_SLAVE_SIG_INACT);
return 0;
}
static void spi_transfer(struct exynos_spi *regs, void *in, const void *out,
u32 size)
{
u8 *inb = in;
const u8 *outb = out;
int width = (size % 4) ? 1 : 4;
while (size) {
int packets = size / width;
// The packet count field is 16 bits wide.
packets = MIN(packets, (1 << 16) - 1);
int out_bytes, in_bytes;
out_bytes = in_bytes = packets * width;
spi_sw_reset(regs, width == 4);
write32(&regs->pkt_cnt, packets | SPI_PACKET_CNT_EN);
while (out_bytes || in_bytes) {
uint32_t spi_sts = read32(&regs->spi_sts);
int rx_lvl = ((spi_sts >> 15) & 0x1ff);
int tx_lvl = ((spi_sts >> 6) & 0x1ff);
if (tx_lvl < 32 && tx_lvl < out_bytes) {
uint32_t data = 0xffffffff;
if (outb) {
memcpy(&data, outb, width);
outb += width;
}
write32(&regs->tx_data, data);
out_bytes -= width;
}
if (rx_lvl >= width) {
uint32_t data = read32(&regs->rx_data);
if (inb) {
memcpy(inb, &data, width);
inb += width;
}
in_bytes -= width;
}
}
size -= packets * width;
}
}
int spi_xfer(struct spi_slave *slave, const void *dout, unsigned int bytes_out,
void *din, unsigned int bytes_in)
{
struct exynos_spi *regs = to_exynos_spi(slave)->regs;
if (bytes_out && bytes_in) {
u32 min_size = MIN(bytes_out, bytes_in);
spi_transfer(regs, din, dout, min_size);
bytes_out -= min_size;
bytes_in -= min_size;
din = (uint8_t *)din + min_size;
dout = (const uint8_t *)dout + min_size;
}
if (bytes_in)
spi_transfer(regs, din, NULL, bytes_in);
else if (bytes_out)
spi_transfer(regs, NULL, dout, bytes_out);
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct exynos_spi *regs = to_exynos_spi(slave)->regs;
setbits_le32(&regs->cs_reg, SPI_SLAVE_SIG_INACT);
}
static int exynos_spi_read(struct spi_slave *slave, void *dest, uint32_t len,
uint32_t off)
{
struct exynos_spi *regs = to_exynos_spi(slave)->regs;
u32 command;
spi_claim_bus(slave);
// Send address.
ASSERT(off < (1 << 24));
command = htonl(SF_READ_DATA_CMD << 24 | off);
spi_transfer(regs, NULL, &command, sizeof(command));
// Read the data.
spi_transfer(regs, dest, NULL, len);
spi_release_bus(slave);
return len;
}
// SPI as CBFS media.
struct exynos_spi_media {
struct spi_slave *slave;
struct cbfs_simple_buffer buffer;
};
static int exynos_spi_cbfs_open(struct cbfs_media *media)
{
struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context;
DEBUG_SPI("exynos_spi_cbfs_open\n");
return spi_claim_bus(spi->slave);
}
static int exynos_spi_cbfs_close(struct cbfs_media *media)
{
struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context;
DEBUG_SPI("exynos_spi_cbfs_close\n");
spi_release_bus(spi->slave);
return 0;
}
static size_t exynos_spi_cbfs_read(struct cbfs_media *media, void *dest,
size_t offset, size_t count)
{
struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context;
int bytes;
DEBUG_SPI("exynos_spi_cbfs_read(%u)\n", count);
bytes = exynos_spi_read(spi->slave, dest, count, offset);
return bytes;
}
static void *exynos_spi_cbfs_map(struct cbfs_media *media, size_t offset,
size_t count)
{
struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context;
DEBUG_SPI("exynos_spi_cbfs_map\n");
// exynos: spi_rx_tx may work in 4 byte-width-transmission mode and
// requires buffer memory address to be aligned.
if (count % 4)
count += 4 - (count % 4);
return cbfs_simple_buffer_map(&spi->buffer, media, offset, count);
}
static void *exynos_spi_cbfs_unmap(struct cbfs_media *media,
const void *address)
{
struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context;
DEBUG_SPI("exynos_spi_cbfs_unmap\n");
return cbfs_simple_buffer_unmap(&spi->buffer, address);
}
int initialize_exynos_spi_cbfs_media(struct cbfs_media *media,
void *buffer_address,
size_t buffer_size)
{
// TODO Replace static variable to support multiple streams.
static struct exynos_spi_media context;
static struct exynos_spi_slave *eslave = &exynos_spi_slaves[1];
DEBUG_SPI("initialize_exynos_spi_cbfs_media\n");
context.slave = &eslave->slave;
context.buffer.allocated = context.buffer.last_allocate = 0;
context.buffer.buffer = buffer_address;
context.buffer.size = buffer_size;
media->context = (void*)&context;
media->open = exynos_spi_cbfs_open;
media->close = exynos_spi_cbfs_close;
media->read = exynos_spi_cbfs_read;
media->map = exynos_spi_cbfs_map;
media->unmap = exynos_spi_cbfs_unmap;
return 0;
}