blob: 3b22a46298b02b70aaf576c1dce92520d8ab1551 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/acpi.h>
#include <arch/io.h>
#include <bcd.h>
#include <fallback.h>
#include <stdint.h>
#include <version.h>
#include <console/console.h>
#include <pc80/mc146818rtc.h>
#include <boot/coreboot_tables.h>
#include <rtc.h>
#include <string.h>
#include <cbfs.h>
#include <security/vboot/vbnv.h>
#include <security/vboot/vbnv_layout.h>
/* There's no way around this include guard. option_table.h is autogenerated */
#if IS_ENABLED(CONFIG_USE_OPTION_TABLE)
#include "option_table.h"
#else
#define LB_CKS_RANGE_START 0
#define LB_CKS_RANGE_END 0
#define LB_CKS_LOC 0
#endif
#include <smp/spinlock.h>
#if (defined(__PRE_RAM__) && \
IS_ENABLED(CONFIG_HAVE_ROMSTAGE_NVRAM_CBFS_SPINLOCK))
#define LOCK_NVRAM_CBFS_SPINLOCK() spin_lock(romstage_nvram_cbfs_lock())
#define UNLOCK_NVRAM_CBFS_SPINLOCK() spin_unlock(romstage_nvram_cbfs_lock())
#else
#define LOCK_NVRAM_CBFS_SPINLOCK() { }
#define UNLOCK_NVRAM_CBFS_SPINLOCK() { }
#endif
static void cmos_reset_date(void)
{
/* Now setup a default date equals to the build date */
struct rtc_time time = {
.sec = 0,
.min = 0,
.hour = 1,
.mday = bcd2bin(coreboot_build_date.day),
.mon = bcd2bin(coreboot_build_date.month),
.year = (bcd2bin(coreboot_build_date.century) * 100) +
bcd2bin(coreboot_build_date.year),
.wday = bcd2bin(coreboot_build_date.weekday)
};
rtc_set(&time);
}
static int cmos_checksum_valid(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum, old_sum;
if (IS_ENABLED(CONFIG_STATIC_OPTION_TABLE))
return 1;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
old_sum = ((cmos_read(cks_loc) << 8) | cmos_read(cks_loc + 1)) &
0x0ffff;
return sum == old_sum;
}
static void cmos_set_checksum(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
cmos_write(((sum >> 0) & 0x0ff), cks_loc + 1);
}
#define RTC_CONTROL_DEFAULT (RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
#ifndef __SMM__
static bool __cmos_init(bool invalid)
{
bool cmos_invalid;
bool checksum_invalid = false;
bool clear_cmos;
size_t i;
uint8_t x;
#ifndef __PRE_RAM__
/*
* Avoid clearing pending interrupts and resetting the RTC control
* register in the resume path because the Linux kernel relies on
* this to know if it should restart the RTC timer queue if the wake
* was due to the RTC alarm.
*/
if (acpi_is_wakeup_s3())
return false;
#endif /* __PRE_RAM__ */
printk(BIOS_DEBUG, "RTC Init\n");
/* See if there has been a CMOS power problem. */
x = cmos_read(RTC_VALID);
cmos_invalid = !(x & RTC_VRT);
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
/* See if there is a CMOS checksum error */
checksum_invalid = !cmos_checksum_valid(PC_CKS_RANGE_START,
PC_CKS_RANGE_END, PC_CKS_LOC);
clear_cmos = false;
} else {
clear_cmos = true;
}
if (cmos_invalid || invalid)
cmos_write(cmos_read(RTC_CONTROL) | RTC_SET, RTC_CONTROL);
if (invalid || cmos_invalid || checksum_invalid) {
if (clear_cmos) {
cmos_write(0, 0x01);
cmos_write(0, 0x03);
cmos_write(0, 0x05);
for (i = 10; i < 128; i++)
cmos_write(0, i);
}
if (cmos_invalid)
cmos_reset_date();
printk(BIOS_WARNING, "RTC:%s%s%s%s\n",
invalid ? " Clear requested":"",
cmos_invalid ? " Power Problem":"",
checksum_invalid ? " Checksum invalid":"",
clear_cmos ? " zeroing cmos":"");
} else
clear_cmos = false;
/* Setup the real time clock */
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
/* Setup the frequency it operates at */
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
/* Ensure all reserved bits are 0 in register D */
cmos_write(RTC_VRT, RTC_VALID);
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
/* See if there is a LB CMOS checksum error */
checksum_invalid = !cmos_checksum_valid(LB_CKS_RANGE_START,
LB_CKS_RANGE_END, LB_CKS_LOC);
if (checksum_invalid)
printk(BIOS_DEBUG, "RTC: coreboot checksum invalid\n");
/* Make certain we have a valid checksum */
cmos_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END, PC_CKS_LOC);
}
/* Clear any pending interrupts */
cmos_read(RTC_INTR_FLAGS);
return clear_cmos;
}
static void cmos_init_vbnv(bool invalid)
{
uint8_t vbnv[VBOOT_VBNV_BLOCK_SIZE];
/* __cmos_init() will clear vbnv contents when a known rtc failure
occurred with !CONFIG_USE_OPTION_TABLE. However, __cmos_init() may
clear vbnv data for other internal reasons. For that, always back up
the vbnv contents and conditionally save them when __cmos_init()
indicates cmos was cleared. */
read_vbnv_cmos(vbnv);
if (__cmos_init(invalid))
save_vbnv_cmos(vbnv);
}
void cmos_init(bool invalid)
{
if (IS_ENABLED(CONFIG_VBOOT_VBNV_CMOS))
cmos_init_vbnv(invalid);
else
__cmos_init(invalid);
}
#endif /* __SMM__ */
/*
* This routine returns the value of the requested bits.
* input bit = bit count from the beginning of the cmos image
* length = number of bits to include in the value
* ret = a character pointer to where the value is to be returned
* returns CB_SUCCESS = successful, cb_err code if an error occurred
*/
static enum cb_err get_cmos_value(unsigned long bit, unsigned long length,
void *vret)
{
unsigned char *ret;
unsigned long byte, byte_bit;
unsigned long i;
unsigned char uchar;
/*
* The table is checked when it is built to ensure all
* values are valid.
*/
ret = vret;
byte = bit / 8; /* find the byte where the data starts */
byte_bit = bit % 8; /* find the bit in the byte where the data starts */
if (length < 9) { /* one byte or less */
uchar = cmos_read(byte); /* load the byte */
uchar >>= byte_bit; /* shift the bits to byte align */
/* clear unspecified bits */
ret[0] = uchar & ((1 << length) - 1);
} else { /* more than one byte so transfer the whole bytes */
for (i = 0; length; i++, length -= 8, byte++) {
/* load the byte */
ret[i] = cmos_read(byte);
}
}
return CB_SUCCESS;
}
static enum cb_err locate_cmos_layout(struct region_device *rdev)
{
uint32_t cbfs_type = CBFS_COMPONENT_CMOS_LAYOUT;
struct cbfsf fh;
/*
* In case VBOOT is enabled and this function is called from SMM,
* we have multiple CMOS layout files and to locate them we'd need to
* include VBOOT into SMM...
*
* Support only one CMOS layout in the 'COREBOOT' region for now.
*/
if (cbfs_locate_file_in_region(&fh, "COREBOOT", "cmos_layout.bin",
&cbfs_type)) {
printk(BIOS_ERR, "RTC: cmos_layout.bin could not be found. "
"Options are disabled\n");
return CB_CMOS_LAYOUT_NOT_FOUND;
}
cbfs_file_data(rdev, &fh);
return CB_SUCCESS;
}
enum cb_err get_option(void *dest, const char *name)
{
struct cmos_option_table *ct;
struct region_device rdev;
struct cmos_entries *ce;
size_t namelen;
int found = 0;
if (!IS_ENABLED(CONFIG_USE_OPTION_TABLE))
return CB_CMOS_OTABLE_DISABLED;
LOCK_NVRAM_CBFS_SPINLOCK();
/* Figure out how long name is */
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
if (locate_cmos_layout(&rdev) != CB_SUCCESS) {
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_LAYOUT_NOT_FOUND;
}
ct = rdev_mmap_full(&rdev);
if (!ct) {
printk(BIOS_ERR, "RTC: cmos_layout.bin could not be mapped. "
"Options are disabled\n");
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_LAYOUT_NOT_FOUND;
}
/* find the requested entry record */
ce = (struct cmos_entries *)((unsigned char *)ct + ct->header_length);
for (; ce->tag == LB_TAG_OPTION;
ce = (struct cmos_entries *)((unsigned char *)ce + ce->size)) {
if (memcmp(ce->name, name, namelen) == 0) {
found = 1;
break;
}
}
if (!found) {
printk(BIOS_DEBUG, "No CMOS option '%s'.\n", name);
rdev_munmap(&rdev, ct);
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_OPTION_NOT_FOUND;
}
if (!cmos_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END, LB_CKS_LOC)) {
rdev_munmap(&rdev, ct);
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_CHECKSUM_INVALID;
}
if (get_cmos_value(ce->bit, ce->length, dest) != CB_SUCCESS) {
rdev_munmap(&rdev, ct);
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_ACCESS_ERROR;
}
rdev_munmap(&rdev, ct);
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_SUCCESS;
}
static enum cb_err set_cmos_value(unsigned long bit, unsigned long length,
void *vret)
{
unsigned char *ret;
unsigned long byte, byte_bit;
unsigned long i;
unsigned char uchar, mask;
unsigned int chksum_update_needed = 0;
ret = vret;
byte = bit / 8; /* find the byte where the data starts */
byte_bit = bit % 8; /* find the bit where the data starts */
if (length <= 8) { /* one byte or less */
mask = (1 << length) - 1;
mask <<= byte_bit;
uchar = cmos_read(byte);
uchar &= ~mask;
uchar |= (ret[0] << byte_bit);
cmos_write(uchar, byte);
if (byte >= LB_CKS_RANGE_START && byte <= LB_CKS_RANGE_END)
chksum_update_needed = 1;
} else { /* more that one byte so transfer the whole bytes */
if (byte_bit || length % 8)
return CB_ERR_ARG;
for (i = 0; length; i++, length -= 8, byte++) {
cmos_write(ret[i], byte);
if (byte >= LB_CKS_RANGE_START &&
byte <= LB_CKS_RANGE_END)
chksum_update_needed = 1;
}
}
if (chksum_update_needed) {
cmos_set_checksum(LB_CKS_RANGE_START, LB_CKS_RANGE_END,
LB_CKS_LOC);
}
return CB_SUCCESS;
}
unsigned int read_option_lowlevel(unsigned int start, unsigned int size,
unsigned int def)
{
printk(BIOS_NOTICE, "NOTICE: read_option() used to access CMOS "
"from non-ROMCC code, please use get_option() instead.\n");
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
const unsigned char byte = cmos_read(start / 8);
return (byte >> (start & 7U)) & ((1U << size) - 1U);
}
return def;
}
enum cb_err set_option(const char *name, void *value)
{
struct cmos_option_table *ct;
struct region_device rdev;
struct cmos_entries *ce;
unsigned long length;
size_t namelen;
int found = 0;
if (!IS_ENABLED(CONFIG_USE_OPTION_TABLE))
return CB_CMOS_OTABLE_DISABLED;
/* Figure out how long name is */
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
if (locate_cmos_layout(&rdev) != CB_SUCCESS) {
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_LAYOUT_NOT_FOUND;
}
ct = rdev_mmap_full(&rdev);
if (!ct) {
printk(BIOS_ERR, "RTC: cmos_layout.bin could not be mapped. "
"Options are disabled\n");
UNLOCK_NVRAM_CBFS_SPINLOCK();
return CB_CMOS_LAYOUT_NOT_FOUND;
}
/* find the requested entry record */
ce = (struct cmos_entries *)((unsigned char *)ct + ct->header_length);
for (; ce->tag == LB_TAG_OPTION;
ce = (struct cmos_entries *)((unsigned char *)ce + ce->size)) {
if (memcmp(ce->name, name, namelen) == 0) {
found = 1;
break;
}
}
if (!found) {
printk(BIOS_DEBUG, "WARNING: No CMOS option '%s'.\n", name);
rdev_munmap(&rdev, ct);
return CB_CMOS_OPTION_NOT_FOUND;
}
length = ce->length;
if (ce->config == 's') {
length = MAX(strlen((const char *)value) * 8, ce->length - 8);
/* make sure the string is null terminated */
if (set_cmos_value(ce->bit + ce->length - 8, 8, &(u8[]){0})
!= CB_SUCCESS) {
rdev_munmap(&rdev, ct);
return CB_CMOS_ACCESS_ERROR;
}
}
if (set_cmos_value(ce->bit, length, value) != CB_SUCCESS) {
rdev_munmap(&rdev, ct);
return CB_CMOS_ACCESS_ERROR;
}
rdev_munmap(&rdev, ct);
return CB_SUCCESS;
}
/*
* If the CMOS is cleared, the rtc_reg has the invalid date. That
* hurts some OSes. Even if we don't set USE_OPTION_TABLE, we need
* to make sure the date is valid.
*/
void cmos_check_update_date(void)
{
u8 year, century;
/* Assume hardware always supports RTC_CLK_ALTCENTURY. */
wait_uip();
century = cmos_read(RTC_CLK_ALTCENTURY);
year = cmos_read(RTC_CLK_YEAR);
/*
* TODO: If century is 0xFF, 100% that the cmos is cleared.
* Other than that, so far rtc_year is the only entry to check
* if the date is valid.
*/
if (century > 0x99 || year > 0x99) /* Invalid date */
cmos_reset_date();
}
int rtc_set(const struct rtc_time *time)
{
cmos_write(bin2bcd(time->sec), RTC_CLK_SECOND);
cmos_write(bin2bcd(time->min), RTC_CLK_MINUTE);
cmos_write(bin2bcd(time->hour), RTC_CLK_HOUR);
cmos_write(bin2bcd(time->mday), RTC_CLK_DAYOFMONTH);
cmos_write(bin2bcd(time->mon), RTC_CLK_MONTH);
cmos_write(bin2bcd(time->year % 100), RTC_CLK_YEAR);
/* Same assumption as above: We always have RTC_CLK_ALTCENTURY */
cmos_write(bin2bcd(time->year / 100), RTC_CLK_ALTCENTURY);
cmos_write(bin2bcd(time->wday + 1), RTC_CLK_DAYOFWEEK);
return 0;
}
int rtc_get(struct rtc_time *time)
{
wait_uip();
time->sec = bcd2bin(cmos_read(RTC_CLK_SECOND));
time->min = bcd2bin(cmos_read(RTC_CLK_MINUTE));
time->hour = bcd2bin(cmos_read(RTC_CLK_HOUR));
time->mday = bcd2bin(cmos_read(RTC_CLK_DAYOFMONTH));
time->mon = bcd2bin(cmos_read(RTC_CLK_MONTH));
time->year = bcd2bin(cmos_read(RTC_CLK_YEAR));
/* Same assumption as above: We always have RTC_CLK_ALTCENTURY */
time->year += bcd2bin(cmos_read(RTC_CLK_ALTCENTURY)) * 100;
time->wday = bcd2bin(cmos_read(RTC_CLK_DAYOFWEEK)) - 1;
return 0;
}
/*
* Signal coreboot proper completed -- just before running payload
* or jumping to ACPI S3 wakeup vector.
*/
void set_boot_successful(void)
{
uint8_t index, byte;
index = inb(RTC_PORT(0)) & 0x80;
index |= RTC_BOOT_BYTE;
outb(index, RTC_PORT(0));
byte = inb(RTC_PORT(1));
if (IS_ENABLED(CONFIG_SKIP_MAX_REBOOT_CNT_CLEAR)) {
/*
* Set the fallback boot bit to allow for recovery if
* the payload fails to boot.
* It is the responsibility of the payload to reset
* the normal boot bit to 1 if desired
*/
byte &= ~RTC_BOOT_NORMAL;
} else {
/* If we are in normal mode set the boot count to 0 */
if (byte & RTC_BOOT_NORMAL)
byte &= 0x0f;
}
outb(byte, RTC_PORT(1));
}