blob: f3548fcb36f26848ba790213e80adc991ea604e4 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi_device.h>
#include <amdblocks/data_fabric.h>
#include <amdblocks/pci_devs.h>
#include <arch/hpet.h>
#include <console/console.h>
#include <cpu/x86/lapic_def.h>
#include <device/pci_ops.h>
#include <soc/data_fabric.h>
#include <soc/pci_devs.h>
#include <types.h>
static void data_fabric_set_indirect_address(uint8_t func, uint16_t reg, uint8_t instance_id)
{
union df_ficaa ficaa = { .cfg_inst_acc_en = 1 };
/* convert register address to 32-bit register number */
ficaa.reg_num = reg >> 2;
ficaa.func_num = func;
ficaa.inst_id = instance_id;
pci_write_config32(SOC_DF_F4_DEV, DF_FICAA_BIOS, ficaa.raw);
}
uint32_t data_fabric_read32(uint8_t function, uint16_t reg, uint8_t instance_id)
{
/* Broadcast reads might return unexpected results when a register has different
contents in the different instances. */
if (instance_id == BROADCAST_FABRIC_ID)
return data_fabric_broadcast_read32(function, reg);
/* non-broadcast data fabric accesses need to be done via indirect access */
data_fabric_set_indirect_address(function, reg, instance_id);
return pci_read_config32(SOC_DF_F4_DEV, DF_FICAD_LO);
}
void data_fabric_write32(uint8_t function, uint16_t reg, uint8_t instance_id, uint32_t data)
{
if (instance_id == BROADCAST_FABRIC_ID) {
data_fabric_broadcast_write32(function, reg, data);
return;
}
/* non-broadcast data fabric accesses need to be done via indirect access */
data_fabric_set_indirect_address(function, reg, instance_id);
pci_write_config32(SOC_DF_F4_DEV, DF_FICAD_LO, data);
}
void data_fabric_print_mmio_conf(void)
{
uint32_t control;
uint64_t base, limit;
printk(BIOS_SPEW,
"=== Data Fabric MMIO configuration registers ===\n"
"idx control base limit\n");
for (unsigned int i = 0; i < DF_MMIO_REG_SET_COUNT; i++) {
control = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
/* Base and limit address registers don't contain the lower address bits, but
are shifted by D18F0_MMIO_SHIFT bits */
base = (uint64_t)data_fabric_broadcast_read32(0, NB_MMIO_BASE(i))
<< D18F0_MMIO_SHIFT;
limit = (uint64_t)data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i))
<< D18F0_MMIO_SHIFT;
/* Lower D18F0_MMIO_SHIFT address limit bits are all 1 */
limit += (1 << D18F0_MMIO_SHIFT) - 1;
printk(BIOS_SPEW, " %2u %8x %16llx %16llx\n",
i, control, base, limit);
}
}
void data_fabric_disable_mmio_reg(unsigned int reg)
{
union df_mmio_control ctrl = { .fabric_id = IOMS0_FABRIC_ID };
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), 0);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), 0);
}
static bool is_mmio_reg_disabled(unsigned int reg)
{
union df_mmio_control ctrl;
ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(reg));
return !(ctrl.we || ctrl.re);
}
int data_fabric_find_unused_mmio_reg(void)
{
for (unsigned int i = 0; i < DF_MMIO_REG_SET_COUNT; i++) {
if (is_mmio_reg_disabled(i))
return i;
}
return -1;
}
void data_fabric_set_mmio_np(void)
{
/*
* Mark region from HPET-LAPIC or 0xfed00000-0xfee00000-1 as NP.
*
* AGESA has already programmed the NB MMIO routing, however nothing
* is yet marked as non-posted.
*
* If there exists an overlapping routing base/limit pair, trim its
* base or limit to avoid the new NP region. If any pair exists
* completely within HPET-LAPIC range, remove it. If any pair surrounds
* HPET-LAPIC, it must be split into two regions.
*
* TODO(b/156296146): Remove the settings from AGESA and allow coreboot
* to own everything. If not practical, consider erasing all settings
* and have coreboot reprogram them. At that time, make the source
* below more flexible.
* * Note that the code relies on the granularity of the HPET and
* LAPIC addresses being sufficiently large that the shifted limits
* +/-1 are always equivalent to the non-shifted values +/-1.
*/
unsigned int i;
int reg;
uint32_t base, limit;
union df_mmio_control ctrl;
const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT;
const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT;
data_fabric_print_mmio_conf();
for (i = 0; i < DF_MMIO_REG_SET_COUNT; i++) {
/* Adjust all registers that overlap */
ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
if (!(ctrl.we || ctrl.re))
continue; /* not enabled */
base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i));
limit = data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i));
if (base > np_top || limit < np_bot)
continue; /* no overlap at all */
if (base >= np_bot && limit <= np_top) {
data_fabric_disable_mmio_reg(i); /* 100% within, so remove */
continue;
}
if (base < np_bot && limit > np_top) {
/* Split the configured region */
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
/* Although a pair could be freed later, this condition is
* very unusual and deserves analysis. Flag an error and
* leave the topmost part unconfigured. */
printk(BIOS_ERR, "Not enough NB MMIO routing registers\n");
continue;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
continue;
}
/* If still here, adjust only the base or limit */
if (base <= np_bot)
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
else
data_fabric_broadcast_write32(0, NB_MMIO_BASE(i), np_top + 1);
}
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
printk(BIOS_ERR, "cannot configure region as NP\n");
return;
}
union df_mmio_control np_ctrl = { .fabric_id = IOMS0_FABRIC_ID,
.np = 1, .we = 1, .re = 1 };
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), np_ctrl.raw);
data_fabric_print_mmio_conf();
}
static const char *data_fabric_acpi_name(const struct device *dev)
{
const char *df_acpi_names[8] = {
"DFD0",
"DFD1",
"DFD2",
"DFD3",
"DFD4",
"DFD5",
"DFD6",
"DFD7"
};
if (dev->path.type == DEVICE_PATH_PCI &&
PCI_SLOT(dev->path.pci.devfn) == DF_DEV)
return df_acpi_names[PCI_FUNC(dev->path.pci.devfn)];
printk(BIOS_ERR, "%s: Unhandled device id 0x%x\n", __func__, dev->device);
return NULL;
}
struct device_operations amd_data_fabric_ops = {
.read_resources = noop_read_resources,
.set_resources = noop_set_resources,
.acpi_name = data_fabric_acpi_name,
.acpi_fill_ssdt = acpi_device_write_pci_dev,
};