blob: 1fdcb4f4f91d15bd53addc0f74339204b15315f2 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
* Copyright (C) 2016 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <bootmode.h>
#include <string.h>
#include <arch/io.h>
#include <cbmem.h>
#include <halt.h>
#include <timestamp.h>
#include <northbridge/intel/common/mrc_cache.h>
#include <southbridge/intel/bd82x6x/me.h>
#include <southbridge/intel/bd82x6x/smbus.h>
#include <cpu/x86/msr.h>
#include <delay.h>
#include <smbios.h>
#include <memory_info.h>
#include <lib.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "sandybridge.h"
/* FIXME: no ECC support. */
/* FIXME: no support for 3-channel chipsets. */
static const char *ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active"
};
static void wait_txt_clear(void)
{
struct cpuid_result cp;
cp = cpuid_ext(0x1, 0x0);
/* Check if TXT is supported? */
if (!(cp.ecx & 0x40))
return;
/* Some TXT public bit. */
if (!(read32((void *)0xfed30010) & 1))
return;
/* Wait for TXT clear. */
while (!(read8((void *)0xfed40000) & (1 << 7)));
}
/*
* Disable a channel in ramctr_timing.
*/
static void disable_channel(ramctr_timing *ctrl, int channel) {
ctrl->rankmap[channel] = 0;
memset(&ctrl->rank_mirror[channel][0], 0, sizeof(ctrl->rank_mirror[0]));
ctrl->channel_size_mb[channel] = 0;
ctrl->cmd_stretch[channel] = 0;
ctrl->mad_dimm[channel] = 0;
memset(&ctrl->timings[channel][0], 0, sizeof(ctrl->timings[0]));
memset(&ctrl->info.dimm[channel][0], 0, sizeof(ctrl->info.dimm[0]));
}
/*
* Fill cbmem with information for SMBIOS type 17.
*/
static void fill_smbios17(ramctr_timing *ctrl)
{
struct memory_info *mem_info;
int channel, slot;
struct dimm_info *dimm;
uint16_t ddr_freq;
dimm_info *info = &ctrl->info;
ddr_freq = (1000 << 8) / ctrl->tCK;
/*
* Allocate CBMEM area for DIMM information used to populate SMBIOS
* table 17
*/
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: 0x%p\n", mem_info);
if (!mem_info)
return;
memset(mem_info, 0, sizeof(*mem_info));
FOR_ALL_CHANNELS for (slot = 0; slot < NUM_SLOTS; slot++) {
dimm = &mem_info->dimm[mem_info->dimm_cnt];
if (info->dimm[channel][slot].size_mb) {
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = ddr_freq;
dimm->dimm_size = info->dimm[channel][slot].size_mb;
dimm->channel_num = channel;
dimm->rank_per_dimm = info->dimm[channel][slot].ranks;
dimm->dimm_num = slot;
memcpy(dimm->module_part_number,
info->dimm[channel][slot].part_number, 16);
dimm->mod_id = info->dimm[channel][slot].manufacturer_id;
dimm->mod_type = info->dimm[channel][slot].dimm_type;
dimm->bus_width = info->dimm[channel][slot].width;
mem_info->dimm_cnt++;
}
}
}
/*
* Dump in the log memory controller configuration as read from the memory
* controller registers.
*/
static void report_memory_config(void)
{
u32 addr_decoder_common, addr_decode_ch[NUM_CHANNELS];
int i;
addr_decoder_common = MCHBAR32(0x5000);
addr_decode_ch[0] = MCHBAR32(0x5004);
addr_decode_ch[1] = MCHBAR32(0x5008);
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
(MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
addr_decoder_common & 3, (addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
u32 ch_conf = addr_decode_ch[i];
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i,
ch_conf);
printk(BIOS_DEBUG, " ECC %s\n",
ecc_decoder[(ch_conf >> 24) & 3]);
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " DIMMA %d MB width x%d %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? 16 : 8,
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
printk(BIOS_DEBUG, " DIMMB %d MB width x%d %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? 16 : 8,
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
/*
* Return CRC16 match for all SPDs.
*/
static int verify_crc16_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
int channel, slot, spd_slot;
int match = 1;
FOR_ALL_CHANNELS {
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
match &= ctrl->spd_crc[channel][slot] ==
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
}
}
return match;
}
void read_spd(spd_raw_data * spd, u8 addr, bool id_only)
{
int j;
if (id_only) {
for (j = 117; j < 128; j++)
(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
} else {
for (j = 0; j < 256; j++)
(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
}
}
static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
int dimms = 0, dimms_on_channel;
int channel, slot, spd_slot;
dimm_info *dimm = &ctrl->info;
memset (ctrl->rankmap, 0, sizeof(ctrl->rankmap));
ctrl->extended_temperature_range = 1;
ctrl->auto_self_refresh = 1;
FOR_ALL_CHANNELS {
ctrl->channel_size_mb[channel] = 0;
dimms_on_channel = 0;
/* count dimms on channel */
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
if (dimm->dimm[channel][slot].dram_type == SPD_MEMORY_TYPE_SDRAM_DDR3)
dimms_on_channel++;
}
for (slot = 0; slot < NUM_SLOTS; slot++) {
spd_slot = 2 * channel + slot;
/* search for XMP profile */
spd_xmp_decode_ddr3(&dimm->dimm[channel][slot],
spd[spd_slot],
DDR3_XMP_PROFILE_1);
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
printram("No valid XMP profile found.\n");
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
} else if (dimms_on_channel > dimm->dimm[channel][slot].dimms_per_channel) {
printram("XMP profile supports %u DIMMs, but %u DIMMs are installed.\n",
dimm->dimm[channel][slot].dimms_per_channel,
dimms_on_channel);
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
} else if (dimm->dimm[channel][slot].voltage != 1500) {
/* TODO: support other DDR3 voltage than 1500mV */
printram("XMP profile's requested %u mV is unsupported.\n",
dimm->dimm[channel][slot].voltage);
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
}
/* fill in CRC16 for MRC cache */
ctrl->spd_crc[channel][slot] =
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
// set dimm invalid
dimm->dimm[channel][slot].ranks = 0;
dimm->dimm[channel][slot].size_mb = 0;
continue;
}
dram_print_spd_ddr3(&dimm->dimm[channel][slot]);
dimms++;
ctrl->rank_mirror[channel][slot * 2] = 0;
ctrl->rank_mirror[channel][slot * 2 + 1] = dimm->dimm[channel][slot].flags.pins_mirrored;
ctrl->channel_size_mb[channel] += dimm->dimm[channel][slot].size_mb;
ctrl->auto_self_refresh &= dimm->dimm[channel][slot].flags.asr;
ctrl->extended_temperature_range &= dimm->dimm[channel][slot].flags.ext_temp_refresh;
ctrl->rankmap[channel] |= ((1 << dimm->dimm[channel][slot].ranks) - 1) << (2 * slot);
printk(BIOS_DEBUG, "channel[%d] rankmap = 0x%x\n",
channel, ctrl->rankmap[channel]);
}
if ((ctrl->rankmap[channel] & 3) && (ctrl->rankmap[channel] & 0xc)
&& dimm->dimm[channel][0].reference_card <= 5 && dimm->dimm[channel][1].reference_card <= 5) {
const int ref_card_offset_table[6][6] = {
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 2, 2, },
{ 0, 0, 0, 0, 1, 1, },
{ 2, 2, 2, 1, 0, 0, },
{ 2, 2, 2, 1, 0, 0, },
};
ctrl->ref_card_offset[channel] = ref_card_offset_table[dimm->dimm[channel][0].reference_card]
[dimm->dimm[channel][1].reference_card];
} else
ctrl->ref_card_offset[channel] = 0;
}
if (!dimms)
die("No DIMMs were found");
}
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK)
{
u32 FRQ;
FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
static u32 get_REFI(u32 tCK)
{
/* Get REFI based on MCU frequency using the following rule:
* _________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320 };
return frq_refi_map[get_FRQ(tCK) - 3];
}
static u8 get_XSOffset(u32 tCK)
{
/* Get XSOffset based on MCU frequency using the following rule:
* _________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
return frq_xs_map[get_FRQ(tCK) - 3];
}
static u8 get_MOD(u32 tCK)
{
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
return frq_mod_map[get_FRQ(tCK) - 3];
}
static u8 get_WLO(u32 tCK)
{
/* Get WLO based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
return frq_wlo_map[get_FRQ(tCK) - 3];
}
static u8 get_CKE(u32 tCK)
{
/* Get CKE based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
return frq_cke_map[get_FRQ(tCK) - 3];
}
static u8 get_XPDLL(u32 tCK)
{
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
return frq_xpdll_map[get_FRQ(tCK) - 3];
}
static u8 get_XP(u32 tCK)
{
/* Get XP based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
return frq_xp_map[get_FRQ(tCK) - 3];
}
static u8 get_AONPD(u32 tCK)
{
/* Get AONPD based on MCU frequency using the following rule:
* ________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
return frq_aonpd_map[get_FRQ(tCK) - 3];
}
static u32 get_COMP2(u32 tCK)
{
/* Get COMP2 based on MCU frequency using the following rule:
* ___________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
*/
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
0xC6369CC, 0xC42514C, 0xC21410C
};
return frq_comp2_map[get_FRQ(tCK) - 3];
}
static void dram_timing(ramctr_timing * ctrl)
{
u8 val;
u32 val32;
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->reg_320c_range_threshold = 13;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->reg_320c_range_threshold = 16;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->reg_320c_range_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->reg_320c_range_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
val32 = (1000 << 8) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS latency */
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
&& (ctrl->cas_supported >> (val - MIN_CAS))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - MIN_CAS)))) {
printk(BIOS_ERR, "CAS %uT not supported. ", val);
val = MAX_CAS;
/* Find highest supported CAS latency */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1))
val--;
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
}
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing * ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else {
die ("No lock frequency found");
}
/* Frequency multiplier. */
u32 FRQ = get_FRQ(ctrl->tCK);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing * ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(0x5084) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK);
MCHBAR32(0x3714) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(0x1810 + channel * 0x100) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(0x5f08) |= 0x100;
udelay(20);
printram("done\n");
}
static void save_timings(ramctr_timing *ctrl)
{
/* Save the MRC S3 restore data to cbmem */
store_current_mrc_cache(ctrl, sizeof(*ctrl));
}
static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(0x5034) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(0x4e80) = 0x5500;
/* Set scheduler parameters */
MCHBAR32(0x4c20) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(0x5030) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}
static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
{
int me_uma_size;
int cbmem_was_inited;
ramctr_timing ctrl;
int fast_boot;
spd_raw_data spds[4];
struct mrc_data_container *mrc_cache;
ramctr_timing *ctrl_cached;
int err;
MCHBAR32(0x5f00) |= 1;
report_platform_info();
/* Wait for ME to be ready */
intel_early_me_init();
me_uma_size = intel_early_me_uma_size();
printk(BIOS_DEBUG, "Starting native Platform init\n");
u32 reg_5d10;
wait_txt_clear();
wrmsr(0x000002e6, (msr_t) { .lo = 0, .hi = 0 });
reg_5d10 = read32(DEFAULT_MCHBAR + 0x5d10); // !!! = 0x00000000
if ((pcie_read_config16(SOUTHBRIDGE, 0xa2) & 0xa0) == 0x20 /* 0x0004 */
&& reg_5d10 && !s3resume) {
write32(DEFAULT_MCHBAR + 0x5d10, 0);
/* Need reset. */
outb(0x6, 0xcf9);
halt();
}
early_pch_init_native();
early_thermal_init();
/* try to find timings in MRC cache */
mrc_cache = find_current_mrc_cache();
if (!mrc_cache || (mrc_cache->mrc_data_size < sizeof(ctrl))) {
if (s3resume) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
ctrl_cached = NULL;
} else {
ctrl_cached = (ramctr_timing *)mrc_cache->mrc_data;
}
/* verify MRC cache for fast boot */
if (!s3resume && ctrl_cached) {
/* Load SPD unique information data. */
memset(spds, 0, sizeof(spds));
mainboard_get_spd(spds, 1);
/* check SPD CRC16 to make sure the DIMMs haven't been replaced */
fast_boot = verify_crc16_spds_ddr3(spds, ctrl_cached);
if (!fast_boot)
printk(BIOS_DEBUG, "Stored timings CRC16 mismatch.\n");
} else {
fast_boot = s3resume;
}
if (fast_boot) {
printk(BIOS_DEBUG, "Trying stored timings.\n");
memcpy(&ctrl, ctrl_cached, sizeof(ctrl));
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
if (err) {
if (s3resume) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
/* no need to erase bad mrc cache here, it gets overwritten on
* successful boot. */
printk(BIOS_ERR, "Stored timings are invalid !\n");
fast_boot = 0;
}
}
if (!fast_boot) {
/* Reset internal state */
memset(&ctrl, 0, sizeof(ctrl));
ctrl.mobile = mobile;
ctrl.tCK = min_tck;
/* Get DDR3 SPD data */
memset(spds, 0, sizeof(spds));
mainboard_get_spd(spds, 0);
dram_find_spds_ddr3(spds, &ctrl);
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
}
if (err) {
/* fallback: disable failing channel */
printk(BIOS_ERR, "RAM training failed, trying fallback.\n");
printram("Disable failing channel.\n");
/* Reset internal state */
memset(&ctrl, 0, sizeof(ctrl));
ctrl.mobile = mobile;
ctrl.tCK = min_tck;
/* Reset DDR3 frequency */
dram_find_spds_ddr3(spds, &ctrl);
/* disable failing channel */
disable_channel(&ctrl, GET_ERR_CHANNEL(err));
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
}
if (err)
die("raminit failed");
/* FIXME: should be hardware revision-dependent. */
write32(DEFAULT_MCHBAR + 0x5024, 0x00a030ce);
set_scrambling_seed(&ctrl);
set_42a0(&ctrl);
final_registers(&ctrl);
/* Zone config */
dram_zones(&ctrl, 0);
if (!fast_boot)
quick_ram_check();
intel_early_me_status();
intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
intel_early_me_status();
report_memory_config();
cbmem_was_inited = !cbmem_recovery(s3resume);
if (!fast_boot)
save_timings(&ctrl);
if (s3resume && !cbmem_was_inited) {
/* Failed S3 resume, reset to come up cleanly */
outb(0x6, 0xcf9);
halt();
}
fill_smbios17(&ctrl);
}
void perform_raminit(int s3resume)
{
post_code(0x3a);
timestamp_add_now(TS_BEFORE_INITRAM);
init_dram_ddr3(1, get_mem_min_tck(), s3resume);
}