blob: fd2a90f815ad958131fbe388e659808b38cebfd0 [file] [log] [blame]
/*
* Clock setup for SMDK5250 board based on EXYNOS5
*
* Copyright (C) 2012 Samsung Electronics
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#if 0
#include <common.h>
#include <config.h>
//#include <fdtdec.h>
#include <arch/io.h>
#include <asm/arch/board.h>
#include <asm/arch/clk.h>
#include <asm/arch/clock.h>
#include <cpu/samsung/exynos5250/cpu.h>
#include <asm/arch/gpio.h>
#include <asm/arch-exynos/spl.h>
#endif
#include <delay.h>
#include <stdlib.h>
#include <types.h>
#include <system.h>
#include <console/console.h>
#include <cpu/samsung/exynos5-common/spl.h>
#include <cpu/samsung/exynos5250/clk.h>
#include <cpu/samsung/exynos5250/cpu.h>
#include <cpu/samsung/exynos5250/dmc.h>
#include <cpu/samsung/exynos5250/s5p-dp.h>
#include <cpu/samsung/s5p-common/clk.h>
#include "clock_init.h"
#include "setup.h"
//DECLARE_GLOBAL_DATA_PTR;
struct arm_clk_ratios arm_clk_ratios[] = {
{
.arm_freq_mhz = 600,
.apll_mdiv = 0xc8,
.apll_pdiv = 0x4,
.apll_sdiv = 0x1,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x2,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x1,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 800,
.apll_mdiv = 0x64,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x3,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x2,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1000,
.apll_mdiv = 0x7d,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x4,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x2,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1200,
.apll_mdiv = 0x96,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x5,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1400,
.apll_mdiv = 0xaf,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x6,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1700,
.apll_mdiv = 0x1a9,
.apll_pdiv = 0x6,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x6,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}
};
struct mem_timings mem_timings[] = {
{
.mem_manuf = MEM_MANUF_ELPIDA,
.mem_type = DDR_MODE_DDR3,
.frequency_mhz = 800,
.mpll_mdiv = 0x64,
.mpll_pdiv = 0x3,
.mpll_sdiv = 0x0,
.cpll_mdiv = 0xde,
.cpll_pdiv = 0x4,
.cpll_sdiv = 0x2,
.gpll_mdiv = 0x215,
.gpll_pdiv = 0xc,
.gpll_sdiv = 0x1,
.epll_mdiv = 0x60,
.epll_pdiv = 0x3,
.epll_sdiv = 0x3,
.vpll_mdiv = 0x96,
.vpll_pdiv = 0x3,
.vpll_sdiv = 0x2,
.bpll_mdiv = 0x64,
.bpll_pdiv = 0x3,
.bpll_sdiv = 0x0,
.use_bpll = 0,
.pclk_cdrex_ratio = 0x5,
.direct_cmd_msr = {
0x00020018, 0x00030000, 0x00010042, 0x00000d70
},
.timing_ref = 0x000000bb,
.timing_row = 0x8c36660f,
.timing_data = 0x3630580b,
.timing_power = 0x41000a44,
.phy0_dqs = 0x08080808,
.phy1_dqs = 0x08080808,
.phy0_dq = 0x08080808,
.phy1_dq = 0x08080808,
.phy0_tFS = 0x4,
.phy1_tFS = 0x4,
.phy0_pulld_dqs = 0xf,
.phy1_pulld_dqs = 0xf,
.lpddr3_ctrl_phy_reset = 0x1,
.ctrl_start_point = 0x10,
.ctrl_inc = 0x10,
.ctrl_start = 0x1,
.ctrl_dll_on = 0x1,
.ctrl_ref = 0x8,
.ctrl_force = 0x1a,
.ctrl_rdlat = 0x0b,
.ctrl_bstlen = 0x08,
.fp_resync = 0x8,
.iv_size = 0x7,
.dfi_init_start = 1,
.aref_en = 1,
.rd_fetch = 0x3,
.zq_mode_dds = 0x7,
.zq_mode_term = 0x1,
.zq_mode_noterm = 0,
/*
* Dynamic Clock: Always Running
* Memory Burst length: 8
* Number of chips: 1
* Memory Bus width: 32 bit
* Memory Type: DDR3
* Additional Latancy for PLL: 0 Cycle
*/
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
DMC_MEMCONTROL_DPWRDN_DISABLE |
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
DMC_MEMCONTROL_TP_DISABLE |
DMC_MEMCONTROL_DSREF_ENABLE |
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
DMC_MEMCONTROL_NUM_CHIP_1 |
DMC_MEMCONTROL_BL_8 |
DMC_MEMCONTROL_PZQ_DISABLE |
DMC_MEMCONTROL_MRR_BYTE_7_0,
.memconfig = DMC_MEMCONFIGx_CHIP_MAP_INTERLEAVED |
DMC_MEMCONFIGx_CHIP_COL_10 |
DMC_MEMCONFIGx_CHIP_ROW_15 |
DMC_MEMCONFIGx_CHIP_BANK_8,
.membaseconfig0 = DMC_MEMBASECONFIG_VAL(0x40),
.membaseconfig1 = DMC_MEMBASECONFIG_VAL(0x80),
.prechconfig_tp_cnt = 0xff,
.dpwrdn_cyc = 0xff,
.dsref_cyc = 0xffff,
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
DMC_CONCONTROL_RD_FETCH_DISABLE |
DMC_CONCONTROL_EMPTY_DISABLE |
DMC_CONCONTROL_AREF_EN_DISABLE |
DMC_CONCONTROL_IO_PD_CON_DISABLE,
.dmc_channels = 2,
.chips_per_channel = 2,
.chips_to_configure = 1,
.send_zq_init = 1,
.impedance = IMP_OUTPUT_DRV_30_OHM,
.gate_leveling_enable = 0,
}, {
.mem_manuf = MEM_MANUF_SAMSUNG,
.mem_type = DDR_MODE_DDR3,
.frequency_mhz = 800,
.mpll_mdiv = 0x64,
.mpll_pdiv = 0x3,
.mpll_sdiv = 0x0,
.cpll_mdiv = 0xde,
.cpll_pdiv = 0x4,
.cpll_sdiv = 0x2,
.gpll_mdiv = 0x215,
.gpll_pdiv = 0xc,
.gpll_sdiv = 0x1,
.epll_mdiv = 0x60,
.epll_pdiv = 0x3,
.epll_sdiv = 0x3,
.vpll_mdiv = 0x96,
.vpll_pdiv = 0x3,
.vpll_sdiv = 0x2,
.bpll_mdiv = 0x64,
.bpll_pdiv = 0x3,
.bpll_sdiv = 0x0,
.use_bpll = 0,
.pclk_cdrex_ratio = 0x5,
.direct_cmd_msr = {
0x00020018, 0x00030000, 0x00010000, 0x00000d70
},
.timing_ref = 0x000000bb,
.timing_row = 0x8c36660f,
.timing_data = 0x3630580b,
.timing_power = 0x41000a44,
.phy0_dqs = 0x08080808,
.phy1_dqs = 0x08080808,
.phy0_dq = 0x08080808,
.phy1_dq = 0x08080808,
.phy0_tFS = 0x8,
.phy1_tFS = 0x8,
.phy0_pulld_dqs = 0xf,
.phy1_pulld_dqs = 0xf,
.lpddr3_ctrl_phy_reset = 0x1,
.ctrl_start_point = 0x10,
.ctrl_inc = 0x10,
.ctrl_start = 0x1,
.ctrl_dll_on = 0x1,
.ctrl_ref = 0x8,
.ctrl_force = 0x1a,
.ctrl_rdlat = 0x0b,
.ctrl_bstlen = 0x08,
.fp_resync = 0x8,
.iv_size = 0x7,
.dfi_init_start = 1,
.aref_en = 1,
.rd_fetch = 0x3,
.zq_mode_dds = 0x5,
.zq_mode_term = 0x1,
.zq_mode_noterm = 1,
/*
* Dynamic Clock: Always Running
* Memory Burst length: 8
* Number of chips: 1
* Memory Bus width: 32 bit
* Memory Type: DDR3
* Additional Latancy for PLL: 0 Cycle
*/
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
DMC_MEMCONTROL_DPWRDN_DISABLE |
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
DMC_MEMCONTROL_TP_DISABLE |
DMC_MEMCONTROL_DSREF_ENABLE |
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
DMC_MEMCONTROL_NUM_CHIP_1 |
DMC_MEMCONTROL_BL_8 |
DMC_MEMCONTROL_PZQ_DISABLE |
DMC_MEMCONTROL_MRR_BYTE_7_0,
.memconfig = DMC_MEMCONFIGx_CHIP_MAP_INTERLEAVED |
DMC_MEMCONFIGx_CHIP_COL_10 |
DMC_MEMCONFIGx_CHIP_ROW_15 |
DMC_MEMCONFIGx_CHIP_BANK_8,
.membaseconfig0 = DMC_MEMBASECONFIG_VAL(0x40),
.membaseconfig1 = DMC_MEMBASECONFIG_VAL(0x80),
.prechconfig_tp_cnt = 0xff,
.dpwrdn_cyc = 0xff,
.dsref_cyc = 0xffff,
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
DMC_CONCONTROL_RD_FETCH_DISABLE |
DMC_CONCONTROL_EMPTY_DISABLE |
DMC_CONCONTROL_AREF_EN_DISABLE |
DMC_CONCONTROL_IO_PD_CON_DISABLE,
.dmc_channels = 2,
.chips_per_channel = 2,
.chips_to_configure = 1,
.send_zq_init = 1,
.impedance = IMP_OUTPUT_DRV_40_OHM,
.gate_leveling_enable = 1,
},
{
.mem_manuf = MEM_MANUF_ELPIDA,
.mem_type = DDR_MODE_DDR3,
.frequency_mhz = 780,
.mpll_mdiv = 0x64,
.mpll_pdiv = 0x3,
.mpll_sdiv = 0x0,
.cpll_mdiv = 0xde,
.cpll_pdiv = 0x4,
.cpll_sdiv = 0x2,
.gpll_mdiv = 0x215,
.gpll_pdiv = 0xc,
.gpll_sdiv = 0x1,
.epll_mdiv = 0x60,
.epll_pdiv = 0x3,
.epll_sdiv = 0x3,
.vpll_mdiv = 0x96,
.vpll_pdiv = 0x3,
.vpll_sdiv = 0x2,
.bpll_mdiv = 0x82,
.bpll_pdiv = 0x4,
.bpll_sdiv = 0x0,
.use_bpll = 1,
.pclk_cdrex_ratio = 0x5,
.direct_cmd_msr = {
0x00020018, 0x00030000, 0x00010042, 0x00000d70
},
.timing_ref = 0x000000bb,
.timing_row = 0x8c36660f,
.timing_data = 0x3630580b,
.timing_power = 0x41000a44,
.phy0_dqs = 0x08080808,
.phy1_dqs = 0x08080808,
.phy0_dq = 0x08080808,
.phy1_dq = 0x08080808,
.phy0_tFS = 0x4,
.phy1_tFS = 0x4,
.phy0_pulld_dqs = 0xf,
.phy1_pulld_dqs = 0xf,
.lpddr3_ctrl_phy_reset = 0x1,
.ctrl_start_point = 0x10,
.ctrl_inc = 0x10,
.ctrl_start = 0x1,
.ctrl_dll_on = 0x1,
.ctrl_ref = 0x8,
.ctrl_force = 0x1a,
.ctrl_rdlat = 0x0b,
.ctrl_bstlen = 0x08,
.fp_resync = 0x8,
.iv_size = 0x7,
.dfi_init_start = 1,
.aref_en = 1,
.rd_fetch = 0x3,
.zq_mode_dds = 0x7,
.zq_mode_term = 0x1,
.zq_mode_noterm = 0,
/*
* Dynamic Clock: Always Running
* Memory Burst length: 8
* Number of chips: 1
* Memory Bus width: 32 bit
* Memory Type: DDR3
* Additional Latancy for PLL: 0 Cycle
*/
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
DMC_MEMCONTROL_DPWRDN_DISABLE |
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
DMC_MEMCONTROL_TP_DISABLE |
DMC_MEMCONTROL_DSREF_ENABLE |
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
DMC_MEMCONTROL_NUM_CHIP_1 |
DMC_MEMCONTROL_BL_8 |
DMC_MEMCONTROL_PZQ_DISABLE |
DMC_MEMCONTROL_MRR_BYTE_7_0,
.memconfig = DMC_MEMCONFIGx_CHIP_MAP_INTERLEAVED |
DMC_MEMCONFIGx_CHIP_COL_10 |
DMC_MEMCONFIGx_CHIP_ROW_15 |
DMC_MEMCONFIGx_CHIP_BANK_8,
.membaseconfig0 = DMC_MEMBASECONFIG_VAL(0x40),
.membaseconfig1 = DMC_MEMBASECONFIG_VAL(0x80),
.prechconfig_tp_cnt = 0xff,
.dpwrdn_cyc = 0xff,
.dsref_cyc = 0xffff,
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
DMC_CONCONTROL_RD_FETCH_DISABLE |
DMC_CONCONTROL_EMPTY_DISABLE |
DMC_CONCONTROL_AREF_EN_DISABLE |
DMC_CONCONTROL_IO_PD_CON_DISABLE,
.dmc_channels = 2,
.chips_per_channel = 2,
.chips_to_configure = 1,
.send_zq_init = 1,
.impedance = IMP_OUTPUT_DRV_30_OHM,
.gate_leveling_enable = 0,
}, {
.mem_manuf = MEM_MANUF_SAMSUNG,
.mem_type = DDR_MODE_DDR3,
.frequency_mhz = 780,
.mpll_mdiv = 0x64,
.mpll_pdiv = 0x3,
.mpll_sdiv = 0x0,
.cpll_mdiv = 0xde,
.cpll_pdiv = 0x4,
.cpll_sdiv = 0x2,
.gpll_mdiv = 0x215,
.gpll_pdiv = 0xc,
.gpll_sdiv = 0x1,
.epll_mdiv = 0x60,
.epll_pdiv = 0x3,
.epll_sdiv = 0x3,
.vpll_mdiv = 0x96,
.vpll_pdiv = 0x3,
.vpll_sdiv = 0x2,
.bpll_mdiv = 0x82,
.bpll_pdiv = 0x4,
.bpll_sdiv = 0x0,
.use_bpll = 1,
.pclk_cdrex_ratio = 0x5,
.direct_cmd_msr = {
0x00020018, 0x00030000, 0x00010000, 0x00000d70
},
.timing_ref = 0x000000bb,
.timing_row = 0x8c36660f,
.timing_data = 0x3630580b,
.timing_power = 0x41000a44,
.phy0_dqs = 0x08080808,
.phy1_dqs = 0x08080808,
.phy0_dq = 0x08080808,
.phy1_dq = 0x08080808,
.phy0_tFS = 0x8,
.phy1_tFS = 0x8,
.phy0_pulld_dqs = 0xf,
.phy1_pulld_dqs = 0xf,
.lpddr3_ctrl_phy_reset = 0x1,
.ctrl_start_point = 0x10,
.ctrl_inc = 0x10,
.ctrl_start = 0x1,
.ctrl_dll_on = 0x1,
.ctrl_ref = 0x8,
.ctrl_force = 0x1a,
.ctrl_rdlat = 0x0b,
.ctrl_bstlen = 0x08,
.fp_resync = 0x8,
.iv_size = 0x7,
.dfi_init_start = 1,
.aref_en = 1,
.rd_fetch = 0x3,
.zq_mode_dds = 0x5,
.zq_mode_term = 0x1,
.zq_mode_noterm = 1,
/*
* Dynamic Clock: Always Running
* Memory Burst length: 8
* Number of chips: 1
* Memory Bus width: 32 bit
* Memory Type: DDR3
* Additional Latancy for PLL: 0 Cycle
*/
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
DMC_MEMCONTROL_DPWRDN_DISABLE |
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
DMC_MEMCONTROL_TP_DISABLE |
DMC_MEMCONTROL_DSREF_ENABLE |
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
DMC_MEMCONTROL_NUM_CHIP_1 |
DMC_MEMCONTROL_BL_8 |
DMC_MEMCONTROL_PZQ_DISABLE |
DMC_MEMCONTROL_MRR_BYTE_7_0,
.memconfig = DMC_MEMCONFIGx_CHIP_MAP_INTERLEAVED |
DMC_MEMCONFIGx_CHIP_COL_10 |
DMC_MEMCONFIGx_CHIP_ROW_15 |
DMC_MEMCONFIGx_CHIP_BANK_8,
.membaseconfig0 = DMC_MEMBASECONFIG_VAL(0x40),
.membaseconfig1 = DMC_MEMBASECONFIG_VAL(0x80),
.prechconfig_tp_cnt = 0xff,
.dpwrdn_cyc = 0xff,
.dsref_cyc = 0xffff,
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
DMC_CONCONTROL_RD_FETCH_DISABLE |
DMC_CONCONTROL_EMPTY_DISABLE |
DMC_CONCONTROL_AREF_EN_DISABLE |
DMC_CONCONTROL_IO_PD_CON_DISABLE,
.dmc_channels = 2,
.chips_per_channel = 2,
.chips_to_configure = 1,
.send_zq_init = 1,
.impedance = IMP_OUTPUT_DRV_40_OHM,
.gate_leveling_enable = 1,
}
};
/**
* Detect what memory is present based on board strappings
*
* Boards have various resistor stuff options that are supposed to match
* which SDRAM is present (and which revision of the board this is). This
* uses the resistor stuff options to figure out what memory manufacturer
* to use for matching in the memory tables.
*
* @return A MEM_MANUF_XXX constant, or -1 if an error occurred.
*/
/*
* FIXME(dhendrix): This unwinds into a mess of board-specific code. The
* board's romstage.c file should detect the memory type and pass in
* appropriate parameters to whatever calls this.
*/
#define BOARD_REV_ELPIDA_MEMORY 3
#define BOARD_REV_SAMSUNG_MEMORY 4
static int autodetect_memory(void)
{
// int board_rev = board_get_revision();
int board_rev = BOARD_REV_ELPIDA_MEMORY;
if (board_rev == -1)
return -1;
switch (board_rev) {
case BOARD_REV_SAMSUNG_MEMORY:
return MEM_MANUF_SAMSUNG;
case BOARD_REV_ELPIDA_MEMORY:
return MEM_MANUF_ELPIDA;
}
return -1;
}
#ifdef CONFIG_SPL_BUILD
/**
* Get the required memory type and speed (SPL version).
*
* In SPL we have no device tree, so we use the machine parameters
*/
int clock_get_mem_selection(enum ddr_mode *mem_type,
unsigned *frequency_mhz, unsigned *arm_freq,
enum mem_manuf *mem_manuf)
{
struct spl_machine_param *params;
params = spl_get_machine_params();
*mem_type = params->mem_type;
*frequency_mhz = params->frequency_mhz;
*arm_freq = params->arm_freq_mhz;
if (params->mem_manuf == MEM_MANUF_AUTODETECT) {
*mem_manuf = autodetect_memory();
if (*mem_manuf == -1)
return -1;
} else {
*mem_manuf = params->mem_manuf;
}
return 0;
}
#else
static const char *mem_types[DDR_MODE_COUNT] = {
"DDR2", "DDR3", "LPDDR2", "LPDDR3"
};
static const char *mem_manufs[MEM_MANUF_COUNT] = {
"autodetect", "Elpida", "Samsung"
};
int clock_get_mem_selection(enum ddr_mode *mem_type,
unsigned *frequency_mhz, unsigned *arm_freq,
enum mem_manuf *mem_manuf)
{
const char *typestr;
int node, i;
node = fdtdec_next_compatible(gd->fdt_blob, 0,
COMPAT_SAMSUNG_EXYNOS_DMC);
if (node < 0)
die("No memory information available in device tree");
typestr = fdt_getprop(gd->fdt_blob, node, "mem-type", NULL);
for (i = 0; i < DDR_MODE_COUNT; i++) {
if (!stricmp(typestr, mem_types[i]))
break;
}
if (i == DDR_MODE_COUNT)
die("Invalid memory type in device tree");
*mem_type = i;
typestr = fdt_getprop(gd->fdt_blob, node, "mem-manuf", NULL);
for (i = 0; i < MEM_MANUF_COUNT; i++) {
if (!stricmp(typestr, mem_manufs[i]))
break;
}
if (i == MEM_MANUF_COUNT)
die("Invalid memory manufacturer in device tree");
if (i == MEM_MANUF_AUTODETECT) {
*mem_manuf = autodetect_memory();
if (*mem_manuf == -1)
return -1;
} else {
*mem_manuf = i;
}
*frequency_mhz = fdtdec_get_int(gd->fdt_blob, node, "clock-frequency",
0);
if (!*frequency_mhz)
die("Invalid memory frequency in device tree");
*arm_freq = fdtdec_get_int(gd->fdt_blob, node, "arm-frequency", 0);
/* TODO: Remove all these panics/dies, and just return an error code */
if (!*arm_freq)
die("Invalid ARM frequency in device tree");
return 0;
}
const char *clock_get_mem_type_name(enum ddr_mode mem_type)
{
if (mem_type >= 0 && mem_type < DDR_MODE_COUNT)
return mem_types[mem_type];
return "<unknown>";
}
const char *clock_get_mem_manuf_name(enum mem_manuf mem_manuf)
{
if (mem_manuf >= 0 && mem_manuf < MEM_MANUF_COUNT)
return mem_manufs[mem_manuf];
return "<unknown>";
}
#endif
/* Get the ratios for setting ARM clock */
struct arm_clk_ratios *get_arm_ratios(void); /* FIXME: silence compiler... */
struct arm_clk_ratios *get_arm_ratios(void)
{
struct arm_clk_ratios *arm_ratio;
enum ddr_mode mem_type;
enum mem_manuf mem_manuf;
unsigned frequency_mhz, arm_freq;
int i;
/* TODO(sjg@chromium.org): Return NULL and have caller deal with it */
if (clock_get_mem_selection(&mem_type, &frequency_mhz,
&arm_freq, &mem_manuf))
;
for (i = 0, arm_ratio = arm_clk_ratios; i < ARRAY_SIZE(arm_clk_ratios);
i++, arm_ratio++) {
if (arm_ratio->arm_freq_mhz == arm_freq)
return arm_ratio;
}
die("get_arm_ratios: Failed to find ratio\n");
return NULL;
}
struct mem_timings *clock_get_mem_timings(void)
{
struct mem_timings *mem;
enum ddr_mode mem_type;
enum mem_manuf mem_manuf;
unsigned frequency_mhz, arm_freq;
int i;
if (!clock_get_mem_selection(&mem_type, &frequency_mhz,
&arm_freq, &mem_manuf)) {
for (i = 0, mem = mem_timings; i < ARRAY_SIZE(mem_timings);
i++, mem++) {
if (mem->mem_type == mem_type &&
mem->frequency_mhz == frequency_mhz &&
mem->mem_manuf == mem_manuf)
return mem;
}
}
/* TODO: Call panic() here */
while (1)
;
return NULL;
}
void system_clock_init()
{
struct exynos5_clock *clk = (struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
struct exynos5_mct_regs *mct_regs =
(struct exynos5_mct_regs *)EXYNOS5_MULTI_CORE_TIMER_BASE;
struct mem_timings *mem;
struct arm_clk_ratios *arm_clk_ratio;
u32 val, tmp;
/* Turn on the MCT as early as possible. */
mct_regs->g_tcon |= (1 << 8);
mem = clock_get_mem_timings();
arm_clk_ratio = get_arm_ratios();
clrbits_le32(&clk->src_cpu, MUX_APLL_SEL_MASK);
do {
val = readl(&clk->mux_stat_cpu);
} while ((val | MUX_APLL_SEL_MASK) != val);
clrbits_le32(&clk->src_core1, MUX_MPLL_SEL_MASK);
do {
val = readl(&clk->mux_stat_core1);
} while ((val | MUX_MPLL_SEL_MASK) != val);
clrbits_le32(&clk->src_top2, MUX_CPLL_SEL_MASK);
clrbits_le32(&clk->src_top2, MUX_EPLL_SEL_MASK);
clrbits_le32(&clk->src_top2, MUX_VPLL_SEL_MASK);
clrbits_le32(&clk->src_top2, MUX_GPLL_SEL_MASK);
tmp = MUX_CPLL_SEL_MASK | MUX_EPLL_SEL_MASK | MUX_VPLL_SEL_MASK
| MUX_GPLL_SEL_MASK;
do {
val = readl(&clk->mux_stat_top2);
} while ((val | tmp) != val);
clrbits_le32(&clk->src_cdrex, MUX_BPLL_SEL_MASK);
do {
val = readl(&clk->mux_stat_cdrex);
} while ((val | MUX_BPLL_SEL_MASK) != val);
/* PLL locktime */
writel(APLL_LOCK_VAL, &clk->apll_lock);
writel(MPLL_LOCK_VAL, &clk->mpll_lock);
writel(BPLL_LOCK_VAL, &clk->bpll_lock);
writel(CPLL_LOCK_VAL, &clk->cpll_lock);
writel(GPLL_LOCK_VAL, &clk->gpll_lock);
writel(EPLL_LOCK_VAL, &clk->epll_lock);
writel(VPLL_LOCK_VAL, &clk->vpll_lock);
writel(CLK_REG_DISABLE, &clk->pll_div2_sel);
writel(MUX_HPM_SEL_MASK, &clk->src_cpu);
do {
val = readl(&clk->mux_stat_cpu);
} while ((val | HPM_SEL_SCLK_MPLL) != val);
val = arm_clk_ratio->arm2_ratio << 28
| arm_clk_ratio->apll_ratio << 24
| arm_clk_ratio->pclk_dbg_ratio << 20
| arm_clk_ratio->atb_ratio << 16
| arm_clk_ratio->periph_ratio << 12
| arm_clk_ratio->acp_ratio << 8
| arm_clk_ratio->cpud_ratio << 4
| arm_clk_ratio->arm_ratio;
writel(val, &clk->div_cpu0);
do {
val = readl(&clk->div_stat_cpu0);
} while (0 != val);
writel(CLK_DIV_CPU1_VAL, &clk->div_cpu1);
do {
val = readl(&clk->div_stat_cpu1);
} while (0 != val);
/* Set APLL */
writel(APLL_CON1_VAL, &clk->apll_con1);
val = set_pll(arm_clk_ratio->apll_mdiv, arm_clk_ratio->apll_pdiv,
arm_clk_ratio->apll_sdiv);
writel(val, &clk->apll_con0);
while ((readl(&clk->apll_con0) & APLL_CON0_LOCKED) == 0)
;
/* Set MPLL */
writel(MPLL_CON1_VAL, &clk->mpll_con1);
val = set_pll(mem->mpll_mdiv, mem->mpll_pdiv, mem->mpll_sdiv);
writel(val, &clk->mpll_con0);
while ((readl(&clk->mpll_con0) & MPLL_CON0_LOCKED) == 0)
;
/*
* Configure MUX_MPLL_FOUT to choose the direct clock source
* path and avoid the fixed DIV/2 block to save power
*/
setbits_le32(&clk->pll_div2_sel, MUX_MPLL_FOUT_SEL);
/* Set BPLL */
if (mem->use_bpll) {
writel(BPLL_CON1_VAL, &clk->bpll_con1);
val = set_pll(mem->bpll_mdiv, mem->bpll_pdiv, mem->bpll_sdiv);
writel(val, &clk->bpll_con0);
while ((readl(&clk->bpll_con0) & BPLL_CON0_LOCKED) == 0)
;
setbits_le32(&clk->pll_div2_sel, MUX_BPLL_FOUT_SEL);
}
/* Set CPLL */
writel(CPLL_CON1_VAL, &clk->cpll_con1);
val = set_pll(mem->cpll_mdiv, mem->cpll_pdiv, mem->cpll_sdiv);
writel(val, &clk->cpll_con0);
while ((readl(&clk->cpll_con0) & CPLL_CON0_LOCKED) == 0)
;
/* Set GPLL */
writel(GPLL_CON1_VAL, &clk->gpll_con1);
val = set_pll(mem->gpll_mdiv, mem->gpll_pdiv, mem->gpll_sdiv);
writel(val, &clk->gpll_con0);
while ((readl(&clk->gpll_con0) & GPLL_CON0_LOCKED) == 0)
;
/* Set EPLL */
writel(EPLL_CON2_VAL, &clk->epll_con2);
writel(EPLL_CON1_VAL, &clk->epll_con1);
val = set_pll(mem->epll_mdiv, mem->epll_pdiv, mem->epll_sdiv);
writel(val, &clk->epll_con0);
while ((readl(&clk->epll_con0) & EPLL_CON0_LOCKED) == 0)
;
/* Set VPLL */
writel(VPLL_CON2_VAL, &clk->vpll_con2);
writel(VPLL_CON1_VAL, &clk->vpll_con1);
val = set_pll(mem->vpll_mdiv, mem->vpll_pdiv, mem->vpll_sdiv);
writel(val, &clk->vpll_con0);
while ((readl(&clk->vpll_con0) & VPLL_CON0_LOCKED) == 0)
;
writel(CLK_SRC_CORE0_VAL, &clk->src_core0);
writel(CLK_DIV_CORE0_VAL, &clk->div_core0);
while (readl(&clk->div_stat_core0) != 0)
;
writel(CLK_DIV_CORE1_VAL, &clk->div_core1);
while (readl(&clk->div_stat_core1) != 0)
;
writel(CLK_DIV_SYSRGT_VAL, &clk->div_sysrgt);
while (readl(&clk->div_stat_sysrgt) != 0)
;
writel(CLK_DIV_ACP_VAL, &clk->div_acp);
while (readl(&clk->div_stat_acp) != 0)
;
writel(CLK_DIV_SYSLFT_VAL, &clk->div_syslft);
while (readl(&clk->div_stat_syslft) != 0)
;
writel(CLK_SRC_TOP0_VAL, &clk->src_top0);
writel(CLK_SRC_TOP1_VAL, &clk->src_top1);
writel(TOP2_VAL, &clk->src_top2);
writel(CLK_SRC_TOP3_VAL, &clk->src_top3);
writel(CLK_DIV_TOP0_VAL, &clk->div_top0);
while (readl(&clk->div_stat_top0))
;
writel(CLK_DIV_TOP1_VAL, &clk->div_top1);
while (readl(&clk->div_stat_top1))
;
writel(CLK_SRC_LEX_VAL, &clk->src_lex);
while (1) {
val = readl(&clk->mux_stat_lex);
if (val == (val | 1))
break;
}
writel(CLK_DIV_LEX_VAL, &clk->div_lex);
while (readl(&clk->div_stat_lex))
;
writel(CLK_DIV_R0X_VAL, &clk->div_r0x);
while (readl(&clk->div_stat_r0x))
;
writel(CLK_DIV_R0X_VAL, &clk->div_r0x);
while (readl(&clk->div_stat_r0x))
;
writel(CLK_DIV_R1X_VAL, &clk->div_r1x);
while (readl(&clk->div_stat_r1x))
;
if (mem->use_bpll) {
writel(MUX_BPLL_SEL_MASK | MUX_MCLK_CDREX_SEL |
MUX_MCLK_DPHY_SEL, &clk->src_cdrex);
} else {
writel(CLK_REG_DISABLE, &clk->src_cdrex);
}
writel(CLK_DIV_CDREX_VAL, &clk->div_cdrex);
while (readl(&clk->div_stat_cdrex))
;
val = readl(&clk->src_cpu);
val |= CLK_SRC_CPU_VAL;
writel(val, &clk->src_cpu);
val = readl(&clk->src_top2);
val |= CLK_SRC_TOP2_VAL;
writel(val, &clk->src_top2);
val = readl(&clk->src_core1);
val |= CLK_SRC_CORE1_VAL;
writel(val, &clk->src_core1);
writel(CLK_SRC_FSYS0_VAL, &clk->src_fsys);
writel(CLK_DIV_FSYS0_VAL, &clk->div_fsys0);
while (readl(&clk->div_stat_fsys0))
;
writel(CLK_REG_DISABLE, &clk->clkout_cmu_cpu);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_core);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_acp);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_top);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_lex);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_r0x);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_r1x);
writel(CLK_REG_DISABLE, &clk->clkout_cmu_cdrex);
writel(CLK_SRC_PERIC0_VAL, &clk->src_peric0);
writel(CLK_DIV_PERIC0_VAL, &clk->div_peric0);
writel(CLK_SRC_PERIC1_VAL, &clk->src_peric1);
writel(CLK_DIV_PERIC1_VAL, &clk->div_peric1);
writel(CLK_DIV_PERIC2_VAL, &clk->div_peric2);
writel(SCLK_SRC_ISP_VAL, &clk->sclk_src_isp);
writel(SCLK_DIV_ISP_VAL, &clk->sclk_div_isp);
writel(CLK_DIV_ISP0_VAL, &clk->div_isp0);
writel(CLK_DIV_ISP1_VAL, &clk->div_isp1);
writel(CLK_DIV_ISP2_VAL, &clk->div_isp2);
/* FIMD1 SRC CLK SELECTION */
writel(CLK_SRC_DISP1_0_VAL, &clk->src_disp1_0);
val = MMC2_PRE_RATIO_VAL << MMC2_PRE_RATIO_OFFSET
| MMC2_RATIO_VAL << MMC2_RATIO_OFFSET
| MMC3_PRE_RATIO_VAL << MMC3_PRE_RATIO_OFFSET
| MMC3_RATIO_VAL << MMC3_RATIO_OFFSET;
writel(val, &clk->div_fsys2);
}
void clock_gate(void)
{
struct exynos5_clock *clk = (struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
/* CLK_GATE_IP_SYSRGT */
clrbits_le32(&clk->gate_ip_sysrgt, CLK_C2C_MASK);
/* CLK_GATE_IP_ACP */
clrbits_le32(&clk->gate_ip_acp, CLK_SMMUG2D_MASK |
CLK_SMMUSSS_MASK |
CLK_SMMUMDMA_MASK |
CLK_ID_REMAPPER_MASK |
CLK_G2D_MASK |
CLK_SSS_MASK |
CLK_MDMA_MASK |
CLK_SECJTAG_MASK);
/* CLK_GATE_BUS_SYSLFT */
clrbits_le32(&clk->gate_bus_syslft, CLK_EFCLK_MASK);
/* CLK_GATE_IP_ISP0 */
clrbits_le32(&clk->gate_ip_isp0, CLK_UART_ISP_MASK |
CLK_WDT_ISP_MASK |
CLK_PWM_ISP_MASK |
CLK_MTCADC_ISP_MASK |
CLK_I2C1_ISP_MASK |
CLK_I2C0_ISP_MASK |
CLK_MPWM_ISP_MASK |
CLK_MCUCTL_ISP_MASK |
CLK_INT_COMB_ISP_MASK |
CLK_SMMU_MCUISP_MASK |
CLK_SMMU_SCALERP_MASK |
CLK_SMMU_SCALERC_MASK |
CLK_SMMU_FD_MASK |
CLK_SMMU_DRC_MASK |
CLK_SMMU_ISP_MASK |
CLK_GICISP_MASK |
CLK_ARM9S_MASK |
CLK_MCUISP_MASK |
CLK_SCALERP_MASK |
CLK_SCALERC_MASK |
CLK_FD_MASK |
CLK_DRC_MASK |
CLK_ISP_MASK);
/* CLK_GATE_IP_ISP1 */
clrbits_le32(&clk->gate_ip_isp1, CLK_SPI1_ISP_MASK |
CLK_SPI0_ISP_MASK |
CLK_SMMU3DNR_MASK |
CLK_SMMUDIS1_MASK |
CLK_SMMUDIS0_MASK |
CLK_SMMUODC_MASK |
CLK_3DNR_MASK |
CLK_DIS_MASK |
CLK_ODC_MASK);
/* CLK_GATE_SCLK_ISP */
clrbits_le32(&clk->gate_sclk_isp, SCLK_MPWM_ISP_MASK);
/* CLK_GATE_IP_GSCL */
clrbits_le32(&clk->gate_ip_gscl, CLK_SMMUFIMC_LITE2_MASK |
CLK_SMMUFIMC_LITE1_MASK |
CLK_SMMUFIMC_LITE0_MASK |
CLK_SMMUGSCL3_MASK |
CLK_SMMUGSCL2_MASK |
CLK_SMMUGSCL1_MASK |
CLK_SMMUGSCL0_MASK |
CLK_GSCL_WRAP_B_MASK |
CLK_GSCL_WRAP_A_MASK |
CLK_CAMIF_TOP_MASK |
CLK_GSCL3_MASK |
CLK_GSCL2_MASK |
CLK_GSCL1_MASK |
CLK_GSCL0_MASK);
/* CLK_GATE_IP_DISP1 */
clrbits_le32(&clk->gate_ip_disp1, CLK_SMMUTVX_MASK |
CLK_ASYNCTVX_MASK |
CLK_HDMI_MASK |
CLK_MIXER_MASK |
CLK_DSIM1_MASK);
/* CLK_GATE_IP_MFC */
clrbits_le32(&clk->gate_ip_mfc, CLK_SMMUMFCR_MASK |
CLK_SMMUMFCL_MASK |
CLK_MFC_MASK);
/* CLK_GATE_IP_GEN */
clrbits_le32(&clk->gate_ip_gen, CLK_SMMUMDMA1_MASK |
CLK_SMMUJPEG_MASK |
CLK_SMMUROTATOR_MASK |
CLK_MDMA1_MASK |
CLK_JPEG_MASK |
CLK_ROTATOR_MASK);
/* CLK_GATE_IP_FSYS */
clrbits_le32(&clk->gate_ip_fsys, CLK_WDT_IOP_MASK |
CLK_SMMUMCU_IOP_MASK |
CLK_SATA_PHY_I2C_MASK |
CLK_SATA_PHY_CTRL_MASK |
CLK_MCUCTL_MASK |
CLK_NFCON_MASK |
CLK_SMMURTIC_MASK |
CLK_RTIC_MASK |
CLK_MIPI_HSI_MASK |
CLK_USBOTG_MASK |
CLK_SATA_MASK |
CLK_PDMA1_MASK |
CLK_PDMA0_MASK |
CLK_MCU_IOP_MASK);
/* CLK_GATE_IP_PERIC */
clrbits_le32(&clk->gate_ip_peric, CLK_HS_I2C3_MASK |
CLK_HS_I2C2_MASK |
CLK_HS_I2C1_MASK |
CLK_HS_I2C0_MASK |
CLK_AC97_MASK |
CLK_SPDIF_MASK |
CLK_PCM2_MASK |
CLK_PCM1_MASK |
CLK_I2S2_MASK |
CLK_SPI2_MASK |
CLK_SPI0_MASK);
/* CLK_GATE_IP_PERIS */
clrbits_le32(&clk->gate_ip_peris, CLK_RTC_MASK |
CLK_TZPC9_MASK |
CLK_TZPC8_MASK |
CLK_TZPC7_MASK |
CLK_TZPC6_MASK |
CLK_TZPC5_MASK |
CLK_TZPC4_MASK |
CLK_TZPC3_MASK |
CLK_TZPC2_MASK |
CLK_TZPC1_MASK |
CLK_TZPC0_MASK |
CLK_CHIPID_MASK);
/* CLK_GATE_BLOCK */
clrbits_le32(&clk->gate_block, CLK_ACP_MASK);
/* CLK_GATE_IP_CDREX */
clrbits_le32(&clk->gate_ip_cdrex, CLK_DPHY0_MASK |
CLK_DPHY1_MASK |
CLK_TZASC_DRBXR_MASK);
}
void clock_init_dp_clock(void)
{
struct exynos5_clock *clk = (struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
/* DP clock enable */
setbits_le32(&clk->gate_ip_disp1, CLK_GATE_DP1_ALLOW);
/* We run DP at 267 Mhz */
setbits_le32(&clk->div_disp1_0, CLK_DIV_DISP1_0_FIMD1);
}
#ifdef CONFIG_SPL_BUILD
/*
* This is a custom implementation for the udelay(), as we do not the timer
* initialise during the SPL boot. We are assuming the cpu takes 3 instruction
* pre cycle. This is based on the implementation of sdelay() function.
*/
void udelay(unsigned usec)
{
unsigned long count;
/* TODO(alim.akhtar@samsung.com): Comment on why divided by 30000000 */
count = usec * (get_pll_clk(APLL) / (3 * 10000000));
sdelay(count);
}
#endif