blob: 55f161f29eb98dfaf7a56431c8080d596c17977f [file] [log] [blame]
#include <console/console.h>
#include <arch/io.h>
#include <pc80/mc146818rtc.h>
#include <boot/coreboot_tables.h>
#include <string.h>
/* control registers - Moto names
*/
#define RTC_REG_A 10
#define RTC_REG_B 11
#define RTC_REG_C 12
#define RTC_REG_D 13
/**********************************************************************
* register details
**********************************************************************/
#define RTC_FREQ_SELECT RTC_REG_A
/* update-in-progress - set to "1" 244 microsecs before RTC goes off the bus,
* reset after update (may take 1.984ms @ 32768Hz RefClock) is complete,
* totalling to a max high interval of 2.228 ms.
*/
# define RTC_UIP 0x80
# define RTC_DIV_CTL 0x70
/* divider control: refclock values 4.194 / 1.049 MHz / 32.768 kHz */
# define RTC_REF_CLCK_4MHZ 0x00
# define RTC_REF_CLCK_1MHZ 0x10
# define RTC_REF_CLCK_32KHZ 0x20
/* 2 values for divider stage reset, others for "testing purposes only" */
# define RTC_DIV_RESET1 0x60
# define RTC_DIV_RESET2 0x70
/* Periodic intr. / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz */
# define RTC_RATE_SELECT 0x0F
# define RTC_RATE_NONE 0x00
# define RTC_RATE_32786HZ 0x01
# define RTC_RATE_16384HZ 0x02
# define RTC_RATE_8192HZ 0x03
# define RTC_RATE_4096HZ 0x04
# define RTC_RATE_2048HZ 0x05
# define RTC_RATE_1024HZ 0x06
# define RTC_RATE_512HZ 0x07
# define RTC_RATE_256HZ 0x08
# define RTC_RATE_128HZ 0x09
# define RTC_RATE_64HZ 0x0a
# define RTC_RATE_32HZ 0x0b
# define RTC_RATE_16HZ 0x0c
# define RTC_RATE_8HZ 0x0d
# define RTC_RATE_4HZ 0x0e
# define RTC_RATE_2HZ 0x0f
/**********************************************************************/
#define RTC_CONTROL RTC_REG_B
# define RTC_SET 0x80 /* disable updates for clock setting */
# define RTC_PIE 0x40 /* periodic interrupt enable */
# define RTC_AIE 0x20 /* alarm interrupt enable */
# define RTC_UIE 0x10 /* update-finished interrupt enable */
# define RTC_SQWE 0x08 /* enable square-wave output */
# define RTC_DM_BINARY 0x04 /* all time/date values are BCD if clear */
# define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */
# define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */
/**********************************************************************/
#define RTC_INTR_FLAGS RTC_REG_C
/* caution - cleared by read */
# define RTC_IRQF 0x80 /* any of the following 3 is active */
# define RTC_PF 0x40
# define RTC_AF 0x20
# define RTC_UF 0x10
/**********************************************************************/
#define RTC_VALID RTC_REG_D
# define RTC_VRT 0x80 /* valid RAM and time */
/**********************************************************************/
static inline unsigned char cmos_read(unsigned char addr)
{
int offs = 0;
if (addr >= 128) {
offs = 2;
addr -= 128;
}
outb(addr, RTC_BASE_PORT + offs + 0);
return inb(RTC_BASE_PORT + offs + 1);
}
static inline void cmos_write(unsigned char val, unsigned char addr)
{
int offs = 0;
if (addr >= 128) {
offs = 2;
addr -= 128;
}
outb(addr, RTC_BASE_PORT + offs + 0);
outb(val, RTC_BASE_PORT + offs + 1);
}
static int rtc_checksum_valid(int range_start, int range_end, int cks_loc)
{
int i;
unsigned sum, old_sum;
sum = 0;
for(i = range_start; i <= range_end; i++) {
sum += cmos_read(i);
}
sum = (~sum)&0x0ffff;
old_sum = ((cmos_read(cks_loc)<<8) | cmos_read(cks_loc+1))&0x0ffff;
return sum == old_sum;
}
static void rtc_set_checksum(int range_start, int range_end, int cks_loc)
{
int i;
unsigned sum;
sum = 0;
for(i = range_start; i <= range_end; i++) {
sum += cmos_read(i);
}
sum = ~(sum & 0x0ffff);
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
cmos_write(((sum >> 0) & 0x0ff), cks_loc+1);
}
#define RTC_CONTROL_DEFAULT (RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
#if 0 /* alpha setup */
#undef RTC_CONTROL_DEFAULT
#undef RTC_FREQ_SELECT_DEFAULT
#define RTC_CONTROL_DEFAULT (RTC_SQWE | RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
#endif
void rtc_init(int invalid)
{
unsigned char x;
int cmos_invalid, checksum_invalid;
printk_debug("RTC Init\n");
#if HAVE_OPTION_TABLE
/* See if there has been a CMOS power problem. */
x = cmos_read(RTC_VALID);
cmos_invalid = !(x & RTC_VRT);
/* See if there is a CMOS checksum error */
checksum_invalid = !rtc_checksum_valid(PC_CKS_RANGE_START,
PC_CKS_RANGE_END,PC_CKS_LOC);
if (invalid || cmos_invalid || checksum_invalid) {
printk_warning("RTC:%s%s%s zeroing cmos\n",
invalid?" Clear requested":"",
cmos_invalid?" Power Problem":"",
checksum_invalid?" Checksum invalid":"");
#if 0
cmos_write(0, 0x01);
cmos_write(0, 0x03);
cmos_write(0, 0x05);
for(i = 10; i < 48; i++) {
cmos_write(0, i);
}
if (cmos_invalid) {
/* Now setup a default date of Sat 1 January 2000 */
cmos_write(0, 0x00); /* seconds */
cmos_write(0, 0x02); /* minutes */
cmos_write(1, 0x04); /* hours */
cmos_write(7, 0x06); /* day of week */
cmos_write(1, 0x07); /* day of month */
cmos_write(1, 0x08); /* month */
cmos_write(0, 0x09); /* year */
}
#endif
}
#endif
/* Setup the real time clock */
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
/* Setup the frequency it operates at */
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
#if HAVE_OPTION_TABLE
/* See if there is a LB CMOS checksum error */
checksum_invalid = !rtc_checksum_valid(LB_CKS_RANGE_START,
LB_CKS_RANGE_END,LB_CKS_LOC);
if(checksum_invalid)
printk_debug("Invalid CMOS LB checksum\n");
/* Make certain we have a valid checksum */
rtc_set_checksum(PC_CKS_RANGE_START,
PC_CKS_RANGE_END,PC_CKS_LOC);
#endif
/* Clear any pending interrupts */
(void) cmos_read(RTC_INTR_FLAGS);
}
#if USE_OPTION_TABLE == 1
/*
* Functions to save/return values stored in the 256byte cmos.
*
* To be able to use space maximally we want to only store as many bits as
* needed, and not be limited by byte boundaries. We therefor clamp the size
* down to an unsigned int. Since the values that we are allowed to touch are
* either an enum or a hexadecimal value, this size should suit most purposes.
*
* These two functions are doing bitshifting, and are therefor a bit
* nontrivial. To understand these operations, first read the ones outside the
* loop. The ones inside the loop are just adding i to the same calculations,
* with the shift twice inverted, as negative shifts aren't nice.
*/
static unsigned int
get_cmos_value(int bit, int length)
{
unsigned int tmp;
int i;
/* negative left shift --> right shift */
tmp = cmos_read(bit / 8) >> (bit % 8);
for (i = 1; (8 * i) < ((bit % 8) + length); i++)
tmp |= cmos_read((bit / 8) + i) << ((8 * i) - (bit % 8));
/* 1 << 32 - 1 isn't cool inside an int */
if (length != 32)
tmp &= (1 << length) - 1;
return tmp;
}
static void
set_cmos_value(int bit, int length, unsigned int value)
{
unsigned int mask;
unsigned char cmos;
int i;
/* 1 << 32 - 1 isn't cool inside an int */
if (length != 32)
mask = (1 << length) - 1;
else
mask = -1;
value &= mask;
/* negative right shifts --> left shifts */
cmos = cmos_read(bit / 8);
cmos &= ~(mask << (bit % 8));
cmos |= value << (bit % 8);
cmos_write(cmos, bit / 8);
for (i = 1; (8 * i) < ((bit % 8) + length); i++) {
cmos = cmos_read((bit / 8) + i);
cmos &= ~(mask >> ((8 * i) - (bit % 8)));
cmos |= value >> ((8 * i) - (bit % 8));
cmos_write(cmos, (bit / 8) + i);
}
}
int
get_option(char *name, unsigned int *value)
{
extern struct cmos_option_table option_table;
struct cmos_option_table *ct;
struct cmos_entries *ce;
size_t namelen;
int found=0;
/* Figure out how long name is */
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
/* find the requested entry record */
ct=&option_table;
ce=(struct cmos_entries*)((unsigned char *)ct + ct->header_length);
for(;ce->tag==LB_TAG_OPTION;
ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) {
if (memcmp(ce->name, name, namelen) == 0) {
found=1;
break;
}
}
if(!found) {
printk_err("ERROR: No cmos option '%s'\n", name);
return(-2);
}
if (ce->length > 32) {
printk_err("ERROR: cmos option '%s' is too large.\n", name);
return -3;
}
*value = get_cmos_value(ce->bit, ce->length);
if(!rtc_checksum_valid(LB_CKS_RANGE_START,
LB_CKS_RANGE_END,LB_CKS_LOC))
return(-4);
return(0);
}
int
set_option(char *name, unsigned int value)
{
extern struct cmos_option_table option_table;
struct cmos_option_table *ct;
struct cmos_entries *ce;
size_t namelen;
int found = 0;
/* Figure out how long name is */
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
/* find the requested entry record */
ct = &option_table;
ce = (struct cmos_entries*) ((unsigned char *) ct + ct->header_length);
for(;ce->tag==LB_TAG_OPTION;
ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) {
if (memcmp(ce->name, name, namelen) == 0) {
found=1;
break;
}
}
if (!found) {
printk_err("ERROR: Unknown cmos option '%s'\n", name);
return(-2);
}
if (ce->length > 32) {
printk_err("ERROR: cmos option '%s' is too large.\n", name);
return -3;
}
set_cmos_value(ce->bit, ce->length, value);
/* We should not update the checksum here. */
return 0;
}
#else
int
get_option(char *name, unsigned int *value)
{
return -2;
}
int
set_option(char *name, unsigned int value)
{
return -2;
}
#endif /* USE_OPTION_TABLE */