blob: 1a825abfca7bc36eeb5d2ed06318c628dc52bf04 [file] [log] [blame]
/*
* Copyright (C) Rockchip, Inc.
* Copyright (C) Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Designware High-Definition Multimedia Interface (HDMI) driveG
*/
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <edid.h>
#include <gpio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <soc/addressmap.h>
#include <soc/hdmi.h>
#include <soc/grf.h>
#include <soc/vop.h>
#include <timer.h>
#include "chip.h"
#define AUDIO_SAMPLERATE_DEFAULT (48*KHz)
#define hdmi_debug(x...) do { if (0) printk(BIOS_DEBUG, x); } while (0)
struct rk3288_hdmi_regs * const hdmi_regs = (void *)HDMI_TX_BASE;
struct tmds_n_cts {
u32 tmds;
u32 cts;
u32 n;
};
static const struct tmds_n_cts n_cts_table[] = {
{
.tmds = 25175, .n = 6144, .cts = 25175,
}, {
.tmds = 25200, .n = 6144, .cts = 25200,
}, {
.tmds = 27000, .n = 6144, .cts = 27000,
}, {
.tmds = 27027, .n = 6144, .cts = 27027,
}, {
.tmds = 40000, .n = 6144, .cts = 40000,
}, {
.tmds = 54000, .n = 6144, .cts = 54000,
}, {
.tmds = 54054, .n = 6144, .cts = 54054,
}, {
.tmds = 65000, .n = 6144, .cts = 65000,
}, {
.tmds = 74176, .n = 11648, .cts = 140625,
}, {
.tmds = 74250, .n = 6144, .cts = 74250,
}, {
.tmds = 83500, .n = 6144, .cts = 83500,
}, {
.tmds = 106500, .n = 6144, .cts = 106500,
}, {
.tmds = 108000, .n = 6144, .cts = 108000,
}, {
.tmds = 148352, .n = 5824, .cts = 140625,
}, {
.tmds = 148500, .n = 6144, .cts = 148500,
}, {
.tmds = 297000, .n = 5120, .cts = 247500,
}
};
struct hdmi_mpll_config {
u64 mpixelclock;
/* Mode of Operation and PLL Dividers Control Register */
u32 cpce;
/* PLL Gmp Control Register */
u32 gmp;
/* PLL Current COntrol Register */
u32 curr;
};
struct hdmi_phy_config {
u64 mpixelclock;
u32 sym_ctr; /* clock symbol and transmitter control */
u32 term; /* transmission termination value */
u32 vlev_ctr; /* voltage level control */
};
static const struct hdmi_phy_config rockchip_phy_config[] = {
{
.mpixelclock = 74250,
.sym_ctr = 0x8009, .term = 0x0004, .vlev_ctr = 0x0272,
}, {
.mpixelclock = 148500,
.sym_ctr = 0x802b, .term = 0x0004, .vlev_ctr = 0x028d,
}, {
.mpixelclock = 297000,
.sym_ctr = 0x8039, .term = 0x0005, .vlev_ctr = 0x028d,
}, {
.mpixelclock = ~0ul,
.sym_ctr = 0x0000, .term = 0x0000, .vlev_ctr = 0x0000,
}
};
static const struct hdmi_mpll_config rockchip_mpll_cfg[] = {
{
.mpixelclock = 40000,
.cpce = 0x00b3, .gmp = 0x0000, .curr = 0x0018,
}, {
.mpixelclock = 65000,
.cpce = 0x0072, .gmp = 0x0001, .curr = 0x0028,
}, {
.mpixelclock = 66000,
.cpce = 0x013e, .gmp = 0x0003, .curr = 0x0038,
}, {
.mpixelclock = 83500,
.cpce = 0x0072, .gmp = 0x0001, .curr = 0x0028,
}, {
.mpixelclock = 146250,
.cpce = 0x0051, .gmp = 0x0002, .curr = 0x0038,
}, {
.mpixelclock = 148500,
.cpce = 0x0051, .gmp = 0x0003, .curr = 0x0000,
}, {
.mpixelclock = ~0ul,
.cpce = 0x0051, .gmp = 0x0003, .curr = 0x0000,
}
};
static const u32 csc_coeff_default[3][4] = {
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 }
};
static void hdmi_set_clock_regenerator(u32 n, u32 cts)
{
u8 cts3;
u8 n3;
/* first set ncts_atomic_write (if present) */
n3 = HDMI_AUD_N3_NCTS_ATOMIC_WRITE;
write32(&hdmi_regs->aud_n3, n3);
/* set cts_manual (if present) */
cts3 = HDMI_AUD_CTS3_CTS_MANUAL;
cts3 |= HDMI_AUD_CTS3_N_SHIFT_1 << HDMI_AUD_CTS3_N_SHIFT_OFFSET;
cts3 |= (cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK;
/* write cts values; cts3 must be written first */
write32(&hdmi_regs->aud_cts3, cts3);
write32(&hdmi_regs->aud_cts2, (cts >> 8) & 0xff);
write32(&hdmi_regs->aud_cts1, cts & 0xff);
/* write n values; n1 must be written last */
n3 |= (n >> 16) & HDMI_AUD_N3_AUDN19_16_MASK;
write32(&hdmi_regs->aud_n3, n3);
write32(&hdmi_regs->aud_n2, (n >> 8) & 0xff);
write32(&hdmi_regs->aud_n1, n & 0xff);
write32(&hdmi_regs->aud_inputclkfs, HDMI_AUD_INPUTCLKFS_128);
}
static int hdmi_lookup_n_cts(u32 pixel_clk)
{
int i;
for (i = 0; i < ARRAY_SIZE(n_cts_table); i++)
if (pixel_clk <= n_cts_table[i].tmds)
break;
if (i >= ARRAY_SIZE(n_cts_table))
return -1;
return i;
}
static void hdmi_audio_set_samplerate(u32 pixel_clk)
{
u32 clk_n, clk_cts;
int index;
index = hdmi_lookup_n_cts(pixel_clk);
if (index == -1) {
hdmi_debug("audio not supported for pixel clk %d\n", pixel_clk);
return;
}
clk_n = n_cts_table[index].n;
clk_cts = n_cts_table[index].cts;
hdmi_set_clock_regenerator(clk_n, clk_cts);
}
/*
* this submodule is responsible for the video data synchronization.
* for example, for rgb 4:4:4 input, the data map is defined as
* pin{47~40} <==> r[7:0]
* pin{31~24} <==> g[7:0]
* pin{15~8} <==> b[7:0]
*/
static void hdmi_video_sample(void)
{
u32 color_format = 0x01;
u8 val;
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
write32(&hdmi_regs->tx_invid0, val);
/* enable tx stuffing: when de is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
write32(&hdmi_regs->tx_instuffing, val);
write32(&hdmi_regs->tx_gydata0, 0x0);
write32(&hdmi_regs->tx_gydata1, 0x0);
write32(&hdmi_regs->tx_rcrdata0, 0x0);
write32(&hdmi_regs->tx_rcrdata1, 0x0);
write32(&hdmi_regs->tx_bcbdata0, 0x0);
write32(&hdmi_regs->tx_bcbdata1, 0x0);
}
static void hdmi_update_csc_coeffs(void)
{
u32 i, j;
u32 csc_scale = 1;
/* the csc registers are sequential, alternating msb then lsb */
for (i = 0; i < ARRAY_SIZE(csc_coeff_default); i++) {
for (j = 0; j < ARRAY_SIZE(csc_coeff_default[0]); j++) {
u32 coeff = csc_coeff_default[i][j];
write32(&hdmi_regs->csc_coef[i][j].msb, coeff >> 8);
write32(&hdmi_regs->csc_coef[i][j].lsb, coeff & 0xff);
}
}
clrsetbits_le32(&hdmi_regs->csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
csc_scale);
}
static void hdmi_video_csc(void)
{
u32 color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
u32 interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
/* configure the csc registers */
write32(&hdmi_regs->csc_cfg, interpolation);
clrsetbits_le32(&hdmi_regs->csc_scale,
HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, color_depth);
hdmi_update_csc_coeffs();
}
static void hdmi_video_packetize(void)
{
u32 output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
u32 remap_size = HDMI_VP_REMAP_YCC422_16BIT;
u32 color_depth = 0;
u8 val, vp_conf;
/* set the packetizer registers */
val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
((0 << HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
write32(&hdmi_regs->vp_pr_cd, val);
clrsetbits_le32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_PR_STUFFING_MASK,
HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE);
/* data from pixel repeater block */
vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
clrsetbits_le32(&hdmi_regs->vp_conf, HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK, vp_conf);
clrsetbits_le32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK,
1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET);
write32(&hdmi_regs->vp_remap, remap_size);
vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
clrsetbits_le32(&hdmi_regs->vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK |
HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK,
vp_conf);
clrsetbits_le32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK,
HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE);
clrsetbits_le32(&hdmi_regs->vp_conf, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
output_select);
}
static inline void hdmi_phy_test_clear(u8 bit)
{
clrsetbits_le32(&hdmi_regs->phy_tst0, HDMI_PHY_TST0_TSTCLR_MASK,
bit << HDMI_PHY_TST0_TSTCLR_OFFSET);
}
static int hdmi_phy_wait_i2c_done(u32 msec)
{
struct stopwatch phyi2c_done;
u32 val;
stopwatch_init_msecs_expire(&phyi2c_done, msec);
do {
val = read32(&hdmi_regs->ih_i2cmphy_stat0);
if (val & 0x3) {
write32(&hdmi_regs->ih_i2cmphy_stat0, val);
return 0;
}
udelay(100);
} while (!stopwatch_expired(&phyi2c_done));
return 1;
}
static void hdmi_phy_i2c_write(u16 data, u8 addr)
{
write32(&hdmi_regs->ih_i2cmphy_stat0, 0xff);
write32(&hdmi_regs->phy_i2cm_address_addr, addr);
write32(&hdmi_regs->phy_i2cm_datao_1_addr, (u8)(data >> 8));
write32(&hdmi_regs->phy_i2cm_datao_0_addr, (u8)(data >> 0));
write32(&hdmi_regs->phy_i2cm_operation_addr,
HDMI_PHY_I2CM_OPERATION_ADDR_WRITE);
hdmi_phy_wait_i2c_done(1000);
}
static void hdmi_phy_enable_power(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_PDZ_MASK,
enable << HDMI_PHY_CONF0_PDZ_OFFSET);
}
static void hdmi_phy_enable_tmds(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_ENTMDS_MASK,
enable << HDMI_PHY_CONF0_ENTMDS_OFFSET);
}
static void hdmi_phy_enable_spare(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_SPARECTRL_MASK,
enable << HDMI_PHY_CONF0_SPARECTRL_OFFSET);
}
static void hdmi_phy_gen2_pddq(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_GEN2_PDDQ_MASK,
enable << HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET);
}
static void hdmi_phy_gen2_txpwron(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0,
HDMI_PHY_CONF0_GEN2_TXPWRON_MASK,
enable << HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET);
}
static void hdmi_phy_sel_data_en_pol(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0,
HDMI_PHY_CONF0_SELDATAENPOL_MASK,
enable << HDMI_PHY_CONF0_SELDATAENPOL_OFFSET);
}
static void hdmi_phy_sel_interface_control(u8 enable)
{
clrsetbits_le32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_SELDIPIF_MASK,
enable << HDMI_PHY_CONF0_SELDIPIF_OFFSET);
}
static int hdmi_phy_configure(u32 mpixelclock)
{
struct stopwatch pll_ready;
u8 i, val;
write32(&hdmi_regs->mc_flowctrl,
HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS);
/* gen2 tx power off */
hdmi_phy_gen2_txpwron(0);
/* gen2 pddq */
hdmi_phy_gen2_pddq(1);
/* phy reset */
write32(&hdmi_regs->mc_phyrstz, HDMI_MC_PHYRSTZ_DEASSERT);
write32(&hdmi_regs->mc_phyrstz, HDMI_MC_PHYRSTZ_ASSERT);
write32(&hdmi_regs->mc_heacphy_rst, HDMI_MC_HEACPHY_RST_ASSERT);
hdmi_phy_test_clear(1);
write32(&hdmi_regs->phy_i2cm_slave_addr,
HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
hdmi_phy_test_clear(0);
/* pll/mpll cfg - always match on final entry */
for (i = 0; rockchip_mpll_cfg[i].mpixelclock != (~0ul); i++)
if (mpixelclock <= rockchip_mpll_cfg[i].mpixelclock)
break;
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].cpce, PHY_OPMODE_PLLCFG);
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].gmp, PHY_PLLGMPCTRL);
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].curr, PHY_PLLCURRCTRL);
hdmi_phy_i2c_write(0x0000, PHY_PLLPHBYCTRL);
hdmi_phy_i2c_write(0x0006, PHY_PLLCLKBISTPHASE);
for (i = 0; rockchip_phy_config[i].mpixelclock != (~0ul); i++)
if (mpixelclock <= rockchip_phy_config[i].mpixelclock)
break;
/*
* resistance term 133ohm cfg
* preemp cgf 0.00
* tx/ck lvl 10
*/
hdmi_phy_i2c_write(rockchip_phy_config[i].term, PHY_TXTERM);
hdmi_phy_i2c_write(rockchip_phy_config[i].sym_ctr, PHY_CKSYMTXCTRL);
hdmi_phy_i2c_write(rockchip_phy_config[i].vlev_ctr, PHY_VLEVCTRL);
/* remove clk term */
hdmi_phy_i2c_write(0x8000, PHY_CKCALCTRL);
hdmi_phy_enable_power(1);
/* toggle tmds enable */
hdmi_phy_enable_tmds(0);
hdmi_phy_enable_tmds(1);
/* gen2 tx power on */
hdmi_phy_gen2_txpwron(1);
hdmi_phy_gen2_pddq(0);
hdmi_phy_enable_spare(1);
/* wait for phy pll lock */
stopwatch_init_msecs_expire(&pll_ready, 5);
do {
val = read32(&hdmi_regs->phy_stat0);
if (!(val & HDMI_PHY_TX_PHY_LOCK))
return 0;
udelay(100);
} while (!stopwatch_expired(&pll_ready));
return -1;
}
static int hdmi_phy_init(u32 mpixelclock)
{
int i, ret;
/* hdmi phy spec says to do the phy initialization sequence twice */
for (i = 0; i < 2; i++) {
hdmi_phy_sel_data_en_pol(1);
hdmi_phy_sel_interface_control(0);
hdmi_phy_enable_tmds(0);
hdmi_phy_enable_power(0);
/* enable csc */
ret = hdmi_phy_configure(mpixelclock);
if (ret) {
hdmi_debug("hdmi phy config failure %d\n", ret);
return ret;
}
}
return 0;
}
static void hdmi_av_composer(const struct edid *edid)
{
u8 mdataenablepolarity = 1;
u8 inv_val;
/* set up hdmi_fc_invidconf */
inv_val = HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE;
inv_val |= ((edid->mode.pvsync == '+') ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW);
inv_val |= ((edid->mode.phsync == '+') ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW);
inv_val |= (mdataenablepolarity ?
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);
inv_val |= (edid->hdmi_monitor_detected ?
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE);
inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
inv_val |= HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
write32(&hdmi_regs->fc_invidconf, inv_val);
/* set up horizontal active pixel width */
write32(&hdmi_regs->fc_inhactv1, edid->mode.ha >> 8);
write32(&hdmi_regs->fc_inhactv0, edid->mode.ha);
/* set up vertical active lines */
write32(&hdmi_regs->fc_invactv1, edid->mode.va >> 8);
write32(&hdmi_regs->fc_invactv0, edid->mode.va);
/* set up horizontal blanking pixel region width */
write32(&hdmi_regs->fc_inhblank1, edid->mode.hbl >> 8);
write32(&hdmi_regs->fc_inhblank0, edid->mode.hbl);
/* set up vertical blanking pixel region width */
write32(&hdmi_regs->fc_invblank, edid->mode.vbl);
/* set up hsync active edge delay width (in pixel clks) */
write32(&hdmi_regs->fc_hsyncindelay1, edid->mode.hso >> 8);
write32(&hdmi_regs->fc_hsyncindelay0, edid->mode.hso);
/* set up vsync active edge delay (in lines) */
write32(&hdmi_regs->fc_vsyncindelay, edid->mode.vso);
/* set up hsync active pulse width (in pixel clks) */
write32(&hdmi_regs->fc_hsyncinwidth1, edid->mode.hspw >> 8);
write32(&hdmi_regs->fc_hsyncinwidth0, edid->mode.hspw);
/* set up vsync active edge delay (in lines) */
write32(&hdmi_regs->fc_vsyncinwidth, edid->mode.vspw);
}
/* hdmi initialization step b.4 */
static void hdmi_enable_video_path(void)
{
u8 clkdis;
/* control period minimum duration */
write32(&hdmi_regs->fc_ctrldur, 12);
write32(&hdmi_regs->fc_exctrldur, 32);
write32(&hdmi_regs->fc_exctrlspac, 1);
/* set to fill tmds data channels */
write32(&hdmi_regs->fc_ch0pream, 0x0b);
write32(&hdmi_regs->fc_ch1pream, 0x16);
write32(&hdmi_regs->fc_ch2pream, 0x21);
/* enable pixel clock and tmds data path */
clkdis = 0x7f;
clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
}
/* workaround to clear the overflow condition */
static void hdmi_clear_overflow(void)
{
u8 val, count;
/* tmds software reset */
write32(&hdmi_regs->mc_swrstz, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ);
val = read32(&hdmi_regs->fc_invidconf);
for (count = 0; count < 4; count++)
write32(&hdmi_regs->fc_invidconf, val);
}
static void hdmi_audio_set_format(void)
{
write32(&hdmi_regs->aud_conf0,
HDMI_AUD_CONF0_I2S_SELECT | HDMI_AUD_CONF0_I2S_IN_EN_0);
write32(&hdmi_regs->aud_conf1,
HDMI_AUD_CONF1_I2S_MODE_STANDARD_MODE |
HDMI_AUD_CONF1_I2S_WIDTH_16BIT);
write32(&hdmi_regs->aud_conf2, 0x00);
}
static void hdmi_audio_fifo_reset(void)
{
write32(&hdmi_regs->mc_swrstz, (u8)~HDMI_MC_SWRSTZ_II2SSWRST_REQ);
write32(&hdmi_regs->aud_conf0, HDMI_AUD_CONF0_SW_AUDIO_FIFO_RST);
write32(&hdmi_regs->aud_int, 0x00);
write32(&hdmi_regs->aud_int1, 0x00);
}
static int hdmi_setup(const struct edid *edid)
{
int ret;
hdmi_debug("hdmi, mode info : clock %d hdis %d vdis %d\n",
edid->mode.pixel_clock, edid->mode.ha, edid->mode.va);
hdmi_av_composer(edid);
ret = hdmi_phy_init(edid->mode.pixel_clock);
if (ret)
return ret;
hdmi_enable_video_path();
hdmi_audio_fifo_reset();
hdmi_audio_set_format();
hdmi_audio_set_samplerate(edid->mode.pixel_clock);
hdmi_video_packetize();
hdmi_video_csc();
hdmi_video_sample();
hdmi_clear_overflow();
return 0;
}
static void hdmi_init_interrupt(void)
{
u8 ih_mute;
/*
* boot up defaults are:
* hdmi_ih_mute = 0x03 (disabled)
* hdmi_ih_mute_* = 0x00 (enabled)
*
* disable top level interrupt bits in hdmi block
*/
ih_mute = read32(&hdmi_regs->ih_mute) |
HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;
write32(&hdmi_regs->ih_mute, ih_mute);
/* enable i2c master done irq */
write32(&hdmi_regs->i2cm_int, ~0x04);
/* enable i2c client nack % arbitration error irq */
write32(&hdmi_regs->i2cm_ctlint, ~0x44);
/* enable phy i2cm done irq */
write32(&hdmi_regs->phy_i2cm_int_addr, HDMI_PHY_I2CM_INT_ADDR_DONE_POL);
/* enable phy i2cm nack & arbitration error irq */
write32(&hdmi_regs->phy_i2cm_ctlint_addr,
HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL);
/* enable cable hot plug irq */
write32(&hdmi_regs->phy_mask0, (u8)~HDMI_PHY_HPD);
/* clear hotplug interrupts */
write32(&hdmi_regs->ih_phy_stat0, HDMI_IH_PHY_STAT0_HPD);
}
static u8 hdmi_get_plug_in_status(void)
{
u8 val = read32(&hdmi_regs->phy_stat0) & HDMI_PHY_HPD;
return !!(val);
}
static int hdmi_wait_for_hpd(void)
{
struct stopwatch hpd;
stopwatch_init_msecs_expire(&hpd, 30000);
do {
if (hdmi_get_plug_in_status())
return 0;
udelay(100);
} while (!stopwatch_expired(&hpd));
return -1;
}
static int hdmi_ddc_wait_i2c_done(int msec)
{
struct stopwatch ddci2c_done;
u32 val;
stopwatch_init_msecs_expire(&ddci2c_done, msec);
do {
val = read32(&hdmi_regs->ih_i2cm_stat0);
if (val & 0x2) {
write32(&hdmi_regs->ih_i2cm_stat0, val);
return 0;
}
udelay(100);
} while (!stopwatch_expired(&ddci2c_done));
return 1;
}
static void hdmi_ddc_reset(void)
{
clrsetbits_le32(&hdmi_regs->i2cm_softrstz, HDMI_I2CM_SOFTRSTZ,
HDMI_I2CM_SOFTRSTZ);
}
static int hdmi_read_edid(int block, u8 *buff)
{
int shift = (block % 2) * 0x80;
int edid_read_err = 0;
u32 trytime = 5;
u32 n, j, val;
/* set ddc i2c clk which devided from ddc_clk to 100khz */
write32(&hdmi_regs->i2cm_ss_scl_hcnt_0_addr, 0x7a);
write32(&hdmi_regs->i2cm_ss_scl_lcnt_0_addr, 0x8d);
clrsetbits_le32(&hdmi_regs->i2cm_div, HDMI_I2CM_DIV_FAST_STD_MODE,
HDMI_I2CM_DIV_STD_MODE);
write32(&hdmi_regs->i2cm_slave, HDMI_I2CM_SLAVE_DDC_ADDR);
write32(&hdmi_regs->i2cm_segaddr, HDMI_I2CM_SEGADDR_DDC);
write32(&hdmi_regs->i2cm_segptr, block >> 1);
while (trytime--) {
edid_read_err = 0;
for (n = 0; n < HDMI_EDID_BLOCK_SIZE/8; n++) {
write32(&hdmi_regs->i2cmess, shift + 8 * n);
if (block == 0)
clrsetbits_le32(&hdmi_regs->i2cm_operation,
HDMI_I2CM_OPT_RD8,
HDMI_I2CM_OPT_RD8);
else
clrsetbits_le32(&hdmi_regs->i2cm_operation,
HDMI_I2CM_OPT_RD8_EXT,
HDMI_I2CM_OPT_RD8_EXT);
if (hdmi_ddc_wait_i2c_done(10)) {
hdmi_ddc_reset();
edid_read_err = 1;
break;
}
for (j = 0; j < 8; j++) {
val = read32(&hdmi_regs->i2cm_buf0 + j);
buff[8 * n + j] = val;
}
}
if (!edid_read_err)
break;
}
return edid_read_err;
}
int rk_hdmi_get_edid(struct edid *edid)
{
u8 edid_buf[HDMI_EDID_BLOCK_SIZE * 2];
u32 edid_size = HDMI_EDID_BLOCK_SIZE;
gpio_t hdmi_i2c_sda = GPIO(7, C, 3);
gpio_t hdmi_i2c_scl = GPIO(7, C, 4);
int ret;
/* If SDA is low, try to clock once to fix it */
gpio_input_pullup(hdmi_i2c_sda);
if (gpio_get(hdmi_i2c_sda) == 0) {
gpio_output(hdmi_i2c_scl, 0);
udelay(1000);
gpio_input_pullup(hdmi_i2c_scl);
udelay(1000);
}
/* HDMI I2C */
write32(&rk3288_grf->iomux_i2c5sda, IOMUX_HDMI_EDP_I2C_SDA);
write32(&rk3288_grf->iomux_i2c5scl, IOMUX_HDMI_EDP_I2C_SCL);
ret = hdmi_read_edid(0, edid_buf);
if (ret) {
hdmi_debug("failed to read edid.\n");
return -1;
}
if (edid_buf[0x7e] != 0) {
hdmi_read_edid(1, edid_buf + HDMI_EDID_BLOCK_SIZE);
edid_size += HDMI_EDID_BLOCK_SIZE;
}
/* Assume usage of HDMI implies an external display in which case
* we should be lenient about errors that the EDID decoder finds. */
if (decode_edid(edid_buf, edid_size, edid))
hdmi_debug("failed to decode edid.\n");
/* Try 480p for best compatibility. */
if (set_display_mode(edid, EDID_MODE_640x480_60Hz))
hdmi_debug("failed to set mode to 640x480@60Hz\n");
return 0;
}
int rk_hdmi_enable(const struct edid *edid)
{
hdmi_setup(edid);
return 0;
}
int rk_hdmi_init(u32 vop_id)
{
int ret;
u32 val;
/* hdmi source select hdmi controller */
write32(&rk3288_grf->soc_con6, RK_SETBITS(1 << 15));
/* hdmi data from vop id */
val = (vop_id == 1) ? RK_SETBITS(1 << 4) : RK_CLRBITS(1 << 4);
write32(&rk3288_grf->soc_con6, val);
ret = hdmi_wait_for_hpd();
if (ret < 0) {
hdmi_debug("hdmi can not get hpd signal\n");
return -1;
}
hdmi_init_interrupt();
hdmi_debug("hdmi init success\n");
return 0;
}