blob: 2d28a5dbab86e09d0be421b78d50b62f3d8264fc [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <acpi/acpigen.h>
#include <amdblocks/cppc.h>
#include <amdblocks/cpu.h>
#include <console/console.h>
#include <cpu/amd/msr.h>
#include <cpu/x86/msr.h>
#include <soc/msr.h>
#include <types.h>
static uint32_t get_pstate_core_power(union pstate_msr pstate_reg)
{
uint32_t voltage_in_uvolts, current_value_amps, current_divisor, power_in_mw;
/* Get Voltage from core voltage ID */
voltage_in_uvolts = get_pstate_core_uvolts(pstate_reg);
/* Current value in amps */
current_value_amps = pstate_reg.idd_value;
/* Current divisor */
current_divisor = pstate_reg.idd_div;
/* Power in mW */
power_in_mw = (voltage_in_uvolts) / 10 * current_value_amps;
switch (current_divisor) {
case 0:
power_in_mw = power_in_mw / 100L;
break;
case 1:
power_in_mw = power_in_mw / 1000L;
break;
case 2:
power_in_mw = power_in_mw / 10000L;
break;
case 3:
/* current_divisor is set to an undefined value.*/
printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
power_in_mw = 0;
break;
}
return power_in_mw;
}
static uint32_t get_visible_pstate_count(void)
{
return (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;
}
/*
* Populate structure describing enabled p-states and return count of enabled p-states.
*/
static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
struct acpi_xpss_sw_pstate *pstate_xpss_values)
{
union pstate_msr pstate_reg;
size_t pstate_count, pstate;
uint32_t pstate_0_reg, max_pstate, latency;
pstate_count = 0;
pstate_0_reg = get_pstate_0_reg();
max_pstate = get_visible_pstate_count();
latency = get_pstate_latency();
for (pstate = 0; pstate <= max_pstate; pstate++) {
pstate_reg.raw = rdmsr(PSTATE_MSR(pstate_0_reg + pstate)).raw;
if (!pstate_reg.pstate_en)
continue;
pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_reg);
pstate_values[pstate_count].power = get_pstate_core_power(pstate_reg);
pstate_values[pstate_count].transition_latency = latency;
pstate_values[pstate_count].bus_master_latency = latency;
pstate_values[pstate_count].control_value = pstate;
pstate_values[pstate_count].status_value = pstate;
pstate_xpss_values[pstate_count].core_freq =
(uint64_t)pstate_values[pstate_count].core_freq;
pstate_xpss_values[pstate_count].power =
(uint64_t)pstate_values[pstate_count].power;
pstate_xpss_values[pstate_count].transition_latency = latency;
pstate_xpss_values[pstate_count].bus_master_latency = latency;
pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
pstate_count++;
}
return pstate_count;
}
static uint16_t get_cstate_io_base_address(void)
{
static uint16_t cstate_io_base;
if (cstate_io_base)
return cstate_io_base;
cstate_io_base = rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;
return cstate_io_base;
}
static void write_cstate_entry(acpi_cstate_t *entry, const acpi_cstate_t *data)
{
if (!data->ctype) {
printk(BIOS_WARNING, "Invalid C-state data; skipping entry.\n");
return;
}
entry->ctype = data->ctype;
entry->latency = data->latency;
entry->power = data->power;
if (data->ctype == 1) {
entry->resource = (acpi_addr_t){
.space_id = ACPI_ADDRESS_SPACE_FIXED,
.bit_width = 2,
.bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT,
.addrl = 0,
.addrh = 0,
};
} else {
entry->resource = (acpi_addr_t){
.space_id = ACPI_ADDRESS_SPACE_IO,
.bit_width = 8,
.bit_offset = 0,
/* ctype is 1-indexed while the offset into the IO address returned by
get_cstate_io_base_address() is 0-indexed */
.addrl = get_cstate_io_base_address() + data->ctype - 1,
.addrh = 0,
.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
};
}
}
static size_t get_cstate_info(acpi_cstate_t *cstate_values)
{
size_t i;
size_t cstate_count;
const acpi_cstate_t *cstate_config = get_cstate_config_data(&cstate_count);
if (cstate_count > MAX_CSTATE_COUNT) {
printk(BIOS_WARNING, "cstate_info array has too many entries. "
"Skipping last %zu entries.\n",
cstate_count - MAX_CSTATE_COUNT);
cstate_count = MAX_CSTATE_COUNT;
}
for (i = 0; i < cstate_count; i++) {
write_cstate_entry(&cstate_values[i], &cstate_config[i]);
}
return i;
}
void generate_cpu_entries(const struct device *device)
{
int logical_cores;
size_t cstate_count, pstate_count, cpu;
acpi_cstate_t cstate_values[MAX_CSTATE_COUNT] = { {0} };
struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
uint32_t threads_per_core;
const acpi_addr_t perf_ctrl = {
.space_id = ACPI_ADDRESS_SPACE_FIXED,
.bit_width = 64,
.addrl = PS_CTL_REG,
};
const acpi_addr_t perf_sts = {
.space_id = ACPI_ADDRESS_SPACE_FIXED,
.bit_width = 64,
.addrl = PS_STS_REG,
};
threads_per_core = get_threads_per_core();
cstate_count = get_cstate_info(cstate_values);
pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
logical_cores = get_cpu_count();
for (cpu = 0; cpu < logical_cores; cpu++) {
acpigen_write_processor_device(cpu);
acpigen_write_pct_package(&perf_ctrl, &perf_sts);
acpigen_write_pss_object(pstate_values, pstate_count);
acpigen_write_xpss_object(pstate_xpss_values, pstate_count);
if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
HW_ALL);
else
acpigen_write_PSD_package(0, logical_cores, SW_ALL);
acpigen_write_PPC(0);
acpigen_write_CST_package(cstate_values, cstate_count);
acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core,
CSD_HW_ALL, 0);
if (CONFIG(SOC_AMD_COMMON_BLOCK_ACPI_CPPC))
generate_cppc_entries(cpu);
acpigen_write_processor_device_end();
}
acpigen_write_processor_package("PPKG", 0, logical_cores);
}