blob: ab7b0def1c40c92faa3196fb4b450f91a2188569 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <string.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <timer.h>
#include <symbols.h>
#include <device/mmio.h>
#include <soc/i2c.h>
#include <soc/i2c_common.h>
#include <device/i2c_simple.h>
const struct i2c_spec_values standard_mode_spec = {
.min_low_ns = 4700 + I2C_STANDARD_MODE_BUFFER,
.min_su_sta_ns = 4700 + I2C_STANDARD_MODE_BUFFER,
.max_hd_dat_ns = 3450 - I2C_STANDARD_MODE_BUFFER,
.min_su_dat_ns = 250 + I2C_STANDARD_MODE_BUFFER,
};
const struct i2c_spec_values fast_mode_spec = {
.min_low_ns = 1300 + I2C_FAST_MODE_BUFFER,
.min_su_sta_ns = 600 + I2C_FAST_MODE_BUFFER,
.max_hd_dat_ns = 900 - I2C_FAST_MODE_BUFFER,
.min_su_dat_ns = 100 + I2C_FAST_MODE_BUFFER,
};
const struct i2c_spec_values fast_mode_plus_spec = {
.min_low_ns = 500 + I2C_FAST_MODE_PLUS_BUFFER,
.min_su_sta_ns = 260 + I2C_FAST_MODE_PLUS_BUFFER,
.max_hd_dat_ns = 400 - I2C_FAST_MODE_PLUS_BUFFER,
.min_su_dat_ns = 50 + I2C_FAST_MODE_PLUS_BUFFER,
};
__weak void mtk_i2c_dump_more_info(struct mt_i2c_regs *regs)
{
/* do nothing */
}
__weak void mtk_i2c_config_timing(struct mt_i2c_regs *regs, struct mtk_i2c *bus_ctrl)
{
/* do nothing */
}
const struct i2c_spec_values *mtk_i2c_get_spec(uint32_t speed)
{
if (speed <= I2C_SPEED_STANDARD)
return &standard_mode_spec;
else if (speed <= I2C_SPEED_FAST)
return &fast_mode_spec;
else
return &fast_mode_plus_spec;
}
static inline void i2c_hw_reset(uint8_t bus)
{
struct mt_i2c_regs *regs;
struct mt_i2c_dma_regs *dma_regs;
regs = mtk_i2c_bus_controller[bus].i2c_regs;
dma_regs = mtk_i2c_bus_controller[bus].i2c_dma_regs;
if (mtk_i2c_bus_controller[bus].mt_i2c_flag == I2C_APDMA_ASYNC) {
write32(&dma_regs->dma_rst, I2C_DMA_WARM_RST);
udelay(10);
write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG);
udelay(10);
write32(&dma_regs->dma_rst,
I2C_DMA_HARD_RST | I2C_DMA_HANDSHAKE_RST);
write32(&regs->softreset, I2C_SOFT_RST | I2C_HANDSHAKE_RST);
udelay(10);
write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG);
write32(&regs->softreset, I2C_CLR_FLAG);
} else {
write32(&regs->softreset, I2C_SOFT_RST);
write32(&dma_regs->dma_rst, I2C_DMA_WARM_RST);
udelay(50);
write32(&dma_regs->dma_rst, I2C_DMA_HARD_RST);
udelay(50);
write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG);
udelay(50);
}
}
static inline void mtk_i2c_dump_info(struct mt_i2c_regs *regs)
{
printk(BIOS_DEBUG, "I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\n"
"INTR_STAT %x\nCONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\n"
"DELAY_LEN %x\nTIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\n"
"HS %x\nDEBUGSTAT %x\nEXT_CONF %x\n",
read32(&regs->slave_addr),
read32(&regs->intr_mask),
read32(&regs->intr_stat),
read32(&regs->control),
read32(&regs->transfer_len),
read32(&regs->transac_len),
read32(&regs->delay_len),
read32(&regs->timing),
read32(&regs->start),
read32(&regs->fifo_stat),
read32(&regs->io_config),
read32(&regs->hs),
read32(&regs->debug_stat),
read32(&regs->ext_conf));
mtk_i2c_dump_more_info(regs);
}
static int mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg,
enum i2c_modes mode)
{
int ret = I2C_OK;
uint16_t status;
uint16_t dma_sync = 0;
uint32_t time_out_val = 0;
uint8_t addr;
uint32_t write_len = 0;
uint32_t read_len = 0;
uint8_t *write_buffer = NULL;
uint8_t *read_buffer = NULL;
struct mt_i2c_regs *regs;
struct mt_i2c_dma_regs *dma_regs;
struct stopwatch sw;
regs = mtk_i2c_bus_controller[bus].i2c_regs;
dma_regs = mtk_i2c_bus_controller[bus].i2c_dma_regs;
addr = seg[0].slave;
if (mtk_i2c_bus_controller[bus].mt_i2c_flag == I2C_APDMA_ASYNC) {
dma_sync = I2C_DMA_SKIP_CONFIG | I2C_DMA_ASYNC_MODE;
if (mode == I2C_WRITE_READ_MODE)
dma_sync |= I2C_DMA_DIR_CHANGE;
}
switch (mode) {
case I2C_WRITE_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
write_len = seg[0].len;
write_buffer = seg[0].buf;
break;
case I2C_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
read_len = seg[0].len;
read_buffer = seg[0].buf;
break;
/* Must use special write-then-read mode for repeated starts. */
case I2C_WRITE_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
assert(seg[1].len > 0 && seg[1].len <= 255);
write_len = seg[0].len;
read_len = seg[1].len;
write_buffer = seg[0].buf;
read_buffer = seg[1].buf;
break;
}
/* Clear interrupt status */
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
write32(&regs->fifo_addr_clr, 0x1);
/* Enable interrupt */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
switch (mode) {
case I2C_WRITE_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, write_len);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_TX | dma_sync);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
break;
case I2C_READ_MODE:
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, read_len);
/* set i2c read slave address*/
write32(&regs->slave_addr, (addr << 1 | 0x1));
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_RX | dma_sync);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
case I2C_WRITE_READ_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
DIR_CHG | ACK_ERR_DET_EN | DMA_EN |
CLK_EXT | REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transfer_len, write_len);
write32(&regs->transfer_aux_len, read_len);
write32(&regs->transac_len, 2);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG | dma_sync);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
}
write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_en, I2C_DMA_START_EN);
/* start transfer transaction */
write32(&regs->start, 0x1);
stopwatch_init_usecs_expire(&sw, CONFIG_I2C_TRANSFER_TIMEOUT_US);
/* polling mode : see if transaction complete */
while (1) {
status = read32(&regs->intr_stat);
if (status & I2C_HS_NACKERR) {
ret = I2C_TRANSFER_FAIL_HS_NACKERR;
printk(BIOS_ERR, "[i2c%d] transfer NACK error\n", bus);
mtk_i2c_dump_info(regs);
break;
} else if (status & I2C_ACKERR) {
ret = I2C_TRANSFER_FAIL_ACKERR;
printk(BIOS_ERR, "[i2c%d] transfer ACK error\n", bus);
mtk_i2c_dump_info(regs);
break;
} else if (status & I2C_TRANSAC_COMP) {
ret = I2C_OK;
memcpy(read_buffer, _dma_coherent, read_len);
break;
}
if (stopwatch_expired(&sw)) {
ret = I2C_TRANSFER_FAIL_TIMEOUT;
printk(BIOS_ERR, "[i2c%d] transfer timeout:%d\n", bus,
time_out_val);
mtk_i2c_dump_info(regs);
break;
}
}
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
/* clear bit mask */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
/* reset the i2c controller for next i2c transfer. */
i2c_hw_reset(bus);
return ret;
}
static bool mtk_i2c_should_combine(struct i2c_msg *seg, int left_count)
{
return (left_count >= 2 &&
!(seg[0].flags & I2C_M_RD) &&
(seg[1].flags & I2C_M_RD) &&
seg[0].slave == seg[1].slave);
}
static int mtk_i2c_max_step_cnt(uint32_t target_speed)
{
if (target_speed > I2C_SPEED_FAST_PLUS)
return MAX_HS_STEP_CNT_DIV;
else
return MAX_STEP_CNT_DIV;
}
int platform_i2c_transfer(unsigned int bus, struct i2c_msg *segments,
int seg_count)
{
int ret;
int i;
int mode;
for (i = 0; i < seg_count; i++) {
if (mtk_i2c_should_combine(&segments[i], seg_count - i)) {
mode = I2C_WRITE_READ_MODE;
} else {
mode = (segments[i].flags & I2C_M_RD) ?
I2C_READ_MODE : I2C_WRITE_MODE;
}
ret = mtk_i2c_transfer(bus, &segments[i], mode);
if (ret < 0)
return ret;
if (mode == I2C_WRITE_READ_MODE)
i++;
}
return 0;
}
/*
* Check and calculate i2c ac-timing.
*
* Hardware design:
* sample_ns = (1000000000 * (sample_cnt + 1)) / clk_src
* xxx_cnt_div = spec->min_xxx_ns / sample_ns
*
* The calculation of sample_ns is rounded down;
* otherwise xxx_cnt_div would be greater than the smallest spec.
* The sda_timing is chosen as the middle value between
* the largest and smallest.
*/
int mtk_i2c_check_ac_timing(uint8_t bus, uint32_t clk_src,
uint32_t check_speed,
uint32_t step_cnt,
uint32_t sample_cnt)
{
const struct i2c_spec_values *spec;
uint32_t su_sta_cnt, low_cnt, high_cnt, max_step_cnt;
uint32_t sda_max, sda_min, clk_ns, max_sta_cnt = 0x100;
uint32_t sample_ns = ((uint64_t)NSECS_PER_SEC * (sample_cnt + 1)) / clk_src;
struct mtk_i2c_ac_timing *ac_timing;
spec = mtk_i2c_get_spec(check_speed);
clk_ns = NSECS_PER_SEC / clk_src;
su_sta_cnt = DIV_ROUND_UP(spec->min_su_sta_ns, clk_ns);
if (su_sta_cnt > max_sta_cnt)
return -1;
low_cnt = DIV_ROUND_UP(spec->min_low_ns, sample_ns);
max_step_cnt = mtk_i2c_max_step_cnt(check_speed);
if (2 * step_cnt > low_cnt && low_cnt < max_step_cnt) {
if (low_cnt > step_cnt) {
high_cnt = 2 * step_cnt - low_cnt;
} else {
high_cnt = step_cnt;
low_cnt = step_cnt;
}
} else {
return -2;
}
sda_max = spec->max_hd_dat_ns / sample_ns;
if (sda_max > low_cnt)
sda_max = 0;
sda_min = DIV_ROUND_UP(spec->min_su_dat_ns, sample_ns);
if (sda_min < low_cnt)
sda_min = 0;
if (sda_min > sda_max)
return -3;
ac_timing = &mtk_i2c_bus_controller[bus].ac_timing;
if (check_speed > I2C_SPEED_FAST_PLUS) {
ac_timing->hs = I2C_TIME_DEFAULT_VALUE | (sample_cnt << 12) | (high_cnt << 8);
ac_timing->ltiming &= ~GENMASK(15, 9);
ac_timing->ltiming |= (sample_cnt << 12) | (low_cnt << 9);
ac_timing->ext &= ~GENMASK(7, 1);
ac_timing->ext |= (su_sta_cnt << 1) | (1 << 0);
} else {
ac_timing->htiming = (sample_cnt << 8) | (high_cnt);
ac_timing->ltiming = (sample_cnt << 6) | (low_cnt);
ac_timing->ext = (su_sta_cnt << 8) | (1 << 0);
}
return 0;
}
/*
* Calculate i2c port speed.
*
* Hardware design:
* i2c_bus_freq = parent_clk / (clock_div * 2 * sample_cnt * step_cnt)
* clock_div: fixed in hardware, but may be various in different SoCs
*
* To calculate sample_cnt and step_cnt, we pick the highest bus frequency
* that is still no larger than i2c->speed_hz.
*/
int mtk_i2c_calculate_speed(uint8_t bus, uint32_t clk_src,
uint32_t target_speed,
uint32_t *timing_step_cnt,
uint32_t *timing_sample_cnt)
{
uint32_t step_cnt;
uint32_t sample_cnt;
uint32_t max_step_cnt;
uint32_t base_sample_cnt = MAX_SAMPLE_CNT_DIV;
uint32_t base_step_cnt;
uint32_t opt_div;
uint32_t best_mul;
uint32_t cnt_mul;
uint32_t clk_div = mtk_i2c_bus_controller[bus].ac_timing.inter_clk_div;
int32_t clock_div_constraint = 0;
int success = 0;
if (target_speed > I2C_SPEED_HIGH)
target_speed = I2C_SPEED_HIGH;
max_step_cnt = mtk_i2c_max_step_cnt(target_speed);
base_step_cnt = max_step_cnt;
/* Find the best combination */
opt_div = DIV_ROUND_UP(clk_src >> 1, target_speed);
best_mul = MAX_SAMPLE_CNT_DIV * max_step_cnt;
/* Search for the best pair (sample_cnt, step_cnt) with
* 0 < sample_cnt < MAX_SAMPLE_CNT_DIV
* 0 < step_cnt < max_step_cnt
* sample_cnt * step_cnt >= opt_div
* optimizing for sample_cnt * step_cnt being minimal
*/
for (sample_cnt = 1; sample_cnt <= MAX_SAMPLE_CNT_DIV; sample_cnt++) {
if (sample_cnt == 1) {
if (clk_div != 0)
clock_div_constraint = 1;
else
clock_div_constraint = 0;
} else {
if (clk_div > 1)
clock_div_constraint = 1;
else if (clk_div == 0)
clock_div_constraint = -1;
else
clock_div_constraint = 0;
}
step_cnt = DIV_ROUND_UP(opt_div + clock_div_constraint, sample_cnt);
if (step_cnt > max_step_cnt)
continue;
cnt_mul = step_cnt * sample_cnt;
if (cnt_mul >= best_mul)
continue;
if (mtk_i2c_check_ac_timing(bus, clk_src,
target_speed, step_cnt - 1,
sample_cnt - 1))
continue;
success = 1;
best_mul = cnt_mul;
base_sample_cnt = sample_cnt;
base_step_cnt = step_cnt;
if (best_mul == opt_div + clock_div_constraint)
break;
}
if (!success)
return -1;
sample_cnt = base_sample_cnt;
step_cnt = base_step_cnt;
if (clk_src / (2 * (sample_cnt * step_cnt - clock_div_constraint)) >
target_speed)
return -1;
*timing_step_cnt = step_cnt - 1;
*timing_sample_cnt = sample_cnt - 1;
return 0;
}
void mtk_i2c_speed_init(uint8_t bus, uint32_t speed)
{
uint32_t max_clk_div = MAX_CLOCK_DIV;
uint32_t clk_src, clk_div, step_cnt, sample_cnt;
uint32_t l_step_cnt, l_sample_cnt;
struct mtk_i2c *bus_ctrl;
if (bus >= I2C_BUS_NUMBER) {
printk(BIOS_ERR, "%s, error bus num:%d\n", __func__, bus);
return;
}
bus_ctrl = &mtk_i2c_bus_controller[bus];
for (clk_div = 1; clk_div <= max_clk_div; clk_div++) {
clk_src = I2C_CLK_HZ / clk_div;
bus_ctrl->ac_timing.inter_clk_div = clk_div - 1;
if (speed > I2C_SPEED_FAST_PLUS) {
/* Set master code speed register */
if (mtk_i2c_calculate_speed(bus, clk_src, I2C_SPEED_FAST,
&l_step_cnt, &l_sample_cnt))
continue;
/* Set the high speed mode register */
if (mtk_i2c_calculate_speed(bus, clk_src, speed,
&step_cnt, &sample_cnt))
continue;
bus_ctrl->ac_timing.inter_clk_div = (clk_div - 1) << 8 | (clk_div - 1);
} else {
if (mtk_i2c_calculate_speed(bus, clk_src, speed,
&l_step_cnt, &l_sample_cnt))
continue;
/* Disable the high speed transaction */
bus_ctrl->ac_timing.hs = I2C_TIME_CLR_VALUE;
}
break;
}
if (clk_div > max_clk_div) {
printk(BIOS_ERR, "%s, cannot support %d hz on i2c-%d\n", __func__, speed, bus);
return;
}
/* Init i2c bus timing register. */
mtk_i2c_config_timing(bus_ctrl->i2c_regs, bus_ctrl);
}