blob: 2de7734c177b6a060d9f43a3b1ceb8d942f6cac9 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011-2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "early_vx900.h"
#include "raminit.h"
#include <arch/io.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <delay.h>
#include <lib.h>
#include <string.h>
/**
* @file raminit_ddr3.c
*
* \brief DDR3 initialization for VIA VX900 chipset
*
* Rather than explain the DDR3 init algorithm, it is better to focus on what
* works and what doesn't. Familiarity with the DDR3 spec does not hurt.
*
* 1 DIMMs and 2 DIMMs with one rank each works.
* 1 rank DIMM with 2 rank DIMM works, but the odd ranks are disabled.
* (2) 2-rank DIMMs will not work.
*
* It is not yet clear if odd ranks do not work because of faulty timing
* calibration, or a misconfiguration of the MCU. I have seen this with DIMMS
* which mirror pins on the odd rank. That could also be the issue.
*
* The capture window is not calibrated, but preset. Whether that preset is
* universal or frequency dependent, and whether it is board-specific or not is
* not yet clear. @see vx900_dram_calibrate_recieve_delays().
*
* 4GBit and 8GBit modules may not work. This is untested. Modules with 11
* column address bits are not tested. @see vx900_dram_map_row_col_bank()
*
* Everything else should be in a more or less usable state. FIXME s are placed
* all over as a reminder that either something really needs fixing, or as a
* reminder to double-check.
*/
/* Map BA0 <-> A17, BA1 <-> A18 */
/* Map BA2 <-> A19, RA0/RA1 must not overlap BA[0:2] */
#define VX900_MRS_MA_MAP 0x4b33 /* MA Pin Mapping for MRS commands */
#define VX900_CALIB_MA_MAP 0x5911 /* MA Pin mapping for calibrations */
/*
* Registers 0x78 -> 0x7f contain the calibration settings for DRAM IO timing
* The dataset in these registers is selected from 0x70.
* Once the correct dataset is selected the delays can be altered.
* delay_type refers to TxDQS, TxDQ, RxDQS, or RxCR
* bound refers to either manual, average, upper bound, or lower bound
*/
#define CALIB_TxDQS 0
#define CALIB_TxDQ 1
#define CALIB_RxDQS 2
#define CALIB_RxDQ_CR 3
#define CALIB_AVERAGE 0
#define CALIB_LOWER 1
#define CALIB_UPPER 2
#define CALIB_MANUAL 4 /* We want this & 3 to overflow to 0 */
static void vx900_delay_calib_mode_select(u8 delay_type, u8 bound)
{
/* Which calibration setting */
u8 reg8 = (delay_type & 0x03) << 2;
/* Upper, lower, average, or manual setting */
reg8 |= (bound & 0x03);
pci_write_config8(MCU, 0x70, reg8);
}
/*
* The vendor BIOS does something similar to vx900_delay_calib_mode_select(),
* then reads or write a byte, and repeats the process for all 8 bytes. This is
* annoyingly inefficient, and we can achieve the same result in a much more
* elegant manner.
*/
static void vx900_read_0x78_0x7f(timing_dly dly)
{
*((u32 *) (&(dly[0]))) = pci_read_config32(MCU, 0x78);
*((u32 *) (&(dly[4]))) = pci_read_config32(MCU, 0x7c);
}
static void vx900_write_0x78_0x7f(const timing_dly dly)
{
pci_write_config32(MCU, 0x78, *((u32 *) (&(dly[0]))));
pci_write_config32(MCU, 0x7c, *((u32 *) (&(dly[4]))));
}
static void vx900_read_delay_range(delay_range * d_range, u8 mode)
{
vx900_delay_calib_mode_select(mode, CALIB_LOWER);
vx900_read_0x78_0x7f(d_range->low);
vx900_delay_calib_mode_select(mode, CALIB_AVERAGE);
vx900_read_0x78_0x7f(d_range->avg);
vx900_delay_calib_mode_select(mode, CALIB_UPPER);
vx900_read_0x78_0x7f(d_range->high);
}
static void dump_delay(const timing_dly dly)
{
u8 i;
for (i = 0; i < 8; i++) {
printram(" %.2x", dly[i]);
}
printram("\n");
}
static void dump_delay_range(const delay_range d_range)
{
printram("Lower limit: ");
dump_delay(d_range.low);
printram("Average: ");
dump_delay(d_range.avg);
printram("Upper limit: ");
dump_delay(d_range.high);
}
/*
* These are some "safe" values that can be used for memory initialization.
* Some will stay untouched, and others will be overwritten later on
*/
static pci_reg8 mcu_init_config[] = {
{0x40, 0x01}, /* Virtual rank 0 ending address = 64M - 1 */
{0x41, 0x00}, {0x42, 0x00}, {0x43, 0x00}, /* Virtual Ranks ending */
{0x48, 0x00}, /* Virtual rank 0 starting address = 0 */
{0x49, 0x00}, {0x4a, 0x00}, {0x4b, 0x00}, /* Virtual Ranks beginning */
{0x50, 0xd8}, /* Set ranks 0-3 to 11 col bits, 16 row bits */
/* Disable all virtual ranks */
{0x54, 0x00}, {0x55, 0x00}, {0x56, 0x00}, {0x57, 0x00},
/* Disable rank interleaving in ranks 0-3 */
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x00}, {0x5b, 0x00},
{0x6c, 0xA0}, /* Memory type: DDR3, VDIMM: 1.5V, 64-bit DRAM */
{0xc4, 0x80}, /* Enable 8 memory banks */
{0xc6, 0x80}, /* Minimum latency from self-refresh. Bit [7] must be 1 */
/* FIXME: do it here or in Final config? */
{0xc8, 0x80}, /* Enable automatic triggering of short ZQ calibration */
{0x99, 0xf0}, /* Power Management and Bypass Reorder Queue */
/* Enable differential DQS; MODT assertion values suggested in DS */
{0x9e, 0xa1}, {0x9f, 0x51},
/* DQ/DQM Duty Control - Do not put any extra delays */
{0xe9, 0x00}, {0xea, 0x00}, {0xeb, 0x00}, {0xec, 0x00},
{0xed, 0x00}, {0xee, 0x00}, {0xef, 0x00},
{0xfc, 0x00}, {0xfd, 0x00}, {0xfe, 0x00}, {0xff, 0x00},
/* The following parameters we may or may not change */
{0x61, 0x2e}, /* DRAMC Pipeline Control */
{0x77, 0x10}, /* MDQS Output Control */
/* The following are parameters we'll most likely never change again */
{0x60, 0xf4}, /* DRAM Pipeline Turn-Around Setting */
{0x65, 0x49}, /* DRAM Arbitration Bandwidth Timer - I */
{0x66, 0x80}, /* DRAM Queue / Arbitration */
{0x69, 0xc6}, /* Bank Control: 8 banks, high priority refresh */
{0x6a, 0xfc}, /* DRAMC Request Reorder Control */
{0x6e, 0x38}, /* Burst lenght: 8, burst-chop: enable */
{0x73, 0x04}, /* Close All Pages Threshold */
/* The following need to be dynamically asserted */
/* See: check_special_registers.c */
{0x74, 0xa0}, /* Yes, same 0x74; add one more T */
{0x76, 0x60}, /* Write Data Phase Control */
};
/*
* This table keeps the driving strength control setting that we can safely use
* during initialization. This settings come in part from SerialICE, and in part
* from code provided by VIA.
*/
static pci_reg8 mcu_drv_ctrl_config[] = {
{0xd3, 0x03}, /* Enable auto-compensation circuit for ODT strength */
{0xd4, 0x80}, /* Set internal ODT to dynamically turn on or off */
{0xd6, 0x20}, /* Enable strong driving for MA and DRAM commands */
{0xd0, 0x88}, /* (ODT) Strength ?has effect? */
{0xe0, 0x88}, /* DRAM Driving - Group DQS (MDQS) */
{0xe1, 0x00}, /* Disable offset mode for driving strength control */
{0xe2, 0x88}, /* DRAM Driving - Group DQ (MD, MDQM) */
{0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */
{0xe8, 0x88}, /* DRAM Driving - Group MA (MA, MBA, MSRAS, MSCAS, MSWE) */
{0xe6, 0xff}, /* DRAM Driving - Group DCLK0 (DCLK[2:0] for DIMM0) */
{0xe7, 0xff}, /* DRAM Driving - Group DCLK1 (DCLK[5:3] for DIMM1) */
{0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */
{0x91, 0x08}, /* MCLKO Output Phase Delay - I */
{0x92, 0x08}, /* MCLKO Output Phase Delay - II */
{0x93, 0x16}, /* CS/CKE Output Phase Delay */
{0x95, 0x16}, /* SCMD/MA Output Phase Delay */
{0x9b, 0x3f}, /* Memory Clock Output Enable */
};
static void vx900_dram_set_ma_pin_map(u16 map)
{
pci_write_config16(MCU, 0x52, map);
}
/*
* FIXME: This function is a complete waste of space. All we really need is a
* MA MAP table based on either row address bits or column address bits.
* The problem is, I do not know if this mapping is applied during the column
* access or during the row access. At least the religiously verbose output
* makes pretty console output.
*/
static void vx900_dram_map_pins(u8 ba0, u8 ba1, u8 ba2, u8 ra0, u8 ra1)
{
u16 map = 0;
printram("Mapping address pins to DRAM pins:\n");
printram(" BA0 -> A%u\n", ba0);
printram(" BA1 -> A%u\n", ba1);
printram(" BA2 -> A%u\n", ba2);
printram(" RA0 -> A%u\n", ra0);
printram(" RA1 -> A%u\n", ra1);
/* Make sure BA2 is enabled */
map |= (1 << 11);
/*
* Find RA1 (15:14)
* 00: A14
* 01: A16
* 10: A18
* 11: A20
*/
if ((ra1 & 0x01) || (ra1 < 14) || (ra1 > 20)) {
printram("Illegal mapping RA1 -> A%u\n", ra1);
return;
}
map |= (((ra1 - 14) >> 1) & 0x03) << 14;
/*
* Find RA0 (13:12)
* 00: A15
* 01: A17
* 10: A19
* 11: A21
*/
if ((!(ra0 & 0x01)) || (ra0 < 15) || (ra0 > 21)) {
printram("Illegal mapping RA0 -> A%u\n", ra0);
return;
}
map |= (((ra0 - 15) >> 1) & 0x03) << 12;
/*
* Find BA2 (10:8)
* x00: A14
* x01: A15
* x10: A18
* x11: A19
*/
switch (ba2) {
case 14:
map |= (0 << 8);
break;
case 15:
map |= (1 << 8);
break;
case 18:
map |= (2 << 8);
break;
case 19:
map |= (3 << 8);
break;
default:
printram("Illegal mapping BA2 -> A%u\n", ba2);
break;
}
/*
* Find BA1 (6:4)
* 000: A12
* 001: A14
* 010: A16
* 011: A18
* 1xx: A20
*/
if (((ba1 & 0x01)) || (ba1 < 12) || (ba1 > 20)) {
printram("Illegal mapping BA1 -> A%u\n", ba1);
return;
}
map |= (((ba1 - 12) >> 1) & 0x07) << 4;
/*
* Find BA0 (2:0)
* 000: A11
* 001: A13
* 010: A15
* 011: A17
* 1xx: A19
*/
if ((!(ba0 & 0x01)) || (ba0 < 11) || (ba0 > 19)) {
printram("Illegal mapping BA0 -> A%u\n", ba0);
return;
}
map |= (((ba0 - 11) >> 1) & 0x07) << 0;
printram("Setting map mask (rx52) to %.4x\n", map);
vx900_dram_set_ma_pin_map(map);
}
static void vx900_dram_write_init_config(void)
{
/* Keep our RAM space free of legacy stuff */
vx900_disable_legacy_rom_shadow();
/* Now worry about the real RAM init */
size_t i;
for (i = 0; i < (sizeof(mcu_init_config) / sizeof(pci_reg8)); i++) {
pci_write_config8(MCU, mcu_init_config[i].addr,
mcu_init_config[i].val);
}
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
/* FIXME: Slowing stuff down. Does this really help? */
/* Fast cycle control for CPU-to-DRAM Read Cycle 0:Disabled.
* This CPU bus controller will wait for all data */
/* Memory to CPU bus Controller Conversion Mode 1: Synchronous mode */
}
static void dram_find_spds_ddr3(const dimm_layout * addr, dimm_info * dimm)
{
size_t i = 0;
int dimms = 0;
do {
spd_raw_data spd;
spd_read(addr->spd_addr[i], spd);
spd_decode_ddr3(&dimm->dimm[i], spd);
if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
dimms++;
dram_print_spd_ddr3(&dimm->dimm[i]);
} while (addr->spd_addr[++i] != SPD_END_LIST
&& i < VX900_MAX_DIMM_SLOTS);
if (!dimms)
die("No DIMMs were found");
}
static void dram_find_common_params(const dimm_info * dimms,
ramctr_timing * ctrl)
{
size_t i, valid_dimms;
memset(ctrl, 0, sizeof(ramctr_timing));
ctrl->cas_supported = 0xff;
valid_dimms = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
const dimm_attr *dimm = &dimms->dimm[i];
if (dimm->dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
valid_dimms++;
if (valid_dimms == 1) {
/* First DIMM defines the type of DIMM */
ctrl->dram_type = dimm->dram_type;
ctrl->dimm_type = dimm->dimm_type;
} else {
/* Check if we have mismatched DIMMs */
if (ctrl->dram_type != dimm->dram_type
|| ctrl->dimm_type != dimm->dimm_type)
die("Mismatched DIMM Types");
}
/* Find all possible CAS combinations */
ctrl->cas_supported &= dimm->cas_supported;
/* Find the smallest common latencies supported by all DIMMs */
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
ctrl->tRC = MAX(ctrl->tRC, dimm->tRC);
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
}
ctrl->n_dimms = valid_dimms;
if (!ctrl->cas_supported)
die("Unsupported DIMM combination. "
"DIMMS do not support common CAS latency");
if (!valid_dimms)
die("No valid DIMMs found");
}
static void vx900_dram_phys_bank_range(const dimm_info * dimms,
rank_layout * ranks)
{
size_t i;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
u8 nranks = dimms->dimm[i].ranks;
/* Make sure we save the flags */
ranks->flags[i * 2 + 1] = ranks->flags[i * 2] =
dimms->dimm[i].flags;
/* Only Rank1 has a mirrored pin mapping */
ranks->flags[i * 2].pins_mirrored = 0;
if (nranks > 2)
die("Found DIMM with more than two ranks, which is not "
"supported by this chipset");
u32 size = dimms->dimm[i].size_mb;
if (nranks == 2) {
/* Each rank holds half the capacity of the DIMM */
size >>= 1;
ranks->phys_rank_size_mb[i << 1] = size;
ranks->phys_rank_size_mb[(i << 1) | 1] = size;
} else {
/* Otherwise, everything is held in the first bank */
ranks->phys_rank_size_mb[i << 1] = size;
ranks->phys_rank_size_mb[(i << 1) | 1] = 0;
}
}
}
#define ODT_R0 0
#define ODT_R1 1
#define ODT_R2 2
#define ODT_R3 3
/*
* This is the table that tells us which MODT pin to map to which rank.
*
* This table is taken from code provided by VIA, but no explanation was
* provided as to why it is done this way. It may be possible that this table is
* not suitable for the way we map ranks later on.
*/
static const u8 odt_lookup_table[][2] = {
/* RankMAP Rank 3 Rank 2 Rank 1 Rank 0 */
{0x01, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x03, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R0 << 2) | (ODT_R1 << 0)},
{0x04, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x05, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)},
{0x07, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)},
{0x0c, (ODT_R2 << 6) | (ODT_R3 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x0d, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)},
{0x0f, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)},
{0, 0},
};
static void vx900_dram_driving_ctrl(const dimm_info * dimm)
{
size_t i, ndimms;
u8 reg8, regxd5, rank_mask;
rank_mask = 0;
/* For ODT range selection, datasheet recommends
* when 1 DIMM present: 60 Ohm
* when 2 DIMMs present: 120 Ohm */
ndimms = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
ndimms++;
rank_mask |= (1 << (i * 2));
if (dimm->dimm[i].ranks > 1)
rank_mask |= (2 << (i * 2));
}
/* ODT strength and MD/MDQM/MDQS driving strength */
if (ndimms > 1) {
/* Enable 1 ODT block (120 Ohm ODT) */
regxd5 = 0 << 2;
/* Enable strong driving for MD/MDQM/MDQS */
regxd5 |= (1 << 7);
} else {
/* Enable 2 ODT blocks (60 Ohm ODT) */
regxd5 = 1 << 2;
/* Leave MD/MDQM/MDQS driving weak */
}
pci_write_config8(MCU, 0xd5, regxd5);
/* Enable strong CLK driving for DIMMs with more than one rank */
if (dimm->dimm[0].ranks > 1)
pci_mod_config8(MCU, 0xd6, 0, (1 << 7));
if (dimm->dimm[1].ranks > 1)
pci_mod_config8(MCU, 0xd6, 0, (1 << 6));
/* DRAM ODT Lookup Table */
for (i = 0;; i++) {
if (odt_lookup_table[i][0] == 0) {
printram("No ODT entry for rank mask %x\n", rank_mask);
die("Aborting");
}
if (odt_lookup_table[i][0] != rank_mask)
continue;
reg8 = odt_lookup_table[i][1];
break;
}
printram("Mapping rank mask %x to ODT entry %.2x\n", rank_mask, reg8);
pci_write_config8(MCU, 0x9c, reg8);
for (i = 0; i < (sizeof(mcu_drv_ctrl_config) / sizeof(pci_reg8)); i++) {
pci_write_config8(MCU, mcu_drv_ctrl_config[i].addr,
mcu_drv_ctrl_config[i].val);
}
}
static void vx900_pr_map_all_vr3(void)
{
/* Enable all ranks and set them to VR3 */
pci_write_config16(MCU, 0x54, 0xbbbb);
}
/* Map physical rank pr to virtual rank vr */
static void vx900_map_pr_vr(u8 pr, u8 vr)
{
u16 val;
pr &= 0x3;
vr &= 0x3;
/* Enable rank (bit [3], and set the VR number bits [1:0] */
val = 0x8 | vr;
/* Now move the value to the appropriate PR */
val <<= (pr * 4);
pci_mod_config16(MCU, 0x54, 0xf << (pr * 4), val);
printram("Mapping PR %u to VR %u\n", pr, vr);
}
static u8 vx900_get_CWL(u8 CAS)
{
/* Get CWL based on CAS using the following rule:
* _________________________________________
* CAS: | 4T | 5T | 6T | 7T | 8T | 9T | 10T | 11T |
* CWL: | 5T | 5T | 5T | 6T | 6T | 7T | 7T | 8T |
*/
static const u8 cas_cwl_map[] = { 5, 5, 5, 6, 6, 7, 7, 8 };
if (CAS > 11)
return 8;
return cas_cwl_map[CAS - 4];
}
/*
* Here we are calculating latencies, and writing them to the appropriate
* registers. Note that some registers do not take latencies from 0 = 0T,
* 1 = 1T, so each register gets its own math formula.
*/
static void vx900_dram_timing(ramctr_timing * ctrl)
{
u8 reg8, val, tFAW, tRRD;
u32 val32;
/* Maximum supported DDR3 frequency is 533MHz (DDR3 1066) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else if (ctrl->tCK <= TCK_333MHZ) {
ctrl->tCK = TCK_333MHZ;
} else {
ctrl->tCK = TCK_266MHZ;
}
val32 = (1000 << 8) / ctrl->tCK;
printram("Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS and CWL latencies */
val = CEIL_DIV(ctrl->tAA, ctrl->tCK);
printram("Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - 4)) & 1)
&& (ctrl->cas_supported >> (val - 4))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - 4))))
printram("CAS not supported\n");
printram("Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = vx900_get_CWL(ctrl->CAS);
printram("Selected CWL latency : %uT\n", ctrl->CWL);
/* Write CAS and CWL */
reg8 = (((ctrl->CWL - 4) & 0x07) << 4) | ((ctrl->CAS - 4) & 0x07);
pci_write_config8(MCU, 0xc0, reg8);
/* Find tRCD */
val = CEIL_DIV(ctrl->tRCD, ctrl->tCK);
printram("Selected tRCD : %uT\n", val);
reg8 = ((val - 4) & 0x7) << 4;
/* Find tRP */
val = CEIL_DIV(ctrl->tRP, ctrl->tCK);
printram("Selected tRP : %uT\n", val);
reg8 |= ((val - 4) & 0x7);
pci_write_config8(MCU, 0xc1, reg8);
/* Find tRAS */
val = CEIL_DIV(ctrl->tRAS, ctrl->tCK);
printram("Selected tRAS : %uT\n", val);
reg8 = ((val - 15) & 0x7) << 4;
/* Find tWR */
ctrl->WR = CEIL_DIV(ctrl->tWR, ctrl->tCK);
printram("Selected tWR : %uT\n", ctrl->WR);
reg8 |= ((ctrl->WR - 4) & 0x7);
pci_write_config8(MCU, 0xc2, reg8);
/* Find tFAW */
tFAW = CEIL_DIV(ctrl->tFAW, ctrl->tCK);
printram("Selected tFAW : %uT\n", tFAW);
/* Find tRRD */
tRRD = CEIL_DIV(ctrl->tRRD, ctrl->tCK);
printram("Selected tRRD : %uT\n", tRRD);
val = tFAW - 4 * tRRD; /* number of cycles above 4*tRRD */
reg8 = ((val - 0) & 0x7) << 4;
reg8 |= ((tRRD - 2) & 0x7);
pci_write_config8(MCU, 0xc3, reg8);
/* Find tRTP */
val = CEIL_DIV(ctrl->tRTP, ctrl->tCK);
printram("Selected tRTP : %uT\n", val);
reg8 = ((val & 0x3) << 4);
/* Find tWTR */
val = CEIL_DIV(ctrl->tWTR, ctrl->tCK);
printram("Selected tWTR : %uT\n", val);
reg8 |= ((val - 2) & 0x7);
pci_mod_config8(MCU, 0xc4, 0x3f, reg8);
/* DRAM Timing for All Ranks - VI
* [7:6] CKE Assertion Minimum Pulse Width
* We probably don't want to mess with this just yet.
* [5:0] Refresh-to-Active or Refresh-to-Refresh (tRFC)
* tRFC = (30 + 2 * [5:0])T
* Since we previously set RxC4[7]
*/
reg8 = pci_read_config8(MCU, 0xc5);
val = CEIL_DIV(ctrl->tRFC, ctrl->tCK);
printram("Minimum tRFC : %uT\n", val);
if (val < 30) {
val = 0;
} else {
val = (val - 30 + 1) / 2;
}
;
printram("Selected tRFC : %uT\n", 30 + 2 * val);
reg8 |= (val & 0x3f);
pci_write_config8(MCU, 0xc5, reg8);
/* Where does this go??? */
val = CEIL_DIV(ctrl->tRC, ctrl->tCK);
printram("Required tRC : %uT\n", val);
}
/* Program the DRAM frequency */
static void vx900_dram_freq(ramctr_timing * ctrl)
{
u8 val;
/* Step 1 - Reset the PLL */
pci_mod_config8(MCU, 0x90, 0x00, 0x0f);
/* Wait at least 10 ns; VIA code delays by 640us */
udelay(640);
/* Step 2 - Set target frequency */
if (ctrl->tCK <= TCK_533MHZ) {
val = 0x07;
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
val = 0x06;
ctrl->tCK = TCK_400MHZ;
} else if (ctrl->tCK <= TCK_333MHZ) {
val = 0x05;
ctrl->tCK = TCK_333MHZ;
} else { /*ctrl->tCK <= TCK_266MHZ */
val = 0x04;
ctrl->tCK = TCK_266MHZ;
}
/* Restart the PLL with the desired frequency */
pci_mod_config8(MCU, 0x90, 0x0f, val);
/* Step 3 - Wait for PLL to stabilize */
udelay(2000);
/* Step 4 - Reset the DLL - Clear [7,4] */
pci_mod_config8(MCU, 0x6b, 0x90, 0x00);
udelay(2000);
/* Step 5 - Enable the DLL - Set bits [7,4] to 01b */
pci_mod_config8(MCU, 0x6b, 0x00, 0x10);
udelay(2000);
/* Step 6 - Start DLL Calibration - Set bit [7] */
pci_mod_config8(MCU, 0x6b, 0x00, 0x80);
udelay(5);
/* Step 7 - Finish DLL Calibration - Clear bit [7] */
pci_mod_config8(MCU, 0x6b, 0x80, 0x00);
/* Step 8 - If we have registered DIMMs, we need to set bit[0] */
if (spd_dimm_is_registered_ddr3(ctrl->dimm_type)) {
printram("Enabling RDIMM support in memory controller\n");
pci_mod_config8(MCU, 0x6c, 0x00, 0x01);
}
}
/*
* The VX900 can send the MRS commands directly through hardware
* It does the MR2->MR3->MR1->MR0->LongZQ JEDEC dance
* The parameters that we don't worry about are extracted from the timing
* registers we have programmed earlier.
*/
static void vx900_dram_ddr3_do_hw_mrs(u8 ma_swap, u8 rtt_nom,
u8 ods, u8 rtt_wr, u8 srt, u8 asr)
{
u16 reg16 = 0;
printram("Using Hardware method for DRAM MRS commands.\n");
reg16 |= ((rtt_wr & 0x03) << 12);
if (srt)
reg16 |= (1 << 9);
if (asr)
reg16 |= (1 << 8);
reg16 |= ((rtt_nom & 0x7) << 4);
reg16 |= ((ods & 0x03) << 2);
if (ma_swap)
reg16 |= (1 << 1);
reg16 |= (1 << 14);
reg16 |= (1 << 0); /* This is the trigger bit */
printram("Hw MRS set is 0x%4x\n", reg16);
pci_write_config16(MCU, 0xcc, reg16);
/* Wait for MRS commands to be sent */
while (pci_read_config8(MCU, 0xcc) & 1);
}
/*
* Translate the MRS command into an address on the CPU bus
*
* Take an MRS command (mrs_cmd_t) and translate it to a read address on the CPU
* bus. Thus, reading from the returned address, will issue the correct MRS
* command, assuming we are in MRS mode, of course.
*
* A read from the returned address will produce the correct MRS command
* provided the following conditions are met:
* - The MA pin mapping is set to VX900_MRS_MA_MAP
* - The memory controller's Fun3_RX6B[2:0] is set to 011b (MSR Enable)
*/
static u32 vx900_get_mrs_addr(mrs_cmd_t cmd)
{
u32 addr = 0;
u8 mrs_type = (cmd >> 16) & 0x07;
/* MA[9:0] <-> A[12:3] */
addr |= ((cmd & 0x3ff) << 3);
/* MA10 <-> A20 */
addr |= (((cmd >> 10) & 0x1) << 20);
/* MA[12:11] <-> A[14:13] */
addr |= (((cmd >> 11) & 0x3) << 13);
/* BA[2:0] <-> A[19:17] */
addr |= mrs_type << 17;
return addr;
}
/*
* Here, we do the MR2->MR3->MR1->MR0->LongZQ JEDEC dance manually
*
* Why would we do this in software, when the VX900 can do it in hardware? The
* problem is the hardware sequence seems to be buggy on ranks with mirrored
* pins. Is this a hardware bug or a misconfigured MCU? No idea.
*
* To maintain API compatibility with the function that implements the hardware
* sequence, we don't ask for all parameters. To keep an overall cleaner code
* structure, we don't try to pass down all that information. Instead, we
* extract the extra parameters from the timing registers we have programmed
* earlier.
*/
static void vx900_dram_ddr3_do_sw_mrs(u8 ma_swap, enum ddr3_mr1_rtt_nom rtt_nom,
enum ddr3_mr1_ods ods,
enum ddr3_mr2_rttwr rtt_wr,
enum ddr3_mr2_srt_range srt,
enum ddr3_mr2_asr asr)
{
mrs_cmd_t mrs;
u8 reg8, cas, cwl, twr;
printram("Using Software method for DRAM MRS commands.\n");
/* Get CAS, CWL, and tWR that we programmed earlier */
reg8 = pci_read_config8(MCU, 0xc0);
cas = (reg8 & 0x07) + 4;
cwl = ((reg8 >> 4) & 0x07) + 4;
reg8 = pci_read_config8(MCU, 0xc2);
twr = (reg8 & 0x07) + 4;
/* Step 06 - Set Fun3_RX6B[2:0] to 001b (NOP Command Enable). */
/* Was already done for us before calling us */
/* Step 07 - Read a double word from any address of the DIMM. */
/* Was already done for us before calling us */
/* Step 08 - Set Fun3_RX6B[2:0] to 011b (MSR Enable). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */
/* Step 09 - Issue MR2 cycle. Read a double word from the address
* depended on DRAM's Rtt_WR and CWL settings. */
mrs = ddr3_get_mr2(rtt_wr, srt, asr, cwl);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR2: %.5x\n", mrs);
udelay(1000);
/* Step 10 - Issue MR3 cycle. Read a double word from the address 60000h
* to set DRAM to normal operation mode. */
mrs = ddr3_get_mr3(0);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR3: %.5x\n", mrs);
udelay(1000);
/* Step 11 -Issue MR1 cycle. Read a double word from the address
* depended on DRAM's output driver impedance and Rtt_Nom settings.
* The DLL enable field, TDQS field, write leveling enable field,
* additive latency field and Qoff field should be set to 0. */
mrs = ddr3_get_mr1(DDR3_MR1_QOFF_ENABLE, DDR3_MR1_TQDS_DISABLE, rtt_nom,
DDR3_MR1_WRLVL_DISABLE, ods, DDR3_MR1_AL_DISABLE,
DDR3_MR1_DLL_ENABLE);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR1: %.5x\n", mrs);
udelay(1000);
/* Step 12 - Issue MR0 cycle. Read a double word from the address
* depended on DRAM's burst length, CAS latency and write recovery time
* settings.
* The read burst type field should be set to interleave.
* The mode field should be set to normal mode.
* The DLL reset field should be set to No.
* The DLL control for precharge PD field should be set to Fast exit.
*/
mrs = ddr3_get_mr0(DDR3_MR0_PRECHARGE_FAST, twr,
DDR3_MR0_DLL_RESET_NO, DDR3_MR0_MODE_NORMAL, cas,
DDR3_MR0_BURST_TYPE_INTERLEAVED,
DDR3_MR0_BURST_LENGTH_CHOP);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR0: %.5x\n", mrs);
udelay(1000);
/* Step 13 - Set Fun3_RX6B[2:0] to 110b (Long ZQ calibration cmd) */
pci_mod_config8(MCU, 0x6b, 0x07, 0x06); /* Long ZQ */
/* Step 14 - Read a double word from any address of the DIMM. */
volatile_read(0);
udelay(1000);
}
/*
* This is where we take the DIMMs out of reset and do the JEDEC dance for each
* individual physical rank.
*/
static void vx900_dram_ddr3_dimm_init(const ramctr_timing * ctrl,
const rank_layout * ranks)
{
size_t i;
u8 rtt_nom, rtt_wr, ods, pinswap;
/* Set BA[0/1/2] to [A17/18/19] */
vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP);
/* Step 01 - Set Fun3_Rx6E[5] to 1b to support burst length. */
pci_mod_config8(MCU, 0x6e, 0, 1 << 5);
/* Step 02 - Set Fun3_RX69[0] to 0b (Disable Multiple Page Mode). */
pci_mod_config8(MCU, 0x69, (1 << 0), 0x00);
/* And set [7:6] to 10b ? */
pci_write_config8(MCU, 0x69, 0x87);
/* Step 03 - Set the target physical rank to virtual rank0 and other
* ranks to virtual rank3. */
vx900_pr_map_all_vr3();
/* Step 04 - Set Fun3_Rx50 to D8h. */
pci_write_config8(MCU, 0x50, 0xd8);
/* Step 05 - Set Fun3_RX6B[5] to 1b to de-assert RESET# and wait for at
* least 500 us. */
pci_mod_config8(MCU, 0x6b, 0x00, (1 << 5));
udelay(500);
/* Step 6 -> 15 - Set the target physical rank to virtual rank 0 and
* other ranks to virtual rank 3.
* Repeat Step 6 to 14 for every rank present, then jump to Step 16. */
for (i = 0; i < VX900_MAX_MEM_RANKS; i++) {
if (ranks->phys_rank_size_mb[i] == 0)
continue;
printram("Initializing rank %lu\n", i);
/* Set target physical rank to virtual rank 0
* other ranks to virtual rank 3*/
vx900_map_pr_vr(i, 0);
/* FIXME: Is this needed on HW init? */
pci_mod_config8(MCU, 0x6b, 0x07, 0x01); /* Enable NOP */
volatile_read(0x0); /* Do NOP */
pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */
/* See init_dram_by_rank.c and get_basic_information.c
* in the VIA provided code */
if (ctrl->n_dimms == 1) {
rtt_nom = DDR3_MR1_RTT_NOM_RZQ2;
rtt_wr = DDR3_MR2_RTTWR_OFF;
} else {
rtt_nom = DDR3_MR1_RTT_NOM_RZQ8;
rtt_wr = DDR3_MR2_RTTWR_RZQ2;
}
ods = ranks->flags[i].rzq7_supported ?
DDR3_MR1_ODS_RZQ7 : DDR3_MR1_ODS_RZQ6;
pinswap = (ranks->flags[i].pins_mirrored);
if (pinswap)
printram("Pins mirrored\n");
printram(" Swap : %x\n", pinswap);
printram(" rtt_nom : %x\n", rtt_nom);
printram(" ods : %x\n", ods);
printram(" rtt_wr : %x\n", rtt_wr);
if (RAMINIT_USE_HW_MRS_SEQ)
vx900_dram_ddr3_do_hw_mrs(pinswap, rtt_nom, ods, rtt_wr,
0, 0);
else
vx900_dram_ddr3_do_sw_mrs(pinswap, rtt_nom, ods, rtt_wr,
0, 0);
/* Normal SDRAM Mode */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
/* Step 15, set the rank to virtual rank 3 */
vx900_map_pr_vr(i, 3);
}
/* Step 16 - Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
/* Set BA[0/1/2] to [A13/14/15] */
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
/* Step 17 - Set Fun3_Rx69[0] to 1b (Enable Multiple Page Mode). */
pci_mod_config8(MCU, 0x69, 0x00, (1 << 0));
printram("DIMM initialization sequence complete\n");
}
/*
* This a small utility to send a single MRS command, but where we don't want to
* have to worry about changing the MCU mode. It gives the MCU back to us in
* normal operating mode.
*/
static void vx900_dram_send_soft_mrs(mrs_cmd_t cmd, u8 pin_swap)
{
u32 addr;
/* Set Fun3_RX6B[2:0] to 011b (MSR Enable). */
pci_mod_config8(MCU, 0x6b, 0x07, (3 << 0));
/* Is this a funky rank with Address pins swapped? */
if (pin_swap)
cmd = ddr3_mrs_mirror_pins(cmd);
/* Find the address corresponding to the MRS */
addr = vx900_get_mrs_addr(cmd);
/* Execute the MRS */
volatile_read(addr);
/* Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
}
static void vx900_dram_enter_read_leveling(u8 pinswap)
{
/* Precharge all before issuing read leveling MRS to DRAM */
pci_mod_config8(MCU, 0x06b, 0x07, 0x02);
volatile_read(0x0);
udelay(1000);
/* Enable read leveling: Set D0F3Rx71[7]=1 */
pci_mod_config8(MCU, 0x71, 0, (1 << 7));
/* Put DRAM in read leveling mode */
mrs_cmd_t cmd = ddr3_get_mr3(1);
vx900_dram_send_soft_mrs(cmd, pinswap);
}
static void vx900_dram_exit_read_leveling(u8 pinswap)
{
/* Disable read leveling, and put dram in normal operation mode */
mrs_cmd_t cmd = ddr3_get_mr3(0);
vx900_dram_send_soft_mrs(cmd, pinswap);
/* Disable read leveling: Set D0F3Rx71[7]=0 */
pci_mod_config8(MCU, 0x71, (1 << 7), 0);
}
/*
* We need to see if the delay window (difference between minimum and maximum)
* is large enough so that we actually have a valid window. The signal should be
* valid for at least 1/2T in general. If the window is significantly smaller,
* then chances are our window does not latch at the correct time, and the
* calibration will not work.
*/
#define DQSI_THRESHOLD 0x10
#define DQO_THRESHOLD 0x09
#define DQSO_THRESHOLD 0x12
#define DELAY_RANGE_GOOD 0
#define DELAY_RANGE_BAD -1
static u8 vx900_dram_check_calib_range(const delay_range * dly, u8 window)
{
size_t i;
for (i = 0; i < 8; i++) {
if (dly->high[i] - dly->low[i] < window)
return DELAY_RANGE_BAD;
/* When our maximum value is lower than our min, both values
* have overshot, and the window is definitely invalid */
if (dly->high[i] < dly->low[i])
return DELAY_RANGE_BAD;
}
return DELAY_RANGE_GOOD;
}
static void vx900_dram_find_avg_delays(vx900_delay_calib * delays)
{
size_t i;
u16 dq_low, dq_high, dqs_low, dqs_high, dq_final, dqs_final;
/*
* At this point, we have transmit delays for both DIMMA and DIMMB, each
* with a slightly different window We want to find the intersection of
* those windows, so that we have a constrained window which both
* DIMMA and DIMMB can use. The center of our constrained window will
* also be the safest setting for the transmit delays
*
* DIMMA window t:|xxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxxxxxxx|
* DIMMB window t:|xxxxxxxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxx|
* Safe window t:|xxxxxxxxxxxxxxxxxxx----------xxxxxxxxxxxxxxxxxxxxxxx|
*/
delay_range *tx_dq_a = &(delays->tx_dq[0]);
delay_range *tx_dq_b = &(delays->tx_dq[1]);
delay_range *tx_dqs_a = &(delays->tx_dqs[0]);
delay_range *tx_dqs_b = &(delays->tx_dqs[1]);
for (i = 0; i < 8; i++) {
dq_low = MAX(tx_dq_a->low[i], tx_dq_b->low[i]);
dq_high = MIN(tx_dq_a->high[i], tx_dq_b->high[i]);
dqs_low = MAX(tx_dqs_a->low[i], tx_dqs_b->low[i]);
dqs_high = MIN(tx_dqs_a->high[i], tx_dqs_b->high[i]);
/* Find the average */
dq_final = ((dq_low + dq_high) / 2);
dqs_final = ((dqs_low + dqs_high) / 2);
/*
* These adjustments are done in code provided by VIA.
* There is no explanation as to why this is done.
*
* We can get away without doing the DQS adjustment, but doing
* it, brings the values closer to what the vendor BIOS
* calibrates to.
*/
if ((dqs_final & 0x1f) >= 0x1c)
dqs_final -= 0x1c;
else
dqs_final += 0x04;
/*
* The DQ adjustment is more critical. If we don't do this
* adjustment our MCU won't be configured properly, and
* ram_check() will fail.
*/
if ((dq_final & 0x1f) >= 0x14)
dq_final -= 0x14;
else
dq_final += 0x0c;
/* Store our values in the first delay */
delays->tx_dq[0].avg[i] = dq_final;
delays->tx_dqs[0].avg[i] = dqs_final;
}
}
/*
* First calibration: When to receive data from the DRAM
* (MD and MDQS input delay)
*
* This calibration unfortunately does not seem to work. Whether this is due to
* a misconfigured MCU or hardware bug is unknown.
*/
static void vx900_rx_capture_range_calib(u8 pinswap)
{
u8 reg8;
const u32 cal_addr = 0x20;
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Need to put DRAM and MCU in read leveling */
vx900_dram_enter_read_leveling(pinswap);
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Trigger calibration */
reg8 = 0xa0;
pci_write_config8(MCU, 0x71, reg8);
/* Wait for it */
while (pci_read_config8(MCU, 0x71) & 0x10);
vx900_dram_exit_read_leveling(pinswap);
}
/*
* Second calibration: How much to delay DQS signal by
* (MDQS input delay)
*/
static void vx900_rx_dqs_delay_calib(u8 pinswap)
{
const u32 cal_addr = 0x30;
/* We need to disable refresh commands so that they don't interfere */
const u8 ref_cnt = pci_read_config8(MCU, 0xc7);
pci_write_config8(MCU, 0xc7, 0);
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Need to put DRAM and MCU in read leveling */
vx900_dram_enter_read_leveling(pinswap);
/* From VIA code; Undocumented
* In theory this enables MODT[3:0] to be asserted */
pci_mod_config8(MCU, 0x9e, 0, 0x80);
/* Trigger calibration: Set D0F3Rx71[1:0]=10b */
pci_mod_config8(MCU, 0x71, 0x03, 0x02);
/* Wait for calibration to complete */
while (pci_read_config8(MCU, 0x71) & 0x02);
vx900_dram_exit_read_leveling(pinswap);
/* Restore the refresh counter */
pci_write_config8(MCU, 0xc7, ref_cnt);
/* FIXME: should we save it before, or should we just set it as is */
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
}
static void vx900_tx_dqs_trigger_calib(u8 pattern)
{
/* Data pattern for calibration */
pci_write_config8(MCU, 0x8e, pattern);
/* Trigger calibration */
pci_mod_config8(MCU, 0x75, 0, 0x20);
/* Wait for calibration */
while (pci_read_config8(MCU, 0x75) & 0x20);
}
/*
* Third calibration: How much to wait before asserting DQS
*/
static void vx900_tx_dqs_delay_calib(void)
{
const u32 cal_addr = 0x00;
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Set circuit to use calibration results - Clear Rx75[0] */
pci_mod_config8(MCU, 0x75, 0x01, 0);
/* Run calibration with first data pattern */
vx900_tx_dqs_trigger_calib(0x5a);
/* Run again with different pattern */
vx900_tx_dqs_trigger_calib(0xa5);
}
/*
* Fourt calibration: How much to wait before putting data on DQ lines
*/
static void vx900_tx_dq_delay_calib(void)
{
/* Data pattern for calibration */
pci_write_config8(MCU, 0x8e, 0x5a);
/* Trigger calibration */
pci_mod_config8(MCU, 0x75, 0, 0x02);
/* Wait for calibration */
while (pci_read_config8(MCU, 0x75) & 0x02);
}
static void vx900_rxdqs_adjust(delay_range * dly)
{
/* Adjust Rx DQS delay after calibration has been run. This is
* recommended by VIA, but no explanation was provided as to why */
size_t i;
for (i = 0; i < 8; i++) {
if (dly->low[i] < 3) {
if (i == 2 || i == 4)
dly->avg[i] += 4;
else
dly->avg[i] += 3;
}
if (dly->high[i] > 0x38)
dly->avg[i] -= 6;
else if (dly->high[i] > 0x30)
dly->avg[i] -= 4;
if (dly->avg[i] > 0x20)
dly->avg[i] = 0x20;
}
/* Put Rx DQS delay into manual mode (Set Rx[2,0] to 01) */
pci_mod_config8(MCU, 0x71, 0x05, 0x01);
/* Now write the new settings */
vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(dly->avg);
}
static void vx900_dram_calibrate_recieve_delays(vx900_delay_calib * delays,
u8 pinswap)
{
size_t n_tries = 0;
delay_range *rx_dq_cr = &(delays->rx_dq_cr);
delay_range *rx_dqs = &(delays->rx_dqs);
/* We really should be able to finish this in a single pass, but it may
* in very rare circumstances not work the first time. We define a limit
* on the number of tries so that we have a way of warning the user */
const size_t max_tries = 100;
for (;;) {
if (n_tries++ >= max_tries) {
die("Could not calibrate receive delays. Giving up");
}
u8 result;
/* Run calibrations */
if (RAMINIT_USE_HW_RXCR_CALIB) {
vx900_rx_capture_range_calib(pinswap);
vx900_read_delay_range(rx_dq_cr, CALIB_RxDQ_CR);
dump_delay_range(*rx_dq_cr);
} else {
/*FIXME: Cheating with Rx CR setting\
* We need to either use Rx CR calibration
* or set up a table for the calibration */
u8 *override = &(rx_dq_cr->avg[0]);
override[0] = 0x28;
override[1] = 0x1c;
override[2] = 0x28;
override[3] = 0x28;
override[4] = 0x2c;
override[5] = 0x30;
override[6] = 0x30;
override[7] = 0x34;
printram("Bypassing RxCR 78-7f calibration with:\n");
dump_delay(rx_dq_cr->avg);
}
/* We need to put the setting on manual mode */
pci_mod_config8(MCU, 0x71, 0, 1 << 4);
vx900_delay_calib_mode_select(CALIB_RxDQ_CR, CALIB_MANUAL);
vx900_write_0x78_0x7f(rx_dq_cr->avg);
/************* RxDQS *************/
vx900_rx_dqs_delay_calib(pinswap);
vx900_read_delay_range(rx_dqs, CALIB_RxDQS);
vx900_rxdqs_adjust(rx_dqs);
result = vx900_dram_check_calib_range(rx_dqs, DQSI_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/* We're good to go. Switch to manual and write the manual
* setting */
pci_mod_config8(MCU, 0x71, 0, 1 << 0);
vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(rx_dqs->avg);
break;
}
if (n_tries > 1)
printram("Hmm, we had to try %lu times before our calibration "
"was good.\n", n_tries);
}
static void vx900_dram_calibrate_transmit_delays(delay_range * tx_dq,
delay_range * tx_dqs)
{
/* Same timeout reasoning as in receive delays */
size_t n_tries = 0;
int dq_tries = 0, dqs_tries = 0;
const size_t max_tries = 100;
for (;;) {
if (n_tries++ >= max_tries) {
printram("Tried DQS %i times and DQ %i times\n",
dqs_tries, dq_tries);
printram("Tx DQS calibration results\n");
dump_delay_range(*tx_dqs);
printram("TX DQ delay calibration results:\n");
dump_delay_range(*tx_dq);
die("Could not calibrate transmit delays. Giving up");
}
u8 result;
/************* TxDQS *************/
dqs_tries++;
vx900_tx_dqs_delay_calib();
vx900_read_delay_range(tx_dqs, CALIB_TxDQS);
result = vx900_dram_check_calib_range(tx_dqs, DQSO_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/************* TxDQ *************/
/* FIXME: not sure if multiple page mode should be enabled here
* Vendor BIOS does it */
pci_mod_config8(MCU, 0x69, 0, 0x01);
dq_tries++;
vx900_tx_dq_delay_calib();
vx900_read_delay_range(tx_dq, CALIB_TxDQ);
result = vx900_dram_check_calib_range(tx_dq, DQO_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/* At this point, our RAM should give correct read-backs for
* addresses under 64 MB. If it doesn't, it won't work */
if (ram_check_noprint_nodie(1 << 20, 1 << 20)) {
/* No, our RAM is not working, try again */
/* FIXME: Except that we have not yet told the MCU what
* the geometry of the DIMM is, hence we don't trust
* this test for now */
}
/* Good. We should be able to use this DIMM */
/* That's it. We're done */
break;
}
if (n_tries > 1)
printram("Hmm, we had to try %lu times before our calibration "
"was good.\n", n_tries);
}
/*
* The meat and potatoes of getting our MCU to operate the DIMMs properly.
*
* Thank you JEDEC for making us need configurable delays for each set of MD
* signals.
*/
static void vx900_dram_calibrate_delays(const ramctr_timing * ctrl,
const rank_layout * ranks)
{
size_t i;
u8 val;
u8 dimm;
vx900_delay_calib delay_cal;
memset(&delay_cal, 0, sizeof(delay_cal));
printram("Starting delay calibration\n");
/**** Read delay control ****/
/* MD Input Data Push Timing Control;
* use values recommended in datasheet
* Setting this too low causes the Rx window to move below the range we
* need it so we can capture it with Rx_78_7f
* This causes Rx calibrations to be too close to 0, and Tx
* calibrations will fail.
* Setting this too high causes the window to move above the range.
*/
if (ctrl->tCK <= TCK_533MHZ)
val = 2;
else if (ctrl->tCK <= TCK_333MHZ)
val = 1;
else
val = 0;
val++; /* FIXME: vendor BIOS sets this to 3 */
pci_mod_config8(MCU, 0x74, (0x03 << 1), ((val & 0x03) << 1));
/* FIXME: The vendor BIOS increases the MD input delay - WHY ? */
pci_mod_config8(MCU, 0xef, (3 << 4), 3 << 4);
/**** Write delay control ****/
/* FIXME: The vendor BIOS does this, but WHY?
* See check_special_registers in VIA provided code. This value seems
* to depend on the DRAM frequency.
*/
/* Early DQ/DQS for write cycles */
pci_mod_config8(MCU, 0x76, (3 << 2), 2 << 2);
/* FIXME: The vendor BIOS does this - Output preamble ? */
pci_write_config8(MCU, 0x77, 0x10);
/* Set BA[0/1/2] to [A17/18/19] */
vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP);
/* Disable Multiple Page Mode - Set Rx69[0] to 0 */
pci_mod_config8(MCU, 0x69, (1 << 0), 0x00);
/* It's very important that we keep all ranks which are not calibrated
* mapped to VR3. Even if we disable them, if they are mapped to VR0
* (the rank we use for calibrations), the calibrations may fail in
* unexpected ways. */
vx900_pr_map_all_vr3();
/* We only really need to run the receive calibrations once. They are
* meant to account for signal travel differences in the internal paths
* of the MCU, so it doesn't really matter which rank we use for this.
* Differences between ranks will be accounted for in the transmit
* calibration. */
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i += 2) {
/* Do we have a valid DIMM? */
if (ranks->phys_rank_size_mb[i] +
ranks->phys_rank_size_mb[i + 1] == 0)
continue;
/* Map the first rank of the DIMM to VR0 */
vx900_map_pr_vr(2 * i, 0);
/* Only run on first rank, remember? */
break;
}
vx900_dram_calibrate_recieve_delays(&delay_cal,
ranks->flags[i].pins_mirrored);
printram("RX DQS calibration results\n");
dump_delay_range(delay_cal.rx_dqs);
/* Enable multiple page mode for when calibrating transmit delays */
pci_mod_config8(MCU, 0x69, 0, 1 << 1);
/*
* Unlike the receive delays, we need to run the transmit calibration
* for each DIMM (not rank). We run the calibration on the even rank.
* The odd rank may have memory pins swapped, and this, it seems,
* confuses the calibration circuit.
*/
dimm = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
/* Do we have a valid DIMM? */
u32 dimm_size_mb = ranks->phys_rank_size_mb[2 * i]
+ ranks->phys_rank_size_mb[2 * i + 1];
if (dimm_size_mb == 0)
continue;
/* Map the first rank of the DIMM to VR0 */
vx900_map_pr_vr(2 * i, 0);
vx900_dram_calibrate_transmit_delays(&(delay_cal.tx_dq[dimm]),
&(delay_cal.tx_dqs[dimm]));
/* We run this more than once, so dump delays for each DIMM */
printram("Tx DQS calibration results\n");
dump_delay_range(delay_cal.tx_dqs[dimm]);
printram("TX DQ delay calibration results:\n");
dump_delay_range(delay_cal.tx_dq[dimm]);
/* Now move the DIMM back to VR3 */
vx900_map_pr_vr(2 * i, 3);
/* We use dimm as a counter so that we fill tx_dq[] and tx_dqs[]
* results in order from 0, and do not leave any gaps */
dimm++;
}
/* When we have more dimms, we need to find a tx window with which all
* dimms can safely work */
if (dimm > 1) {
vx900_dram_find_avg_delays(&delay_cal);
printram("Final delay values\n");
printram("Tx DQS: ");
dump_delay(delay_cal.tx_dqs[0].avg);
printram("Tx DQ: ");
dump_delay(delay_cal.tx_dq[0].avg);
}
/* Write manual settings */
pci_mod_config8(MCU, 0x75, 0, 0x01);
vx900_delay_calib_mode_select(CALIB_TxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(delay_cal.tx_dqs[0].avg);
vx900_delay_calib_mode_select(CALIB_TxDQ, CALIB_MANUAL);
vx900_write_0x78_0x7f(delay_cal.tx_dq[0].avg);
}
static void vx900_dram_set_refresh_counter(ramctr_timing * ctrl)
{
u8 reg8;
/* Set DRAM refresh counter
* Based on a refresh counter of 0x61 at 400MHz */
reg8 = (TCK_400MHZ * 0x61) / ctrl->tCK;
pci_write_config8(MCU, 0xc7, reg8);
}
/*
* Here, we map each rank somewhere in our address space. We don't really care
* at this point if this will overlap the PCI config space. If needed, remapping
* is done in ramstage, where we actually know how much PCI space we actually
* need.
*/
static void vx900_dram_range(ramctr_timing * ctrl, rank_layout * ranks)
{
size_t i, vrank = 0;
u8 reg8;
u32 ramsize_mb = 0, tolm_mb;
const u32 TOLM_3_5G = (7 << 29);
/* All unused physical ranks go to VR3. Otherwise, the MCU might be
* trying to read or write from unused ranks, or even worse, write some
* bits to the rank we want, and some to the unused ranks, even though
* they are disabled. Since VR3 is the last virtual rank to be used, we
* eliminate any ambiguities that the MCU may face. */
vx900_pr_map_all_vr3();
for (i = 0; i < VX900_MAX_MEM_RANKS; i++) {
u32 rank_size_mb = ranks->phys_rank_size_mb[i];
if (!rank_size_mb)
continue;
/* vvvvvvvvvv FIXME: Fix odd rank init vvvvvvvvvv */
if ((i & 1)) {
printk(BIOS_EMERG, "I cannot initialize rank %zu\n", i);
printk(BIOS_EMERG, "I have to disable it\n");
continue;
}
/* ^^^^^^^^^^ FIXME: Fix odd rank init ^^^^^^^^^^ */
ranks->virt[vrank].start_addr = ramsize_mb;
ramsize_mb += rank_size_mb;
ranks->virt[vrank].end_addr = ramsize_mb;
/* Rank memory range */
reg8 = (ranks->virt[vrank].start_addr >> 6);
pci_write_config8(MCU, 0x48 + vrank, reg8);
reg8 = (ranks->virt[vrank].end_addr >> 6);
pci_write_config8(MCU, 0x40 + vrank, reg8);
vx900_map_pr_vr(i, vrank);
printram("Mapped Physical rank %u, to virtual rank %u\n"
" Start address: 0x%.10llx\n"
" End address: 0x%.10llx\n",
(int)i, (int)vrank,
(u64) ranks->virt[vrank].start_addr << 20,
(u64) ranks->virt[vrank].end_addr << 20);
/* Move on to next virtual rank */
vrank++;
}
/* Limit the Top of Low memory at 3.5G
* Not to worry, we'll set tolm in ramstage, once we have initialized
* all devices and know pci_tolm. */
tolm_mb = MIN(ramsize_mb, TOLM_3_5G >> 20);
u16 reg_tolm = (tolm_mb << 4) & 0xfff0;
pci_mod_config16(MCU, 0x84, 0xfff0, reg_tolm);
printram("Initialized %u virtual ranks, with a total size of %u MB\n",
(int)vrank, ramsize_mb);
}
/*
* Here, we tell the memory controller how to treat a DIMM. This is an extremely
* important step. It tells the MCU how many address bits we have in each DIMM,
* and how to use them. This information is essential for the controller to
* understand the DIMM addressing, and write and read data in the correct place.
*/
static void vx900_dram_map_row_col_bank(dimm_info * dimms)
{
u8 reg8, rcb_val, col_bits, max_row_bits;
size_t i;
/* Do we have 4Gbit chips? */
/* FIXME: Implement this */
/* Do we have 8Gbit chips? */
/* FIXME: Implement this */
max_row_bits = rcb_val = reg8 = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
col_bits = dimms->dimm[i].col_bits;
/*
* DDR3 always uses 3 bank address bits, and MA type 111b cannot
* be used due to chipset limitation. We are left with only two
* options, which we can choose based solely on the number of
* column address bits.
*/
if ((col_bits < 10) || (col_bits > 11)) {
printram("DIMM %ld has %d column address bits.\n",
i, col_bits);
die("Unsupported DIMM. Try booting without this DIMM");
}
rcb_val = col_bits - 5;
reg8 |= (rcb_val << ((i * 3) + 2));
/* */
max_row_bits = MAX(max_row_bits, dimms->dimm[i].row_bits);
}
printram("RCBA map (rx50) <- %.2x\n", reg8);
pci_write_config8(MCU, 0x50, reg8);
printram("Houston, we have %d row address bits\n", max_row_bits);
/* FIXME: Do this properly */
vx900_dram_map_pins(13, 14, 15, 17, 16);
}
/*
* Here, we set some final configuration bits, which should improve the
* performance of the memory slightly (arbitration, expiration counters, etc.)
*
* FIXME: We don't really do much else than the minimum to get the MCU properly
* configured. We don't yet do set the "performance-enhancing" bits referenced
* in the comment above.
*/
static void vx900_dram_write_final_config(ramctr_timing * ctrl)
{
/* FIXME: These are quick cheats */
/* FIXME: Why are we doing this? */
/* Tri-state MCSi# when rank is in self-refresh */
pci_mod_config8(MCU, 0x99, 0, 0x0f);
/* Enable paging mode and 8 page registers */
pci_mod_config8(MCU, 0x69, 0, 0xe5);
/* Enable automatic triggering of short ZQ calibration */
pci_write_config8(MCU, 0xc8, 0x80);
/* And last but not least, Enable A20 line */
outb(inb(0x92) | (1 << 1), 0x92);
}
void vx900_init_dram_ddr3(const dimm_layout * dimm_addr)
{
dimm_info dimm_prop;
ramctr_timing ctrl_prop;
rank_layout ranks;
device_t mcu;
if (!ram_check_noprint_nodie(1 << 20, 1 << 20)) {
printram("RAM is already initialized. Skipping init\n");
return;
}
/* Locate the Memory controller */
mcu = pci_locate_device(PCI_ID(PCI_VENDOR_ID_VIA,
PCI_DEVICE_ID_VIA_VX900_MEMCTRL), 0);
if (mcu == PCI_DEV_INVALID) {
die("Memory Controller not found\n");
}
memset(&dimm_prop, 0, sizeof(dimm_prop));
memset(&ctrl_prop, 0, sizeof(ctrl_prop));
memset(&ranks, 0, sizeof(ranks));
/* 1) Write some initial "safe" parameters */
vx900_dram_write_init_config();
/* 2) Get timing information from SPDs */
dram_find_spds_ddr3(dimm_addr, &dimm_prop);
/* 3) Find lowest common denominator for all modules */
dram_find_common_params(&dimm_prop, &ctrl_prop);
/* 4) Find the size of each memory rank */
vx900_dram_phys_bank_range(&dimm_prop, &ranks);
/* 5) Set DRAM driving strength */
vx900_dram_driving_ctrl(&dimm_prop);
/* 6) Set DRAM frequency and latencies */
vx900_dram_timing(&ctrl_prop);
vx900_dram_freq(&ctrl_prop);
/* 7) Initialize the modules themselves */
vx900_dram_ddr3_dimm_init(&ctrl_prop, &ranks);
/* 8) Set refresh counter based on DRAM frequency */
vx900_dram_set_refresh_counter(&ctrl_prop);
/* 9) Calibrate receive and transmit delays */
vx900_dram_calibrate_delays(&ctrl_prop, &ranks);
/* 10) Enable Physical to Virtual Rank mapping */
vx900_dram_range(&ctrl_prop, &ranks);
/* 11) Map address bits to DRAM pins */
vx900_dram_map_row_col_bank(&dimm_prop);
/* 99) Some final adjustments */
vx900_dram_write_final_config(&ctrl_prop);
/* Take a dump */
dump_pci_device(mcu);
}