blob: 8663a543ac00bb5bca34bbe9c4b33101bf54af45 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
*
* Modifications are:
* Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
* Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
*/
/*
* (c) 1999--2000 Martin Mares <mj@suse.cz>
*/
/* lots of mods by ron minnich (rminnich@lanl.gov), with
* the final architecture guidance from Tom Merritt (tjm@codegen.com)
* In particular, we changed from the one-pass original version to
* Tom's recommended multiple-pass version. I wasn't sure about doing
* it with multiple passes, until I actually started doing it and saw
* the wisdom of Tom's recommendations ...
*
* Lots of cleanups by Eric Biederman to handle bridges, and to
* handle resource allocation for non-pci devices.
*/
#include <console/console.h>
#include <bitops.h>
#include <arch/io.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <stdlib.h>
#include <string.h>
#include <smp/spinlock.h>
/** Linked list of ALL devices */
struct device *all_devices = &dev_root;
/** Pointer to the last device */
extern struct device **last_dev_p;
/**
* @brief Allocate a new device structure.
*
* Allocte a new device structure and attached it to the device tree as a
* child of the parent bus.
*
* @param parent parent bus the newly created device attached to.
* @param path path to the device to be created.
*
* @return pointer to the newly created device structure.
*
* @see device_path
*/
static spinlock_t dev_lock = SPIN_LOCK_UNLOCKED;
device_t alloc_dev(struct bus *parent, struct device_path *path)
{
device_t dev, child;
int link;
spin_lock(&dev_lock);
/* Find the last child of our parent. */
for (child = parent->children; child && child->sibling; /* */ ) {
child = child->sibling;
}
dev = malloc(sizeof(*dev));
if (dev == 0)
die("DEV: out of memory.\n");
memset(dev, 0, sizeof(*dev));
memcpy(&dev->path, path, sizeof(*path));
/* Initialize the back pointers in the link fields. */
for (link = 0; link < MAX_LINKS; link++) {
dev->link[link].dev = dev;
dev->link[link].link = link;
}
/* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
dev->bus = parent;
if (child) {
child->sibling = dev;
} else {
parent->children = dev;
}
/* Append a new device to the global device list.
* The list is used to find devices once everything is set up.
*/
*last_dev_p = dev;
last_dev_p = &dev->next;
spin_unlock(&dev_lock);
return dev;
}
/**
* @brief round a number up to an alignment.
* @param val the starting value
* @param roundup Alignment as a power of two
* @returns rounded up number
*/
static resource_t round(resource_t val, unsigned long pow)
{
resource_t mask;
mask = (1ULL << pow) - 1ULL;
val += mask;
val &= ~mask;
return val;
}
/** Read the resources on all devices of a given bus.
* @param bus bus to read the resources on.
*/
static void read_resources(struct bus *bus)
{
struct device *curdev;
printk_spew("%s %s bus %x link: %d\n", dev_path(bus->dev), __func__,
bus->secondary, bus->link);
/* Walk through all devices and find which resources they need. */
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
int i;
if (!curdev->enabled) {
continue;
}
if (!curdev->ops || !curdev->ops->read_resources) {
printk_err("%s missing read_resources\n",
dev_path(curdev));
continue;
}
curdev->ops->read_resources(curdev);
/* Read in the resources behind the current device's links. */
for (i = 0; i < curdev->links; i++)
read_resources(&curdev->link[i]);
}
printk_spew("%s read_resources bus %d link: %d done\n",
dev_path(bus->dev), bus->secondary, bus->link);
}
struct pick_largest_state {
struct resource *last;
struct device *result_dev;
struct resource *result;
int seen_last;
};
static void pick_largest_resource(void *gp, struct device *dev,
struct resource *resource)
{
struct pick_largest_state *state = gp;
struct resource *last;
last = state->last;
/* Be certain to pick the successor to last. */
if (resource == last) {
state->seen_last = 1;
return;
}
if (resource->flags & IORESOURCE_FIXED)
return; // Skip it.
if (last && ((last->align < resource->align) ||
((last->align == resource->align) &&
(last->size < resource->size)) ||
((last->align == resource->align) &&
(last->size == resource->size) && (!state->seen_last)))) {
return;
}
if (!state->result ||
(state->result->align < resource->align) ||
((state->result->align == resource->align) &&
(state->result->size < resource->size))) {
state->result_dev = dev;
state->result = resource;
}
}
static struct device *largest_resource(struct bus *bus,
struct resource **result_res,
unsigned long type_mask,
unsigned long type)
{
struct pick_largest_state state;
state.last = *result_res;
state.result_dev = NULL;
state.result = NULL;
state.seen_last = 0;
search_bus_resources(bus, type_mask, type, pick_largest_resource,
&state);
*result_res = state.result;
return state.result_dev;
}
/* Compute allocate resources is the guts of the resource allocator.
*
* The problem.
* - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
* worry about them too much. Instead only use part of the address
* space for devices with programmable addresses. This easily handles
* everything except bridges.
*
* - PCI devices are required to have their sizes and their alignments
* equal. In this case an optimal solution to the packing problem
* exists. Allocate all devices from highest alignment to least
* alignment or vice versa. Use this.
*
* - So we can handle more than PCI run two allocation passes on bridges. The
* first to see how large the resources are behind the bridge, and what
* their alignment requirements are. The second to assign a safe address to
* the devices behind the bridge. This allows us to treat a bridge as just
* a device with a couple of resources, and not need to special case it in
* the allocator. Also this allows handling of other types of bridges.
*
*/
void compute_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
base = round(bridge->base, bridge->align);
printk_spew( "%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx\n",
dev_path(bus->dev), __func__,
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
"prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
/* For each child which is a bridge, compute_resource_needs. */
for (dev = bus->children; dev; dev = dev->sibling) {
unsigned i;
struct resource *child_bridge;
if (!dev->links)
continue;
/* Find the resources with matching type flags. */
for (i = 0; i < dev->resources; i++) {
unsigned link;
child_bridge = &dev->resource[i];
if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
(child_bridge->flags & type_mask) != type)
continue;
/* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them
* need it separated. Add the PREFETCH flag to the
* type_mask and type.
*/
link = IOINDEX_LINK(child_bridge->index);
compute_resources(&dev->link[link], child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
/* Remember we haven't found anything yet. */
resource = NULL;
/* Walk through all the resources on the current bus and compute the
* amount of address space taken by them. Take granularity and
* alignment into account.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Size 0 resources can be skipped. */
if (!resource->size) {
continue;
}
/* Propagate the resource alignment to the bridge resource. */
if (resource->align > bridge->align) {
bridge->align = resource->align;
}
/* Propagate the resource limit to the bridge register. */
if (bridge->limit > resource->limit) {
bridge->limit = resource->limit;
}
/* Warn if it looks like APICs aren't declared. */
if ((resource->limit == 0xffffffff) &&
(resource->flags & IORESOURCE_ASSIGNED)) {
printk_err("Resource limit looks wrong! (no APIC?)\n");
printk_err("%s %02lx limit %08Lx\n", dev_path(dev),
resource->index, resource->limit);
}
if (resource->flags & IORESOURCE_IO) {
/* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
base += resource->size;
printk_spew("%s %02lx * [0x%llx - 0x%llx] %s\n",
dev_path(dev), resource->index,
resource->base,
resource->base + resource->size - 1,
(resource->flags & IORESOURCE_IO) ? "io" :
(resource->flags & IORESOURCE_PREFETCH) ?
"prefmem" : "mem");
}
/* A pci bridge resource does not need to be a power
* of two size, but it does have a minimum granularity.
* Round the size up to that minimum granularity so we
* know not to place something else at an address postitively
* decoded by the bridge.
*/
bridge->size = round(base, bridge->gran) -
round(bridge->base, bridge->align);
printk_spew("%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx done\n",
dev_path(bus->dev), __func__,
(bridge->flags & IORESOURCE_IO) ? "io" :
(bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
}
/**
* This function is the second part of the resource allocator.
*
* The problem.
* - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
* worry about them too much. Instead only use part of the address
* space for devices with programmable addresses. This easily handles
* everything except bridges.
*
* - PCI devices are required to have their sizes and their alignments
* equal. In this case an optimal solution to the packing problem
* exists. Allocate all devices from highest alignment to least
* alignment or vice versa. Use this.
*
* - So we can handle more than PCI run two allocation passes on bridges. The
* first to see how large the resources are behind the bridge, and what
* their alignment requirements are. The second to assign a safe address to
* the devices behind the bridge. This allows us to treat a bridge as just
* a device with a couple of resources, and not need to special case it in
* the allocator. Also this allows handling of other types of bridges.
*
* - This function assigns the resources a value.
*
* @param bus The bus we are traversing.
* @param bridge The bridge resource which must contain the bus' resources.
* @param type_mask This value gets anded with the resource type.
* @param type This value must match the result of the and.
*/
void allocate_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
base = bridge->base;
printk_spew("%s %s_%s: base:%llx size:%llx align:%d gran:%d limit:%llx\n",
dev_path(bus->dev), __func__,
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
"prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
/* Remember we haven't found anything yet. */
resource = NULL;
/* Walk through all the resources on the current bus and allocate them
* address space.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Propagate the bridge limit to the resource register. */
if (resource->limit > bridge->limit) {
resource->limit = bridge->limit;
}
/* Size 0 resources can be skipped. */
if (!resource->size) {
/* Set the base to limit so it doesn't confuse tolm. */
resource->base = resource->limit;
resource->flags |= IORESOURCE_ASSIGNED;
continue;
}
if (resource->flags & IORESOURCE_IO) {
/* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
if ((round(base, resource->align) + resource->size - 1) <=
resource->limit) {
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
resource->flags |= IORESOURCE_ASSIGNED;
resource->flags &= ~IORESOURCE_STORED;
base += resource->size;
} else {
printk_err("!! Resource didn't fit !!\n");
printk_err(" aligned base %llx size %llx limit %llx\n",
round(base, resource->align), resource->size,
resource->limit);
printk_err(" %llx needs to be <= %llx (limit)\n",
(round(base, resource->align) +
resource->size) - 1, resource->limit);
printk_err(" %s%s %02lx * [0x%llx - 0x%llx] %s\n",
(resource->
flags & IORESOURCE_ASSIGNED) ? "Assigned: " :
"", dev_path(dev), resource->index,
resource->base,
resource->base + resource->size - 1,
(resource->
flags & IORESOURCE_IO) ? "io" : (resource->
flags &
IORESOURCE_PREFETCH)
? "prefmem" : "mem");
}
printk_spew("%s%s %02lx * [0x%llx - 0x%llx] %s\n",
(resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
: "",
dev_path(dev), resource->index, resource->base,
resource->size ? resource->base + resource->size - 1 :
resource->base,
(resource->flags & IORESOURCE_IO) ? "io" :
(resource->flags & IORESOURCE_PREFETCH) ? "prefmem" :
"mem");
}
/* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->flags |= IORESOURCE_ASSIGNED;
printk_spew("%s %s_%s: next_base: %llx size: %llx align: %d gran: %d done\n",
dev_path(bus->dev), __func__,
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
"prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran);
/* For each child which is a bridge, allocate_resources. */
for (dev = bus->children; dev; dev = dev->sibling) {
unsigned i;
struct resource *child_bridge;
if (!dev->links)
continue;
/* Find the resources with matching type flags. */
for (i = 0; i < dev->resources; i++) {
unsigned link;
child_bridge = &dev->resource[i];
if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
(child_bridge->flags & type_mask) != type)
continue;
/* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them
* need it separated. Add the PREFETCH flag to the
* type_mask and type.
*/
link = IOINDEX_LINK(child_bridge->index);
allocate_resources(&dev->link[link], child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
}
#if CONFIG_PCI_64BIT_PREF_MEM == 1
#define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
#else
#define MEM_MASK (IORESOURCE_MEM)
#endif
#define IO_MASK (IORESOURCE_IO)
#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
#define MEM_TYPE (IORESOURCE_MEM)
#define IO_TYPE (IORESOURCE_IO)
struct constraints {
struct resource pref, io, mem;
};
static void constrain_resources(struct device *dev, struct constraints* limits)
{
struct device *child;
struct resource *res;
struct resource *lim;
int i;
printk_spew("%s: %s\n", __func__, dev_path(dev));
/* Constrain limits based on the fixed resources of this device. */
for (i = 0; i < dev->resources; i++) {
res = &dev->resource[i];
if (!(res->flags & IORESOURCE_FIXED))
continue;
/* PREFETCH, MEM, or I/O - skip any others. */
if ((res->flags & MEM_MASK) == PREF_TYPE)
lim = &limits->pref;
else if ((res->flags & MEM_MASK) == MEM_TYPE)
lim = &limits->mem;
else if ((res->flags & IO_MASK) == IO_TYPE)
lim = &limits->io;
else
continue;
/* Is it already outside the limits? */
if (res->size && (((res->base + res->size -1) < lim->base) ||
(res->base > lim->limit)))
continue;
/* Choose to be above or below fixed resources. This
* check is signed so that "negative" amounts of space
* are handled correctly.
*/
if ((signed long long)(lim->limit - (res->base + res->size -1)) >
(signed long long)(res->base - lim->base))
lim->base = res->base + res->size;
else
lim->limit = res->base -1;
}
/* Descend into every enabled child and look for fixed resources. */
for (i = 0; i < dev->links; i++)
for (child = dev->link[i].children; child;
child = child->sibling)
if (child->enabled)
constrain_resources(child, limits);
}
static void avoid_fixed_resources(struct device *dev)
{
struct constraints limits;
struct resource *res;
int i;
printk_spew("%s: %s\n", __func__, dev_path(dev));
/* Initialize constraints to maximum size. */
limits.pref.base = 0;
limits.pref.limit = 0xffffffffffffffffULL;
limits.io.base = 0;
limits.io.limit = 0xffffffffffffffffULL;
limits.mem.base = 0;
limits.mem.limit = 0xffffffffffffffffULL;
/* Constrain the limits to dev's initial resources. */
for (i = 0; i < dev->resources; i++) {
res = &dev->resource[i];
if ((res->flags & IORESOURCE_FIXED))
continue;
printk_spew("%s:@%s %02lx limit %08Lx\n", __func__,
dev_path(dev), res->index, res->limit);
if ((res->flags & MEM_MASK) == PREF_TYPE &&
(res->limit < limits.pref.limit))
limits.pref.limit = res->limit;
if ((res->flags & MEM_MASK) == MEM_TYPE &&
(res->limit < limits.mem.limit))
limits.mem.limit = res->limit;
if ((res->flags & IO_MASK) == IO_TYPE &&
(res->limit < limits.io.limit))
limits.io.limit = res->limit;
}
/* Look through the tree for fixed resources and update the limits. */
constrain_resources(dev, &limits);
/* Update dev's resources with new limits. */
for (i = 0; i < dev->resources; i++) {
struct resource *lim;
res = &dev->resource[i];
if ((res->flags & IORESOURCE_FIXED))
continue;
/* PREFETCH, MEM, or I/O - skip any others. */
if ((res->flags & MEM_MASK) == PREF_TYPE)
lim = &limits.pref;
else if ((res->flags & MEM_MASK) == MEM_TYPE)
lim = &limits.mem;
else if ((res->flags & IO_MASK) == IO_TYPE)
lim = &limits.io;
else
continue;
printk_spew("%s2: %s@%02lx limit %08Lx\n", __func__,
dev_path(dev), res->index, res->limit);
printk_spew("\tlim->base %08Lx lim->limit %08Lx\n",
lim->base, lim->limit);
/* Is the resource outside the limits? */
if (lim->base > res->base)
res->base = lim->base;
if (res->limit > lim->limit)
res->limit = lim->limit;
}
}
#if CONFIG_CONSOLE_VGA == 1
device_t vga_pri = 0;
static void set_vga_bridge_bits(void)
{
#warning "FIXME modify set_vga_bridge so it is less pci centric!"
#warning "This function knows too much about PCI stuff, it should be just a iterator/visitor."
/* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard, *vga_first, *vga_last;
struct bus *bus;
bus = 0;
vga = 0;
vga_onboard = 0;
vga_first = 0;
vga_last = 0;
for (dev = all_devices; dev; dev = dev->next) {
if (!dev->enabled)
continue;
if (((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) &&
((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) {
if (!vga_first) {
if (dev->on_mainboard) {
vga_onboard = dev;
} else {
vga_first = dev;
}
} else {
if (dev->on_mainboard) {
vga_onboard = dev;
} else {
vga_last = dev;
}
}
/* It isn't safe to enable other VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
}
vga = vga_last;
if (!vga) {
vga = vga_first;
}
#if CONFIG_CONSOLE_VGA_ONBOARD_AT_FIRST == 1
if (vga_onboard) // Will use on board VGA as pri.
#else
if (!vga) // Will use last add on adapter as pri.
#endif
{
vga = vga_onboard;
}
if (vga) {
/* VGA is first add on card or the only onboard VGA. */
printk_debug("Setting up VGA for %s\n", dev_path(vga));
/* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
/* Now walk up the bridges setting the VGA enable. */
while (bus) {
printk_debug("Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
#endif
/**
* @brief Assign the computed resources to the devices on the bus.
*
* @param bus Pointer to the structure for this bus
*
* Use the device specific set_resources method to store the computed
* resources to hardware. For bridge devices, the set_resources() method
* has to recurse into every down stream buses.
*
* Mutual recursion:
* assign_resources() -> device_operation::set_resources()
* device_operation::set_resources() -> assign_resources()
*/
void assign_resources(struct bus *bus)
{
struct device *curdev;
printk_spew("%s assign_resources, bus %d link: %d\n",
dev_path(bus->dev), bus->secondary, bus->link);
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resources) {
continue;
}
if (!curdev->ops || !curdev->ops->set_resources) {
printk_err("%s missing set_resources\n",
dev_path(curdev));
continue;
}
curdev->ops->set_resources(curdev);
}
printk_spew("%s assign_resources, bus %d link: %d\n",
dev_path(bus->dev), bus->secondary, bus->link);
}
/**
* @brief Enable the resources for a specific device
*
* @param dev the device whose resources are to be enabled
*
* Enable resources of the device by calling the device specific
* enable_resources() method.
*
* The parent's resources should be enabled first to avoid having enabling
* order problem. This is done by calling the parent's enable_resources()
* method and let that method to call it's children's enable_resoruces()
* method via the (global) enable_childrens_resources().
*
* Indirect mutual recursion:
* enable_resources() -> device_operations::enable_resource()
* device_operations::enable_resource() -> enable_children_resources()
* enable_children_resources() -> enable_resources()
*/
void enable_resources(struct device *dev)
{
if (!dev->enabled) {
return;
}
if (!dev->ops || !dev->ops->enable_resources) {
printk_err("%s missing enable_resources\n", dev_path(dev));
return;
}
dev->ops->enable_resources(dev);
}
/**
* @brief Reset all of the devices a bus
*
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
*
* @param bus pointer to the bus structure
*
* @return 1 if the bus was successfully reset, 0 otherwise.
*
*/
int reset_bus(struct bus *bus)
{
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
}
return 0;
}
/**
* @brief Scan for devices on a bus.
*
* If there are bridges on the bus, recursively scan the buses behind the
* bridges. If the setting up and tuning of the bus causes a reset to be
* required, reset the bus and scan it again.
*
* @param busdev Pointer to the bus device.
* @param max Current bus number.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int scan_bus(struct device *busdev, unsigned int max)
{
unsigned int new_max;
int do_scan_bus;
if (!busdev || !busdev->enabled || !busdev->ops ||
!busdev->ops->scan_bus) {
return max;
}
do_scan_bus = 1;
while (do_scan_bus) {
int link;
new_max = busdev->ops->scan_bus(busdev, max);
do_scan_bus = 0;
for (link = 0; link < busdev->links; link++) {
if (busdev->link[link].reset_needed) {
if (reset_bus(&busdev->link[link])) {
do_scan_bus = 1;
} else {
busdev->bus->reset_needed = 1;
}
}
}
}
return new_max;
}
/**
* @brief Determine the existence of devices and extend the device tree.
*
* Most of the devices in the system are listed in the mainboard Config.lb
* file. The device structures for these devices are generated at compile
* time by the config tool and are organized into the device tree. This
* function determines if the devices created at compile time actually exist
* in the physical system.
*
* For devices in the physical system but not listed in the Config.lb file,
* the device structures have to be created at run time and attached to the
* device tree.
*
* This function starts from the root device 'dev_root', scan the buses in
* the system recursively, modify the device tree according to the result of
* the probe.
*
* This function has no idea how to scan and probe buses and devices at all.
* It depends on the bus/device specific scan_bus() method to do it. The
* scan_bus() method also has to create the device structure and attach
* it to the device tree.
*/
void dev_enumerate(void)
{
struct device *root;
printk_info("Enumerating buses...\n");
root = &dev_root;
show_all_devs(BIOS_DEBUG, "Before Device Enumeration.");
printk_debug("Compare with tree...\n");
show_devs_tree(root, BIOS_DEBUG, 0, 0);
if (root->chip_ops && root->chip_ops->enable_dev) {
root->chip_ops->enable_dev(root);
}
if (!root->ops || !root->ops->scan_bus) {
printk_err("dev_root missing scan_bus operation");
return;
}
scan_bus(root, 0);
printk_info("done\n");
}
/**
* @brief Configure devices on the devices tree.
*
* Starting at the root of the device tree, travel it recursively in two
* passes. In the first pass, we compute and allocate resources (ranges)
* requried by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
* I/O resources grow upward. MEM resources grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_configure(void)
{
struct resource *res;
struct device *root;
struct device *child;
int i;
#if CONFIG_CONSOLE_VGA == 1
set_vga_bridge_bits();
#endif
printk_info("Allocating resources...\n");
root = &dev_root;
/* Each domain should create resources which contain the entire address
* space for IO, MEM, and PREFMEM resources in the domain. The
* allocation of device resources will be done from this address space.
*/
/* Read the resources for the entire tree. */
printk_info("Reading resources...\n");
read_resources(&root->link[0]);
printk_info("Done reading resources.\n");
print_resource_tree(root, BIOS_DEBUG, "After reading.");
/* Compute resources for all domains. */
for (child = root->link[0].children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
continue;
for (i = 0; i < child->resources; i++) {
res = &child->resource[i];
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_PREFETCH) {
compute_resources(&child->link[0],
res, MEM_MASK, PREF_TYPE);
continue;
}
if (res->flags & IORESOURCE_MEM) {
compute_resources(&child->link[0],
res, MEM_MASK, MEM_TYPE);
continue;
}
if (res->flags & IORESOURCE_IO) {
compute_resources(&child->link[0],
res, IO_MASK, IO_TYPE);
continue;
}
}
}
/* For all domains. */
for (child = root->link[0].children; child; child=child->sibling)
if (child->path.type == DEVICE_PATH_PCI_DOMAIN)
avoid_fixed_resources(child);
/* Now we need to adjust the resources. MEM resources need to start at
* the highest address managable.
*/
for (child = root->link[0].children; child; child = child->sibling) {
if (child->path.type != DEVICE_PATH_PCI_DOMAIN)
continue;
for (i = 0; i < child->resources; i++) {
res = &child->resource[i];
if (!(res->flags & IORESOURCE_MEM) ||
res->flags & IORESOURCE_FIXED)
continue;
res->base = resource_max(res);
}
}
/* Store the computed resource allocations into device registers ... */
printk_info("Setting resources...\n");
for (child = root->link[0].children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
continue;
for (i = 0; i < child->resources; i++) {
res = &child->resource[i];
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_PREFETCH) {
allocate_resources(&child->link[0],
res, MEM_MASK, PREF_TYPE);
continue;
}
if (res->flags & IORESOURCE_MEM) {
allocate_resources(&child->link[0],
res, MEM_MASK, MEM_TYPE);
continue;
}
if (res->flags & IORESOURCE_IO) {
allocate_resources(&child->link[0],
res, IO_MASK, IO_TYPE);
continue;
}
}
}
assign_resources(&root->link[0]);
printk_info("Done setting resources.\n");
print_resource_tree(root, BIOS_DEBUG, "After assigning values.");
printk_info("Done allocating resources.\n");
}
/**
* @brief Enable devices on the device tree.
*
* Starting at the root, walk the tree and enable all devices/bridges by
* calling the device's enable_resources() method.
*/
void dev_enable(void)
{
printk_info("Enabling resources...\n");
/* now enable everything. */
enable_resources(&dev_root);
printk_info("done.\n");
}
/**
* @brief Initialize all devices in the global device list.
*
* Starting at the first device on the global device link list,
* walk the list and call the device's init() method to do deivce
* specific setup.
*/
void dev_initialize(void)
{
struct device *dev;
printk_info("Initializing devices...\n");
for (dev = all_devices; dev; dev = dev->next) {
if (dev->enabled && !dev->initialized &&
dev->ops && dev->ops->init) {
if (dev->path.type == DEVICE_PATH_I2C) {
printk_debug("smbus: %s[%d]->",
dev_path(dev->bus->dev),
dev->bus->link);
}
printk_debug("%s init\n", dev_path(dev));
dev->initialized = 1;
dev->ops->init(dev);
}
}
printk_info("Devices initialized\n");
show_all_devs(BIOS_DEBUG, "After init.");
}