blob: f45a3a0d217604ea3322dcdbacb7951e208aada0 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <arch/io.h>
#include <commonlib/bsd/bcd.h>
#include <console/console.h>
#include <fallback.h>
#include <pc80/mc146818rtc.h>
#include <rtc.h>
#include <security/vboot/vbnv.h>
#include <security/vboot/vbnv_layout.h>
#include <types.h>
#include <version.h>
static void cmos_reset_date(void)
{
/* Now setup a default date equals to the build date */
struct rtc_time time = {
.sec = 0,
.min = 0,
.hour = 1,
.mday = bcd2bin(coreboot_build_date.day),
.mon = bcd2bin(coreboot_build_date.month),
.year = (bcd2bin(coreboot_build_date.century) * 100) +
bcd2bin(coreboot_build_date.year),
.wday = bcd2bin(coreboot_build_date.weekday)
};
rtc_set(&time);
}
int cmos_checksum_valid(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum, old_sum;
if (CONFIG(STATIC_OPTION_TABLE))
return 1;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
old_sum = ((cmos_read(cks_loc) << 8) | cmos_read(cks_loc + 1)) &
0x0ffff;
return sum == old_sum;
}
void cmos_set_checksum(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
cmos_write(((sum >> 0) & 0x0ff), cks_loc + 1);
}
/* See if the CMOS error condition has been flagged */
int cmos_error(void)
{
return (cmos_read(RTC_VALID) & RTC_VRT) == 0;
}
#define RTC_CONTROL_DEFAULT (RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
static bool __cmos_init(bool invalid)
{
bool cmos_invalid;
bool checksum_invalid = false;
bool cleared_cmos = false;
size_t i;
/*
* Avoid clearing pending interrupts and resetting the RTC control
* register in the resume path because the Linux kernel relies on
* this to know if it should restart the RTC timer queue if the wake
* was due to the RTC alarm.
*/
if (ENV_RAMSTAGE && acpi_is_wakeup_s3())
return false;
printk(BIOS_DEBUG, "RTC Init\n");
/* See if there has been a CMOS power problem. */
cmos_invalid = cmos_error();
if (CONFIG(USE_OPTION_TABLE)) {
/* See if there is a CMOS checksum error */
checksum_invalid = !cmos_checksum_valid(PC_CKS_RANGE_START,
PC_CKS_RANGE_END, PC_CKS_LOC);
}
if (cmos_invalid || invalid)
cmos_disable_rtc();
if (invalid || cmos_invalid || checksum_invalid) {
if (!CONFIG(USE_OPTION_TABLE)) {
cmos_write(0, 0x01);
cmos_write(0, 0x03);
cmos_write(0, 0x05);
for (i = 10; i < 128; i++)
cmos_write(0, i);
cleared_cmos = true;
}
if (cmos_invalid || invalid)
cmos_reset_date();
printk(BIOS_WARNING, "RTC:%s%s%s%s\n",
invalid ? " Clear requested":"",
cmos_invalid ? " Power Problem":"",
checksum_invalid ? " Checksum invalid":"",
cleared_cmos ? " zeroing cmos":"");
}
/* Setup the real time clock */
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
/* Setup the frequency it operates at */
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
/* Ensure all reserved bits are 0 in register D */
cmos_write(RTC_VRT, RTC_VALID);
if (CONFIG(USE_OPTION_TABLE)) {
/* See if there is a LB CMOS checksum error */
checksum_invalid = !cmos_lb_cks_valid();
if (checksum_invalid)
printk(BIOS_DEBUG, "RTC: coreboot checksum invalid\n");
/* Make certain we have a valid checksum */
cmos_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END, PC_CKS_LOC);
}
/* Clear any pending interrupts */
cmos_read(RTC_INTR_FLAGS);
return cleared_cmos;
}
static void cmos_init_vbnv(bool invalid)
{
uint8_t vbnv[VBOOT_VBNV_BLOCK_SIZE];
/* __cmos_init() will clear vbnv contents when a known rtc failure
occurred with !CONFIG(USE_OPTION_TABLE). However, __cmos_init() may
clear vbnv data for other internal reasons. For that, always back up
the vbnv contents and conditionally save them when __cmos_init()
indicates CMOS was cleared. */
read_vbnv_cmos(vbnv);
if (__cmos_init(invalid))
save_vbnv_cmos(vbnv);
}
void cmos_init(bool invalid)
{
if (ENV_SMM)
return;
if (CONFIG(VBOOT_VBNV_CMOS))
cmos_init_vbnv(invalid);
else
__cmos_init(invalid);
}
/*
* Upon return the caller is guaranteed 244 microseconds to complete any
* RTC operations. wait_uip may be called a single time prior to multiple
* accesses, but sequences requiring more time should call wait_uip again.
*/
static void wait_uip(void)
{
while (cmos_read(RTC_REG_A) & RTC_UIP)
;
}
/* Perform a sanity check of current date and time. */
static int cmos_date_invalid(void)
{
struct rtc_time now;
rtc_get(&now);
return rtc_invalid(&now);
}
/*
* If the CMOS is cleared, the rtc_reg has the invalid date. That
* hurts some OSes. Even if we don't set USE_OPTION_TABLE, we need
* to make sure the date is valid.
*/
void cmos_check_update_date(void)
{
u8 year, century = 0;
wait_uip();
if (CONFIG(USE_PC_CMOS_ALTCENTURY))
century = cmos_read(RTC_CLK_ALTCENTURY);
year = cmos_read(RTC_CLK_YEAR);
/*
* If century is 0xFF, 100% that the CMOS is cleared.
* In addition, check the sanity of all values and reset the date in case of
* insane values.
*/
if (century > 0x99 || year > 0x99 || cmos_date_invalid()) /* Invalid date */
cmos_reset_date();
}
int rtc_set(const struct rtc_time *time)
{
cmos_write(bin2bcd(time->sec), RTC_CLK_SECOND);
cmos_write(bin2bcd(time->min), RTC_CLK_MINUTE);
cmos_write(bin2bcd(time->hour), RTC_CLK_HOUR);
cmos_write(bin2bcd(time->mday), RTC_CLK_DAYOFMONTH);
cmos_write(bin2bcd(time->mon), RTC_CLK_MONTH);
cmos_write(bin2bcd(time->year % 100), RTC_CLK_YEAR);
if (CONFIG(USE_PC_CMOS_ALTCENTURY))
cmos_write(bin2bcd(time->year / 100), RTC_CLK_ALTCENTURY);
cmos_write(bin2bcd(time->wday + 1), RTC_CLK_DAYOFWEEK);
return 0;
}
int rtc_get(struct rtc_time *time)
{
wait_uip();
time->sec = bcd2bin(cmos_read(RTC_CLK_SECOND));
time->min = bcd2bin(cmos_read(RTC_CLK_MINUTE));
time->hour = bcd2bin(cmos_read(RTC_CLK_HOUR));
time->mday = bcd2bin(cmos_read(RTC_CLK_DAYOFMONTH));
time->mon = bcd2bin(cmos_read(RTC_CLK_MONTH));
time->year = bcd2bin(cmos_read(RTC_CLK_YEAR));
if (CONFIG(USE_PC_CMOS_ALTCENTURY)) {
time->year += bcd2bin(cmos_read(RTC_CLK_ALTCENTURY)) * 100;
} else {
time->year += 1900;
if (time->year < 1970)
time->year += 100;
}
time->wday = bcd2bin(cmos_read(RTC_CLK_DAYOFWEEK)) - 1;
return 0;
}
/*
* Signal coreboot proper completed -- just before running payload
* or jumping to ACPI S3 wakeup vector.
*/
void set_boot_successful(void)
{
uint8_t index, byte;
index = inb(RTC_PORT(0)) & 0x80;
index |= RTC_BOOT_BYTE;
outb(index, RTC_PORT(0));
byte = inb(RTC_PORT(1));
if (CONFIG(SKIP_MAX_REBOOT_CNT_CLEAR)) {
/*
* Set the fallback boot bit to allow for recovery if
* the payload fails to boot.
* It is the responsibility of the payload to reset
* the normal boot bit to 1 if desired
*/
byte &= ~RTC_BOOT_NORMAL;
} else {
/* If we are in normal mode set the boot count to 0 */
if (byte & RTC_BOOT_NORMAL)
byte &= 0x0f;
}
outb(byte, RTC_PORT(1));
}