blob: 5333a8bf2fc340965125b10e2de6e19043679512 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#define __SIMPLE_DEVICE__
#include <stdlib.h>
#include <console/console.h>
#include <device/device.h>
#include <device/mmio.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <fmap.h>
#include <intelblocks/cse.h>
#include <intelblocks/systemagent.h>
#include <intelblocks/vtd.h>
#include <security/vboot/misc.h>
#include <soc/hsphy.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <vb2_api.h>
#include <lib.h>
#define HASHALG_SHA1 0x00000001
#define HASHALG_SHA256 0x00000002
#define HASHALG_SHA384 0x00000003
#define HASHALG_SHA512 0x00000004
#define MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE
#define GET_IP_FIRMWARE_CMD 0x21
#define HSPHY_PAYLOAD_SIZE (32*KiB)
#define CPU_PID_PCIE_PHYX16_BROADCAST 0x55
struct hsphy_cache {
uint32_t hsphy_size;
uint8_t hash_algo;
uint8_t digest[MAX_HASH_SIZE];
uint8_t hsphy_fw[0];
} __packed;
struct ip_push_model {
uint16_t count;
uint16_t address;
uint32_t data[0];
} __packed;
static int heci_get_hsphy_payload(void *buf, uint32_t *buf_size, uint8_t *hash_buf,
uint8_t *hash_alg, uint32_t *status)
{
size_t reply_size;
struct heci_ip_load_request {
struct mkhi_hdr hdr;
uint32_t version;
uint32_t operation;
uint32_t dram_base_low;
uint32_t dram_base_high;
uint32_t memory_size;
uint32_t reserved;
} __packed msg = {
.hdr = {
.group_id = MKHI_GROUP_ID_BUP_COMMON,
.command = GET_IP_FIRMWARE_CMD,
},
.version = 1,
.operation = 1,
.dram_base_low = (uintptr_t)buf,
.dram_base_high = 0,
.memory_size = *buf_size,
.reserved = 0,
};
struct heci_ip_load_response {
struct mkhi_hdr hdr;
uint32_t payload_size;
uint32_t reserved[2];
uint32_t status;
uint8_t hash_type;
uint8_t hash[MAX_HASH_SIZE];
} __packed reply;
if (!buf || !buf_size || !hash_buf || !hash_alg) {
printk(BIOS_ERR, "%s: Invalid parameters\n", __func__);
return -1;
}
reply_size = sizeof(reply);
memset(&reply, 0, reply_size);
printk(BIOS_DEBUG, "HECI: Sending Get IP firmware command\n");
if (heci_send_receive(&msg, sizeof(msg), &reply, &reply_size, HECI_MKHI_ADDR)) {
printk(BIOS_ERR, "HECI: Get IP firmware failed\n");
return -1;
}
if (reply.hdr.result) {
printk(BIOS_ERR, "HECI: Get IP firmware response invalid\n");
*status = reply.status;
printk(BIOS_DEBUG, "HECI response:\n");
hexdump(&reply, sizeof(reply));
return -1;
}
*buf_size = reply.payload_size;
*hash_alg = reply.hash_type;
*status = reply.status;
memcpy(hash_buf, reply.hash, MAX_HASH_SIZE);
printk(BIOS_DEBUG, "HECI: Get IP firmware success. Response:\n");
printk(BIOS_DEBUG, " Payload size = 0x%x\n", *buf_size);
printk(BIOS_DEBUG, " Hash type used for signing payload = 0x%x\n", *hash_alg);
return 0;
}
static bool verify_hsphy_hash(void *buf, uint32_t buf_size, uint8_t *hash_buf, uint8_t hash_alg)
{
struct vb2_hash hash;
switch (hash_alg) {
case HASHALG_SHA256:
hash.algo = VB2_HASH_SHA256;
break;
case HASHALG_SHA384:
hash.algo = VB2_HASH_SHA384;
break;
case HASHALG_SHA512:
hash.algo = VB2_HASH_SHA512;
break;
case HASHALG_SHA1:
default:
printk(BIOS_ERR, "Hash alg %d not supported, trying SHA384\n", hash_alg);
hash.algo = VB2_HASH_SHA384;
break;
}
memcpy(hash.raw, hash_buf, vb2_digest_size(hash.algo));
if (vb2_hash_verify(vboot_hwcrypto_allowed(), buf, buf_size, &hash) != VB2_SUCCESS)
return false;
return true;
}
static void upload_hsphy_to_cpu_pcie(void *buf, uint32_t buf_size)
{
uint16_t i = 0, j;
struct ip_push_model *push_model = (struct ip_push_model *)buf;
while (i < buf_size) {
i += sizeof(*push_model);
if ((push_model->address == 0) && (push_model->count == 0))
break; // End of file
for (j = 0; j < push_model->count; j++) {
REGBAR32(CPU_PID_PCIE_PHYX16_BROADCAST,
push_model->address) = push_model->data[j];
i += sizeof(uint32_t);
}
push_model = (struct ip_push_model *)(buf + i);
}
}
static bool hsphy_cache_valid(struct hsphy_cache *hsphy_fw_cache)
{
if (!hsphy_fw_cache) {
printk(BIOS_WARNING, "Failed to mmap HSPHY cache\n");
return false;
}
if (hsphy_fw_cache->hsphy_size == 0 ||
hsphy_fw_cache->hsphy_size > HSPHY_PAYLOAD_SIZE ||
hsphy_fw_cache->hash_algo <= HASHALG_SHA1 ||
hsphy_fw_cache->hash_algo > HASHALG_SHA512)
return false;
if (!verify_hsphy_hash(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size,
hsphy_fw_cache->digest, hsphy_fw_cache->hash_algo))
return false;
return true;
}
static bool load_hsphy_from_cache(void)
{
struct region_device rdev;
struct hsphy_cache *hsphy_fw_cache;
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Cannot find HSPHY_FW region\n");
return false;
}
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
if (!hsphy_cache_valid(hsphy_fw_cache)) {
printk(BIOS_ERR, "HSPHY: HSPHY cache invalid\n");
if (hsphy_fw_cache)
rdev_munmap(&rdev, hsphy_fw_cache);
return false;
}
printk(BIOS_INFO, "Loading HSPHY FW from cache\n");
upload_hsphy_to_cpu_pcie(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size);
rdev_munmap(&rdev, hsphy_fw_cache);
return true;
}
static void cache_hsphy_fw_in_flash(void *buf, uint32_t buf_size, uint8_t *hash_buf,
uint8_t hash_alg)
{
struct region_device rdev;
struct hsphy_cache *hsphy_fw_cache;
size_t ret;
if (!buf || buf_size == 0 || buf_size > (HSPHY_PAYLOAD_SIZE - sizeof(*hsphy_fw_cache))
|| !hash_buf || hash_alg <= HASHALG_SHA1 || hash_alg > HASHALG_SHA512) {
printk(BIOS_ERR, "Invalid parameters, HSPHY will not be cached in flash.\n");
return;
}
/* Locate the area as RO rdev, otherwise mmap will fail */
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
return;
}
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
if (hsphy_cache_valid(hsphy_fw_cache)) {
/* If the cache is valid, check the buffer against the cache hash */
if (verify_hsphy_hash(buf, buf_size, hsphy_fw_cache->digest,
hsphy_fw_cache->hash_algo)) {
printk(BIOS_INFO, "HSPHY: cache does not need update\n");
rdev_munmap(&rdev, hsphy_fw_cache);
return;
} else {
printk(BIOS_INFO, "HSPHY: cache needs update\n");
}
} else {
printk(BIOS_INFO, "HSPHY: cache invalid, updating\n");
}
if (region_device_sz(&rdev) < (buf_size + sizeof(*hsphy_fw_cache))) {
printk(BIOS_ERR, "HSPHY: HSPHY_FW region too small: %zx < %zx\n",
region_device_sz(&rdev), buf_size + sizeof(*hsphy_fw_cache));
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
rdev_munmap(&rdev, hsphy_fw_cache);
return;
}
rdev_munmap(&rdev, hsphy_fw_cache);
hsphy_fw_cache = malloc(sizeof(*hsphy_fw_cache));
if (!hsphy_fw_cache) {
printk(BIOS_ERR, "HSPHY: Could not allocate memory for HSPHY cache buffer\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
return;
}
hsphy_fw_cache->hsphy_size = buf_size;
hsphy_fw_cache->hash_algo = hash_alg;
switch (hash_alg) {
case HASHALG_SHA256:
hash_alg = VB2_HASH_SHA256;
break;
case HASHALG_SHA384:
hash_alg = VB2_HASH_SHA384;
break;
case HASHALG_SHA512:
hash_alg = VB2_HASH_SHA512;
break;
}
memset(hsphy_fw_cache->digest, 0, sizeof(hsphy_fw_cache->digest));
memcpy(hsphy_fw_cache->digest, hash_buf, vb2_digest_size(hash_alg));
/* Now that we want to write to flash, locate the area as RW rdev */
if (fmap_locate_area_as_rdev_rw("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
free(hsphy_fw_cache);
return;
}
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
printk(BIOS_ERR, "Failed to erase HSPHY cache region\n");
free(hsphy_fw_cache);
return;
}
ret = rdev_writeat(&rdev, hsphy_fw_cache, 0, sizeof(*hsphy_fw_cache));
if (ret != sizeof(*hsphy_fw_cache)) {
printk(BIOS_ERR, "Failed to write HSPHY cache metadata\n");
free(hsphy_fw_cache);
return;
}
ret = rdev_writeat(&rdev, buf, sizeof(*hsphy_fw_cache), buf_size);
if (ret != buf_size) {
printk(BIOS_ERR, "Failed to write HSPHY FW to cache\n");
free(hsphy_fw_cache);
return;
}
printk(BIOS_INFO, "HSPHY cached to flash successfully\n");
free(hsphy_fw_cache);
}
static void *allocate_hsphy_buf(void)
{
void *hsphy_buf;
size_t dma_buf_size;
if (CONFIG(ENABLE_EARLY_DMA_PROTECTION)) {
hsphy_buf = vtd_get_dma_buffer(&dma_buf_size);
if (!hsphy_buf || dma_buf_size < HSPHY_PAYLOAD_SIZE) {
printk(BIOS_ERR, "DMA protection enabled but DMA buffer does not"
" exist or is too small\n");
return NULL;
}
/* Rather impossible scenario, but check alignment anyways */
if (!IS_ALIGNED((uintptr_t)hsphy_buf, 4 * KiB) &&
(HSPHY_PAYLOAD_SIZE + 4 * KiB) <= dma_buf_size)
hsphy_buf = (void *)ALIGN_UP((uintptr_t)hsphy_buf, 4 * KiB);
} else {
/* Align the buffer to page size, otherwise the HECI command will fail */
hsphy_buf = memalign(4 * KiB, HSPHY_PAYLOAD_SIZE);
if (!hsphy_buf) {
printk(BIOS_ERR, "Failed to allocate memory for HSPHY blob\n");
return NULL;
}
}
return hsphy_buf;
}
void load_and_init_hsphy(void)
{
void *hsphy_buf;
uint8_t hsphy_hash[MAX_HASH_SIZE] = { 0 };
uint8_t hash_type;
uint32_t buf_size = HSPHY_PAYLOAD_SIZE;
pci_devfn_t dev = PCH_DEV_CSE;
const uint16_t pci_cmd_bme_mem = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
uint32_t status;
if (!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_0) &&
!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_1)) {
printk(BIOS_DEBUG, "All HSPHY ports disabled, skipping HSPHY loading\n");
return;
}
/*
* Try to get HSPHY payload from CSME first, so we can always keep our
* HSPHY cache up to date. If we cannot allocate the buffer for it, the
* cache is our last resort.
*/
hsphy_buf = allocate_hsphy_buf();
if (!hsphy_buf) {
printk(BIOS_ERR, "Could not allocate memory for HSPHY blob\n");
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
printk(BIOS_INFO, "Trying to load HSPHY FW from cache\n");
if (load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
}
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
return;
}
memset(hsphy_buf, 0, HSPHY_PAYLOAD_SIZE);
/*
* If CSME is not present, try cached HSPHY FW. We still want to use
* CSME just in case CSME is updated along with HSPHY FW, so that we
* can update our cache if needed.
*/
if (!is_cse_enabled()) {
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
printk(BIOS_INFO, "Trying to load HSPHY FW from cache"
" because CSME is not enabled or not visible\n");
if (load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
}
printk(BIOS_ERR, "%s: CSME not enabled or not visible, but required\n",
__func__);
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
return;
}
/* Ensure BAR, BME and memory space are enabled */
if ((pci_read_config16(dev, PCI_COMMAND) & pci_cmd_bme_mem) != pci_cmd_bme_mem)
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
if (pci_read_config32(dev, PCI_BASE_ADDRESS_0) == 0) {
pci_and_config16(dev, PCI_COMMAND, ~pci_cmd_bme_mem);
pci_write_config32(dev, PCI_BASE_ADDRESS_0, HECI1_BASE_ADDRESS);
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
}
/* Try to get HSPHY payload from CSME and cache it if possible. */
if (!heci_get_hsphy_payload(hsphy_buf, &buf_size, hsphy_hash, &hash_type, &status)) {
if (verify_hsphy_hash(hsphy_buf, buf_size, hsphy_hash, hash_type)) {
upload_hsphy_to_cpu_pcie(hsphy_buf, buf_size);
if (CONFIG(INCLUDE_HSPHY_IN_FMAP))
cache_hsphy_fw_in_flash(hsphy_buf, buf_size, hsphy_hash,
hash_type);
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
return;
} else {
printk(BIOS_ERR, "Failed to verify HSPHY FW hash.\n");
}
} else {
printk(BIOS_ERR, "Failed to get HSPHY FW over HECI.\n");
}
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
/* We failed to get HSPHY payload from CSME, cache is our last chance. */
if (CONFIG(INCLUDE_HSPHY_IN_FMAP) && load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW, PCIe Gen5 won't work.\n");
}