blob: a651b6e152a2f087daa5a377bf0d4b0fd9155b3d [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <string.h>
#include <stdlib.h>
#include <smp/spinlock.h>
#include <arch/cpu.h>
#include <arch/psci.h>
#include <arch/smc.h>
#include <arch/transition.h>
#include <arch/lib_helpers.h>
#include <console/console.h>
#include "secmon.h"
DECLARE_SPIN_LOCK(psci_spinlock);
/* Root of PSCI node tree. */
static struct psci_node psci_root;
/* Array of all the psci_nodes in system. */
static size_t psci_num_nodes;
static struct psci_node **psci_nodes;
static inline void psci_lock(void)
{
spin_lock(&psci_spinlock);
}
static inline void psci_unlock(void)
{
spin_unlock(&psci_spinlock);
}
static inline int psci_state_locked(const struct psci_node *e)
{
return e->state;
}
static inline void psci_set_state_locked(struct psci_node *e, int s)
{
e->state = s;
}
static struct psci_node *psci_node_lookup(uint64_t mpidr, int level)
{
size_t i;
/* The array of node pointers are in depth-first order of the tree. */
for (i = 0; i < psci_num_nodes; i++) {
struct psci_node *current = psci_nodes[i];
if (current->mpidr > mpidr)
break;
if (current->mpidr < mpidr)
continue;
if (current->level == level)
return current;
}
return NULL;
}
static inline struct psci_node *node_self(void)
{
return psci_node_lookup(cpu_info()->mpidr, PSCI_AFFINITY_LEVEL_0);
}
/* Find the ancestor of node affected by a state transition limited by level. */
static struct psci_node *psci_find_ancestor(struct psci_node *e, int level,
int state)
{
struct psci_node *p;
/* If all siblings of the node are already off then parent can be
* set to off as well. */
if (state == PSCI_STATE_OFF) {
while (1) {
size_t i;
struct psci_node *s;
if (psci_root_node(e))
return e;
p = psci_node_parent(e);
if (p->level > level)
return e;
for (i = 0; i < p->children.num; i++) {
s = &p->children.nodes[i];
/* Don't check target. */
if (s == e)
continue;
if (psci_state_locked(s) != PSCI_STATE_OFF)
return e;
}
e = p;
}
}
/* All ancestors in state OFF are affected. */
if (state == PSCI_STATE_ON_PENDING) {
while (1) {
/* At the root. Return last affected node. */
if (psci_root_node(e))
return e;
p = psci_node_parent(e);
if (p->level > level)
return e;
/* This parent is already ON. */
if (psci_state_locked(p) != PSCI_STATE_OFF)
return e;
e = p;
}
}
/* Default to returning node passed in. */
return e;
}
static void psci_set_hierarchy_state(struct psci_node *from,
struct psci_node *to,
int state)
{
struct psci_node *end;
end = psci_node_parent(to);
while (from != end) {
/* Raced with another CPU as state is already set. */
if (psci_state_locked(from) == state)
break;
psci_set_state_locked(from, state);
from = psci_node_parent(from);
}
}
static void psci_cpu_on_callback(void *arg)
{
struct exc_state state;
int target_el;
struct psci_node *e = arg;
psci_lock();
psci_set_hierarchy_state(e, e->cpu_state.ancestor, PSCI_STATE_ON);
psci_unlock();
/* Target EL is determined if HVC is enabled or not. */
target_el = (raw_read_scr_el3() & SCR_HVC_ENABLE) ? EL2 : EL1;
memset(&state, 0, sizeof(state));
state.elx.spsr = get_eret_el(target_el, SPSR_USE_H);
transition_with_entry(e->cpu_state.startup.run,
e->cpu_state.startup.arg, &state);
}
static void psci_cpu_on_prepare(struct psci_cmd *cmd,
const struct cpu_action *a)
{
struct psci_node *ancestor;
struct psci_node *e;
int state = PSCI_STATE_ON_PENDING;
e = cmd->target;
e->cpu_state.startup = *a;
ancestor = psci_find_ancestor(e, PSCI_AFFINITY_LEVEL_HIGHEST, state);
e->cpu_state.ancestor = ancestor;
cmd->ancestor = ancestor;
}
static int psci_schedule_cpu_on(struct psci_node *e)
{
struct cpu_info *ci;
struct cpu_action action = {
.run = &psci_cpu_on_callback,
.arg = e,
};
ci = e->cpu_state.ci;
if (ci == NULL || arch_run_on_cpu_async(ci->id, &action)) {
psci_set_hierarchy_state(e, e->cpu_state.ancestor,
PSCI_STATE_OFF);
return PSCI_RET_INTERNAL_FAILURE;
}
return PSCI_RET_SUCCESS;
}
void psci_turn_on_self(const struct cpu_action *action)
{
struct psci_node *e = node_self();
struct psci_cmd cmd = {
.type = PSCI_CMD_ON,
};
if (e == NULL) {
printk(BIOS_ERR, "Couldn't turn on self: mpidr %llx\n",
cpu_info()->mpidr);
return;
}
cmd.target = e;
psci_lock();
psci_cpu_on_prepare(&cmd, action);
psci_set_hierarchy_state(e, cmd.ancestor, PSCI_STATE_ON_PENDING);
psci_unlock();
psci_schedule_cpu_on(e);
}
void psci_cpu_entry(void)
{
/*
* Just wait for an action to be performed. Only CPU_ON is supported
* initially. i.e. no power down then wake.
*/
secmon_wait_for_action();
}
static void psci_cpu_on(struct psci_func *pf)
{
uint64_t entry;
uint64_t target_mpidr;
uint64_t context_id;
int cpu_state;
int ret;
struct psci_node *e;
struct cpu_action action;
struct psci_cmd cmd = {
.type = PSCI_CMD_ON,
};
target_mpidr = psci64_arg(pf, PSCI_PARAM_0);
entry = psci64_arg(pf, PSCI_PARAM_1);
context_id = psci64_arg(pf, PSCI_PARAM_2);
e = psci_node_lookup(target_mpidr, PSCI_AFFINITY_LEVEL_0);
if (e == NULL) {
psci32_return(pf, PSCI_RET_INVALID_PARAMETERS);
return;
}
psci_lock();
cpu_state = psci_state_locked(e);
if (cpu_state == PSCI_STATE_ON_PENDING) {
psci32_return(pf, PSCI_RET_ON_PENDING);
psci_unlock();
return;
} else if (cpu_state == PSCI_STATE_ON) {
psci32_return(pf, PSCI_RET_ALREADY_ON);
psci_unlock();
return;
}
cmd.target = e;
action.run = (void *)entry;
action.arg = (void *)context_id;
psci_cpu_on_prepare(&cmd, &action);
ret = soc_psci_ops.cmd_prepare(&cmd);
if (ret == PSCI_RET_SUCCESS)
psci_set_hierarchy_state(e, cmd.ancestor,
PSCI_STATE_ON_PENDING);
psci_unlock();
if (ret != PSCI_RET_SUCCESS)
return psci32_return(pf, ret);
ret = soc_psci_ops.cmd_commit(&cmd);
if (ret != PSCI_RET_SUCCESS) {
psci_lock();
psci_set_hierarchy_state(e, cmd.ancestor, PSCI_STATE_OFF);
psci_unlock();
return psci32_return(pf, ret);
}
psci32_return(pf, psci_schedule_cpu_on(e));
}
static int psci_turn_off_node(struct psci_node *e, int level,
int state_id)
{
int ret;
struct psci_cmd cmd = {
.type = PSCI_CMD_OFF,
.state_id = state_id,
.target = e,
};
psci_lock();
cmd.ancestor = psci_find_ancestor(e, level, PSCI_STATE_OFF);
ret = soc_psci_ops.cmd_prepare(&cmd);
if (ret == PSCI_RET_SUCCESS)
psci_set_hierarchy_state(e, cmd.ancestor, PSCI_STATE_OFF);
psci_unlock();
if (ret != PSCI_RET_SUCCESS)
return ret;
/* Should never return. */
ret = soc_psci_ops.cmd_commit(&cmd);
/* Adjust ret to be an error. */
if (ret == PSCI_RET_SUCCESS)
ret = PSCI_RET_INTERNAL_FAILURE;
/* Turn things back on. */
psci_lock();
psci_set_hierarchy_state(e, cmd.ancestor, PSCI_STATE_ON);
psci_unlock();
return ret;
}
int psci_turn_off_self(void)
{
struct psci_node *e = node_self();
if (e == NULL) {
printk(BIOS_ERR, "No PSCI node for MPIDR %llx.\n",
cpu_info()->mpidr);
return PSCI_RET_INTERNAL_FAILURE;
}
/* -1 state id indicates to SoC to make its own decision for
* internal state when powering off the node. */
return psci_turn_off_node(e, PSCI_AFFINITY_LEVEL_HIGHEST, -1);
}
static int psci_handler(struct smc_call *smc)
{
struct psci_func pf_storage;
struct psci_func *pf = &pf_storage;
psci_func_init(pf, smc);
switch (pf->id) {
case PSCI_CPU_ON64:
psci_cpu_on(pf);
break;
case PSCI_CPU_OFF32:
psci32_return(pf, psci_turn_off_self());
break;
default:
psci32_return(pf, PSCI_RET_NOT_SUPPORTED);
break;
}
return 0;
}
static void psci_link_cpu_info(void *arg)
{
struct psci_node *e = node_self();
if (e == NULL) {
printk(BIOS_ERR, "No PSCI node for MPIDR %llx.\n",
cpu_info()->mpidr);
return;
}
e->cpu_state.ci = cpu_info();
}
static int psci_init_node(struct psci_node *e,
struct psci_node *parent,
int level, uint64_t mpidr)
{
size_t i;
uint64_t mpidr_inc;
struct psci_node_group *ng;
size_t num_children;
memset(e, 0, sizeof(*e));
e->mpidr = mpidr;
psci_set_state_locked(e, PSCI_STATE_OFF);
e->parent = parent;
e->level = level;
if (level == PSCI_AFFINITY_LEVEL_0)
return 0;
num_children = soc_psci_ops.children_at_level(level, mpidr);
if (num_children == 0)
return 0;
ng = &e->children;
ng->num = num_children;
ng->nodes = malloc(ng->num * sizeof(struct psci_node));
if (ng->nodes == NULL) {
printk(BIOS_DEBUG, "PSCI: Allocation failure at level %d\n",
level);
return -1;
}
/* Switch to next level below. */
level = psci_level_below(level);
mpidr_inc = mpidr_mask(!!(level == PSCI_AFFINITY_LEVEL_3),
!!(level == PSCI_AFFINITY_LEVEL_2),
!!(level == PSCI_AFFINITY_LEVEL_1),
!!(level == PSCI_AFFINITY_LEVEL_0));
for (i = 0; i < ng->num; i++) {
struct psci_node *c = &ng->nodes[i];
/* Recursively initialize the nodes. */
if (psci_init_node(c, e, level, mpidr))
return -1;
mpidr += mpidr_inc;
}
return 0;
}
static size_t psci_count_children(struct psci_node *e)
{
size_t i;
size_t count;
if (e->level == PSCI_AFFINITY_LEVEL_0)
return 0;
count = e->children.num;
for (i = 0; i < e->children.num; i++)
count += psci_count_children(&e->children.nodes[i]);
return count;
}
static size_t psci_write_nodes(struct psci_node *e, size_t index)
{
size_t i;
/*
* Recursively save node pointers in array. Node pointers are
* ordered in ascending mpidr and descending level within same mpidr.
* i.e. each node is saved in depth-first order of the tree.
*/
if (e->level != PSCI_AFFINITY_ROOT) {
psci_nodes[index] = e;
index++;
}
if (e->level == PSCI_AFFINITY_LEVEL_0)
return index;
for (i = 0; i < e->children.num; i++)
index = psci_write_nodes(&e->children.nodes[i], index);
return index;
}
static int psci_allocate_nodes(void)
{
int level;
size_t num_children;
uint64_t mpidr;
struct psci_node *e;
mpidr = 0;
level = PSCI_AFFINITY_ROOT;
/* Find where the root should start. */
while (psci_level_below(level) >= PSCI_AFFINITY_LEVEL_0) {
num_children = soc_psci_ops.children_at_level(level, mpidr);
if (num_children == 0) {
printk(BIOS_ERR, "PSCI: No children at level %d!\n",
level);
return -1;
}
/* The root starts where the affinity levels branch. */
if (num_children > 1)
break;
level = psci_level_below(level);
}
if (psci_init_node(&psci_root, NULL, level, mpidr)) {
printk(BIOS_ERR, "PSCI init node failure.\n");
return -1;
}
num_children = psci_count_children(&psci_root);
/* Count the root node if isn't a fake node. */
if (psci_root.level != PSCI_AFFINITY_ROOT)
num_children++;
psci_nodes = malloc(num_children * sizeof(void *));
psci_num_nodes = num_children;
if (psci_nodes == NULL) {
printk(BIOS_ERR, "PSCI node pointer array failure.\n");
return -1;
}
num_children = psci_write_nodes(&psci_root, 0);
if (num_children != psci_num_nodes) {
printk(BIOS_ERR, "Wrong nodes written: %zd vs %zd.\n",
num_children, psci_num_nodes);
return -1;
}
/*
* By default all nodes are set to PSCI_STATE_OFF. In order not
* to race with other CPUs turning themselves off set the BSPs
* affinity node to ON.
*/
e = node_self();
if (e == NULL) {
printk(BIOS_ERR, "No PSCI node for BSP.\n");
return -1;
}
psci_set_state_locked(e, PSCI_STATE_ON);
return 0;
}
void psci_init(uintptr_t cpu_on_entry)
{
struct cpu_action action = {
.run = &psci_link_cpu_info,
};
if (psci_allocate_nodes()) {
printk(BIOS_ERR, "PSCI support not enabled.\n");
return;
}
if (arch_run_on_all_cpus_async(&action))
printk(BIOS_ERR, "Error linking cpu_info to PSCI nodes.\n");
/* Register PSCI handlers. */
if (smc_register_range(PSCI_CPU_SUSPEND32, PSCI_CPU_ON32,
&psci_handler))
printk(BIOS_ERR, "Couldn't register PSCI handler.\n");
if (smc_register_range(PSCI_CPU_SUSPEND64, PSCI_CPU_ON64,
&psci_handler))
printk(BIOS_ERR, "Couldn't register PSCI handler.\n");
/* Inform SoC layer of CPU_ON entry point. */
psci_soc_init(cpu_on_entry);
}