blob: f2bb0eef95b26642f0de68bd0ceb250d7f313bfc [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
* Copyright (C) 2015-2016 Intel Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define __SIMPLE_DEVICE__
#include <arch/acpi.h>
#include <arch/io.h>
#include <console/console.h>
#include <cbmem.h>
#include <cpu/x86/msr.h>
#include <rules.h>
#include <device/pci_def.h>
#include <halt.h>
#include <soc/iomap.h>
#include <soc/cpu.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <device/device.h>
#include <device/pci.h>
#include <timer.h>
#include <vboot/vboot_common.h>
#include "chip.h"
static uintptr_t read_pmc_mmio_bar(void)
{
return PMC_BAR0;
}
uintptr_t get_pmc_mmio_bar(void)
{
return read_pmc_mmio_bar();
}
static void print_num_status_bits(int num_bits, uint32_t status,
const char * const bit_names[])
{
int i;
if (!status)
return;
for (i = num_bits - 1; i >= 0; i--) {
if (status & (1 << i)) {
if (bit_names[i])
printk(BIOS_DEBUG, "%s ", bit_names[i]);
else
printk(BIOS_DEBUG, "BIT%d ", i);
}
}
}
static uint32_t print_smi_status(uint32_t smi_sts)
{
static const char * const smi_sts_bits[] = {
[BIOS_SMI_STS] = "BIOS",
[LEGACY_USB_SMI_STS] = "LEGACY USB",
[SLP_SMI_STS] = "SLP_SMI",
[APM_SMI_STS] = "APM",
[SWSMI_TMR_SMI_STS] = "SWSMI_TMR",
[FAKE_PM1_SMI_STS] = "PM1",
[GPIO_SMI_STS] = "GPIO_SMI",
[GPIO_UNLOCK_SMI_STS] = "GPIO_UNLOCK_SSMI",
[MC_SMI_STS] = "MCSMI",
[TCO_SMI_STS] = "TCO",
[PERIODIC_SMI_STS] = "PERIODIC",
[SERIRQ_SMI_STS] = "SERIRQ",
[SMBUS_SMI_STS] = "SMBUS_SMI",
[XHCI_SMI_STS] = "XHCI",
[HSMBUS_SMI_STS] = "HOST_SMBUS",
[SCS_SMI_STS] = "SCS",
[PCIE_SMI_STS] = "PCI_EXP_SMI",
[SCC2_SMI_STS] = "SCC2",
[SPI_SSMI_STS] = "SPI_SSMI",
[SPI_SMI_STS] = "SPI",
[PMC_OCP_SMI_STS] = "OCP_CSE",
};
if (!smi_sts)
return 0;
printk(BIOS_DEBUG, "SMI_STS: ");
print_num_status_bits(ARRAY_SIZE(smi_sts_bits), smi_sts, smi_sts_bits);
printk(BIOS_DEBUG, "\n");
return smi_sts;
}
static uint32_t reset_smi_status(void)
{
uint32_t smi_sts = inl(ACPI_PMIO_BASE + SMI_STS);
outl(smi_sts, ACPI_PMIO_BASE + SMI_STS);
return smi_sts;
}
uint32_t clear_smi_status(void)
{
uint32_t sts = reset_smi_status();
/*
* Check for power button status if nothing else is indicating an SMI
* and SMIs aren't turned into SCIs. Apparently, there is no PM1 status
* bit in the SMI status register. That makes things difficult for
* determining if the power button caused an SMI.
*/
if (sts == 0 && !(inl(ACPI_PMIO_BASE + PM1_CNT) & SCI_EN)) {
uint16_t pm1_sts = inw(ACPI_PMIO_BASE + PM1_STS);
/* Fake PM1 status bit if power button pressed. */
if (pm1_sts & PWRBTN_STS)
sts |= (1 << FAKE_PM1_SMI_STS);
}
return print_smi_status(sts);
}
uint32_t get_smi_en(void)
{
return inl(ACPI_PMIO_BASE + SMI_EN);
}
void enable_smi(uint32_t mask)
{
uint32_t smi_en = inl(ACPI_PMIO_BASE + SMI_EN);
smi_en |= mask;
outl(smi_en, ACPI_PMIO_BASE + SMI_EN);
}
void disable_smi(uint32_t mask)
{
uint32_t smi_en = inl(ACPI_PMIO_BASE + SMI_EN);
smi_en &= ~mask;
outl(smi_en, ACPI_PMIO_BASE + SMI_EN);
}
void enable_pm1_control(uint32_t mask)
{
uint32_t pm1_cnt = inl(ACPI_PMIO_BASE + PM1_CNT);
pm1_cnt |= mask;
outl(pm1_cnt, ACPI_PMIO_BASE + PM1_CNT);
}
void disable_pm1_control(uint32_t mask)
{
uint32_t pm1_cnt = inl(ACPI_PMIO_BASE + PM1_CNT);
pm1_cnt &= ~mask;
outl(pm1_cnt, ACPI_PMIO_BASE + PM1_CNT);
}
static uint16_t reset_pm1_status(void)
{
uint16_t pm1_sts = inw(ACPI_PMIO_BASE + PM1_STS);
outw(pm1_sts, ACPI_PMIO_BASE + PM1_STS);
return pm1_sts;
}
static uint16_t print_pm1_status(uint16_t pm1_sts)
{
static const char * const pm1_sts_bits[] = {
[0] = "TMROF",
[5] = "GBL",
[8] = "PWRBTN",
[10] = "RTC",
[11] = "PRBTNOR",
[13] = "USB",
[14] = "PCIEXPWAK",
[15] = "WAK",
};
if (!pm1_sts)
return 0;
printk(BIOS_SPEW, "PM1_STS: ");
print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits);
printk(BIOS_SPEW, "\n");
return pm1_sts;
}
uint16_t clear_pm1_status(void)
{
return print_pm1_status(reset_pm1_status());
}
void enable_pm1(uint16_t events)
{
outw(events, ACPI_PMIO_BASE + PM1_EN);
}
static uint32_t print_tco_status(uint32_t tco_sts)
{
static const char * const tco_sts_bits[] = {
[3] = "TIMEOUT",
[17] = "SECOND_TO",
};
if (!tco_sts)
return 0;
printk(BIOS_DEBUG, "TCO_STS: ");
print_num_status_bits(ARRAY_SIZE(tco_sts_bits), tco_sts, tco_sts_bits);
printk(BIOS_DEBUG, "\n");
return tco_sts;
}
static uint32_t reset_tco_status(void)
{
uint32_t tco_sts = inl(ACPI_PMIO_BASE + TCO_STS);
uint32_t tco_en = inl(ACPI_PMIO_BASE + TCO1_CNT);
outl(tco_sts, ACPI_PMIO_BASE + TCO_STS);
return tco_sts & tco_en;
}
uint32_t clear_tco_status(void)
{
return print_tco_status(reset_tco_status());
}
void enable_gpe(uint32_t mask)
{
uint32_t gpe0a_en = inl(ACPI_PMIO_BASE + GPE0_EN(0));
gpe0a_en |= mask;
outl(gpe0a_en, ACPI_PMIO_BASE + GPE0_EN(0));
}
void disable_gpe(uint32_t mask)
{
uint32_t gpe0a_en = inl(ACPI_PMIO_BASE + GPE0_EN(0));
gpe0a_en &= ~mask;
outl(gpe0a_en, ACPI_PMIO_BASE + GPE0_EN(0));
}
void disable_all_gpe(void)
{
disable_gpe(~0);
}
/* Clear the gpio gpe0 status bits in ACPI registers */
void clear_gpi_gpe_sts(void)
{
int i;
for (i = 1; i < GPE0_REG_MAX; i++) {
uint32_t gpe_sts = inl(ACPI_PMIO_BASE + GPE0_STS(i));
outl(gpe_sts, ACPI_PMIO_BASE + GPE0_STS(i));
}
}
static uint32_t reset_gpe_status(void)
{
uint32_t gpe_sts = inl(ACPI_PMIO_BASE + GPE0_STS(0));
outl(gpe_sts, ACPI_PMIO_BASE + GPE0_STS(0));
return gpe_sts;
}
static uint32_t print_gpe_sts(uint32_t gpe_sts)
{
static const char * const gpe_sts_bits[] = {
[0] = "PCIE_SCI",
[2] = "SWGPE",
[3] = "PCIE_WAKE0",
[4] = "PUNIT",
[6] = "PCIE_WAKE1",
[7] = "PCIE_WAKE2",
[8] = "PCIE_WAKE3",
[9] = "PCI_EXP",
[10] = "BATLOW",
[11] = "CSE_PME",
[12] = "XDCI_PME",
[13] = "XHCI_PME",
[14] = "AVS_PME",
[15] = "GPIO_TIER1_SCI",
[16] = "SMB_WAK",
[17] = "SATA_PME",
};
if (!gpe_sts)
return gpe_sts;
printk(BIOS_DEBUG, "GPE0a_STS: ");
print_num_status_bits(ARRAY_SIZE(gpe_sts_bits), gpe_sts, gpe_sts_bits);
printk(BIOS_DEBUG, "\n");
return gpe_sts;
}
uint32_t clear_gpe_status(void)
{
return print_gpe_sts(reset_gpe_status());
}
/* Read and clear GPE status (defined in arch/acpi.h) */
int acpi_get_gpe(int gpe)
{
int bank;
uint32_t mask, sts;
struct stopwatch sw;
int rc = 0;
if (gpe < 0 || gpe > GPE0_DW3_31)
return -1;
bank = gpe / 32;
mask = 1 << (gpe % 32);
/* Wait up to 1ms for GPE status to clear */
stopwatch_init_msecs_expire(&sw, 1);
do {
if (stopwatch_expired(&sw))
return rc;
sts = inl(ACPI_PMIO_BASE + GPE0_STS(bank));
if (sts & mask) {
outl(mask, ACPI_PMIO_BASE + GPE0_STS(bank));
rc = 1;
}
} while (sts & mask);
return rc;
}
void clear_pmc_status(void)
{
uint32_t prsts;
uint32_t gen_pmcon1;
uintptr_t pmc_bar0 = read_pmc_mmio_bar();
prsts = read32((void *)(pmc_bar0 + PRSTS));
gen_pmcon1 = read32((void *)(pmc_bar0 + GEN_PMCON1));
/* Clear the status bits. The RPS field is cleared on a 0 write. */
write32((void *)(pmc_bar0 + GEN_PMCON1), gen_pmcon1 & ~RPS);
write32((void *)(pmc_bar0 + PRSTS), prsts);
}
/* Return 0, 3, or 5 to indicate the previous sleep state. */
int chipset_prev_sleep_state(struct chipset_power_state *ps)
{
/* Default to S0. */
int prev_sleep_state = ACPI_S0;
if (ps->pm1_sts & WAK_STS) {
switch (acpi_sleep_from_pm1(ps->pm1_cnt)) {
case ACPI_S3:
if (IS_ENABLED(CONFIG_HAVE_ACPI_RESUME))
prev_sleep_state = ACPI_S3;
break;
case ACPI_S5:
prev_sleep_state = ACPI_S5;
break;
}
/* Clear SLP_TYP. */
outl(ps->pm1_cnt & ~(SLP_TYP), ACPI_PMIO_BASE + PM1_CNT);
}
return prev_sleep_state;
}
/*
* This function re-writes the gpe0 register values in power state
* cbmem variable. After system wakes from sleep state internal PMC logic
* writes default values in GPE_CFG register which gives a wrong offset to
* calculate the wake reason. So we need to set it again to the routing
* table as per the devicetree.
*/
void fixup_power_state(void)
{
int i;
struct chipset_power_state *ps;
ps = cbmem_find(CBMEM_ID_POWER_STATE);
if (ps == NULL)
return;
for (i = 0; i < GPE0_REG_MAX; i++) {
ps->gpe0_sts[i] = inl(ACPI_PMIO_BASE + GPE0_STS(i));
ps->gpe0_en[i] = inl(ACPI_PMIO_BASE + GPE0_EN(i));
printk(BIOS_DEBUG, "gpe0_sts[%d]: %08x gpe0_en[%d]: %08x\n",
i, ps->gpe0_sts[i], i, ps->gpe0_en[i]);
}
}
/* returns prev_sleep_state */
int fill_power_state(struct chipset_power_state *ps)
{
int i;
uintptr_t pmc_bar0 = read_pmc_mmio_bar();
ps->pm1_sts = inw(ACPI_PMIO_BASE + PM1_STS);
ps->pm1_en = inw(ACPI_PMIO_BASE + PM1_EN);
ps->pm1_cnt = inl(ACPI_PMIO_BASE + PM1_CNT);
ps->tco_sts = inl(ACPI_PMIO_BASE + TCO_STS);
ps->prsts = read32((void *)(pmc_bar0 + PRSTS));
ps->gen_pmcon1 = read32((void *)(pmc_bar0 + GEN_PMCON1));
ps->gen_pmcon2 = read32((void *)(pmc_bar0 + GEN_PMCON2));
ps->gen_pmcon3 = read32((void *)(pmc_bar0 + GEN_PMCON3));
ps->prev_sleep_state = chipset_prev_sleep_state(ps);
printk(BIOS_DEBUG, "pm1_sts: %04x pm1_en: %04x pm1_cnt: %08x\n",
ps->pm1_sts, ps->pm1_en, ps->pm1_cnt);
printk(BIOS_DEBUG, "prsts: %08x tco_sts: %08x\n",
ps->prsts, ps->tco_sts);
printk(BIOS_DEBUG,
"gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n",
ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3);
printk(BIOS_DEBUG, "smi_en: %08x smi_sts: %08x\n",
inl(ACPI_PMIO_BASE + SMI_EN), inl(ACPI_PMIO_BASE + SMI_STS));
for (i = 0; i < GPE0_REG_MAX; i++) {
ps->gpe0_sts[i] = inl(ACPI_PMIO_BASE + GPE0_STS(i));
ps->gpe0_en[i] = inl(ACPI_PMIO_BASE + GPE0_EN(i));
printk(BIOS_DEBUG, "gpe0_sts[%d]: %08x gpe0_en[%d]: %08x\n",
i, ps->gpe0_sts[i], i, ps->gpe0_en[i]);
}
printk(BIOS_DEBUG, "prev_sleep_state %d\n", ps->prev_sleep_state);
return ps->prev_sleep_state;
}
int vboot_platform_is_resuming(void)
{
if (!(inw(ACPI_PMIO_BASE + PM1_STS) & WAK_STS))
return 0;
return acpi_sleep_from_pm1(inl(ACPI_PMIO_BASE + PM1_CNT)) == ACPI_S3;
}
/*
* If possible, lock 0xcf9. Once the register is locked, it can't be changed.
* This lock is reset on cold boot, hard reset, soft reset and Sx.
*/
void global_reset_lock(void)
{
uintptr_t etr = read_pmc_mmio_bar() + ETR;
uint32_t reg;
reg = read32((void *)etr);
if (reg & CF9_LOCK)
return;
reg |= CF9_LOCK;
write32((void *)etr, reg);
}
/*
* Enable or disable global reset. If global reset is enabled, hard reset and
* soft reset will trigger global reset, where both host and TXE are reset.
* This is cleared on cold boot, hard reset, soft reset and Sx.
*/
void global_reset_enable(bool enable)
{
uintptr_t etr = read_pmc_mmio_bar() + ETR;
uint32_t reg;
reg = read32((void *)etr);
reg = enable ? reg | CF9_GLB_RST : reg & ~CF9_GLB_RST;
write32((void *)etr, reg);
}
/*
* The PM1 control is set to S5 when vboot requests a reboot because the power
* state code above may not have collected its data yet. Therefore, set it to
* S5 when vboot requests a reboot. That's necessary if vboot fails in the
* resume path and requests a reboot. This prevents a reboot loop where the
* error is continually hit on the failing vboot resume path.
*/
void vboot_platform_prepare_reboot(void)
{
const uint16_t port = ACPI_PMIO_BASE + PM1_CNT;
outl((inl(port) & ~(SLP_TYP)) | (SLP_TYP_S5 << SLP_TYP_SHIFT), port);
}
void poweroff(void)
{
enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT));
/*
* Setting SLP_TYP_S5 in PM1 triggers SLP_SMI, which is handled by SMM
* to transition to S5 state. If halt is called in SMM, then it prevents
* the SMI handler from being triggered and system never enters S5.
*/
if (!ENV_SMM)
halt();
}
void pmc_gpe_init(void)
{
uint32_t gpio_cfg = 0;
uint32_t gpio_cfg_reg;
uint8_t dw1, dw2, dw3;
ROMSTAGE_CONST struct soc_intel_apollolake_config *config;
/* Look up the device in devicetree */
ROMSTAGE_CONST struct device *dev = dev_find_slot(0, NB_DEVFN);
if (!dev || !dev->chip_info) {
printk(BIOS_ERR, "BUG! Could not find SOC devicetree config\n");
return;
}
config = dev->chip_info;
uintptr_t pmc_bar = get_pmc_mmio_bar();
const uint32_t gpio_cfg_mask =
(GPE0_DWX_MASK << GPE0_DW1_SHIFT) |
(GPE0_DWX_MASK << GPE0_DW2_SHIFT) |
(GPE0_DWX_MASK << GPE0_DW3_SHIFT);
/* Assign to local variable */
dw1 = config->gpe0_dw1;
dw2 = config->gpe0_dw2;
dw3 = config->gpe0_dw3;
/* Making sure that bad values don't bleed into the other fields */
dw1 &= GPE0_DWX_MASK;
dw2 &= GPE0_DWX_MASK;
dw3 &= GPE0_DWX_MASK;
/* Route the GPIOs to the GPE0 block. Determine that all values
* are different, and if they aren't use the reset values.
* DW0 is reserved/unused */
if (dw1 == dw2 || dw2 == dw3) {
printk(BIOS_INFO, "PMC: Using default GPE route.\n");
gpio_cfg = read32((void *)pmc_bar + GPIO_GPE_CFG);
dw1 = (gpio_cfg >> GPE0_DW1_SHIFT) & GPE0_DWX_MASK;
dw2 = (gpio_cfg >> GPE0_DW2_SHIFT) & GPE0_DWX_MASK;
dw3 = (gpio_cfg >> GPE0_DW3_SHIFT) & GPE0_DWX_MASK;
} else {
gpio_cfg |= (uint32_t)dw1 << GPE0_DW1_SHIFT;
gpio_cfg |= (uint32_t)dw2 << GPE0_DW2_SHIFT;
gpio_cfg |= (uint32_t)dw3 << GPE0_DW3_SHIFT;
}
gpio_cfg_reg = read32((void *)pmc_bar + GPIO_GPE_CFG) & ~gpio_cfg_mask;
gpio_cfg_reg |= gpio_cfg & gpio_cfg_mask;
write32((void *)pmc_bar + GPIO_GPE_CFG, gpio_cfg_reg);
/* Set the routes in the GPIO communities as well. */
gpio_route_gpe(dw1, dw2, dw3);
}
void enable_pm_timer_emulation(void)
{
/* ACPI PM timer emulation */
msr_t msr;
/*
* The derived frequency is calculated as follows:
* (CTC_FREQ * msr[63:32]) >> 32 = target frequency.
* Back solve the multiplier so the 3.579545MHz ACPI timer
* frequency is used.
*/
msr.hi = (3579545ULL << 32) / CTC_FREQ;
/* Set PM1 timer IO port and enable*/
msr.lo = EMULATE_PM_TMR_EN | (ACPI_PMIO_BASE + R_ACPI_PM1_TMR);
wrmsr(MSR_EMULATE_PM_TMR, msr);
}