blob: 73ab03b64366983ec170b5fe743faa8db4eda216 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <device/mmio.h>
#include <bootstate.h>
#include <cpu/x86/smm.h>
#include <cpu/x86/msr.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <cbmem.h>
#include <amdblocks/amd_pci_util.h>
#include <amdblocks/reset.h>
#include <amdblocks/acpimmio.h>
#include <amdblocks/lpc.h>
#include <amdblocks/acpi.h>
#include <soc/cpu.h>
#include <soc/southbridge.h>
#include <soc/smi.h>
#include <soc/amd_pci_int_defs.h>
#include <delay.h>
#include <soc/pci_devs.h>
#include <soc/nvs.h>
#include <types.h>
#include "chip.h"
#define FCH_AOAC_UART_FOR_CONSOLE \
(CONFIG_UART_FOR_CONSOLE == 0 ? FCH_AOAC_DEV_UART0 \
: CONFIG_UART_FOR_CONSOLE == 1 ? FCH_AOAC_DEV_UART1 \
: CONFIG_UART_FOR_CONSOLE == 2 ? FCH_AOAC_DEV_UART2 \
: CONFIG_UART_FOR_CONSOLE == 3 ? FCH_AOAC_DEV_UART3 \
: -1)
#if FCH_AOAC_UART_FOR_CONSOLE == -1
# error Unsupported UART_FOR_CONSOLE chosen
#endif
/*
* Table of devices that need their AOAC registers enabled and waited
* upon (usually about .55 milliseconds). Instead of individual delays
* waiting for each device to become available, a single delay will be
* executed. The console UART is handled separately from this table.
*/
const static int aoac_devs[] = {
FCH_AOAC_DEV_AMBA,
FCH_AOAC_DEV_I2C2,
FCH_AOAC_DEV_I2C3,
FCH_AOAC_DEV_I2C4,
FCH_AOAC_DEV_ESPI,
};
/*
* Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME
* provides a visible association with the index, therefore helping
* maintainability of table. If a new index/name is defined in
* amd_pci_int_defs.h, just add the pair at the end of this table.
* Order is not important.
*/
const static struct irq_idx_name irq_association[] = {
{ PIRQ_A, "INTA#" },
{ PIRQ_B, "INTB#" },
{ PIRQ_C, "INTC#" },
{ PIRQ_D, "INTD#" },
{ PIRQ_E, "INTE#" },
{ PIRQ_F, "INTF#/GENINT2" },
{ PIRQ_G, "INTG#" },
{ PIRQ_H, "INTH#" },
{ PIRQ_MISC, "Misc" },
{ PIRQ_MISC0, "Misc0" },
{ PIRQ_MISC1, "Misc1" },
{ PIRQ_MISC2, "Misc2" },
{ PIRQ_SIRQA, "Ser IRQ INTA" },
{ PIRQ_SIRQB, "Ser IRQ INTB" },
{ PIRQ_SIRQC, "Ser IRQ INTC" },
{ PIRQ_SIRQD, "Ser IRQ INTD" },
{ PIRQ_SCI, "SCI" },
{ PIRQ_SMBUS, "SMBUS" },
{ PIRQ_ASF, "ASF" },
{ PIRQ_PMON, "PerMon" },
{ PIRQ_SD, "SD" },
{ PIRQ_SDIO, "SDIO" },
{ PIRQ_CIR, "CIR" },
{ PIRQ_GPIOA, "GPIOa" },
{ PIRQ_GPIOB, "GPIOb" },
{ PIRQ_GPIOC, "GPIOc" },
{ PIRQ_SATA, "SATA" },
{ PIRQ_EMMC, "eMMC" },
{ PIRQ_GPP0, "GPP0" },
{ PIRQ_GPP1, "GPP1" },
{ PIRQ_GPP2, "GPP2" },
{ PIRQ_GPP3, "GPP3" },
{ PIRQ_GPIO, "GPIO" },
{ PIRQ_I2C0, "I2C0" },
{ PIRQ_I2C1, "I2C1" },
{ PIRQ_I2C2, "I2C2" },
{ PIRQ_I2C3, "I2C3" },
{ PIRQ_UART0, "UART0" },
{ PIRQ_UART1, "UART1" },
{ PIRQ_I2C4, "I2C4" },
{ PIRQ_I2C5, "I2C5" },
{ PIRQ_UART2, "UART2" },
{ PIRQ_UART3, "UART3" },
};
const struct irq_idx_name *sb_get_apic_reg_association(size_t *size)
{
*size = ARRAY_SIZE(irq_association);
return irq_association;
}
static void power_on_aoac_device(int dev)
{
uint8_t byte;
/* Power on the UART and AMBA devices */
byte = aoac_read8(AOAC_DEV_D3_CTL(dev));
byte |= FCH_AOAC_PWR_ON_DEV;
aoac_write8(AOAC_DEV_D3_CTL(dev), byte);
}
static bool is_aoac_device_enabled(int dev)
{
uint8_t byte;
byte = aoac_read8(AOAC_DEV_D3_STATE(dev));
byte &= (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE);
if (byte == (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE))
return true;
else
return false;
}
static void enable_aoac_console_uart(void)
{
if (!CONFIG(PICASSO_UART))
return;
power_on_aoac_device(FCH_AOAC_UART_FOR_CONSOLE);
}
static bool is_aoac_console_uart_enabled(void)
{
if (!CONFIG(PICASSO_UART))
return true;
return is_aoac_device_enabled(FCH_AOAC_UART_FOR_CONSOLE);
}
void enable_aoac_devices(void)
{
bool status;
int i;
for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
power_on_aoac_device(aoac_devs[i]);
enable_aoac_console_uart();
/* Wait for AOAC devices to indicate power and clock OK */
do {
udelay(100);
status = true;
for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
status &= is_aoac_device_enabled(aoac_devs[i]);
status &= is_aoac_console_uart_enabled();
} while (!status);
}
static void sb_enable_lpc(void)
{
u8 byte;
/* Enable LPC controller */
byte = pm_io_read8(PM_LPC_GATING);
byte |= PM_LPC_ENABLE;
pm_io_write8(PM_LPC_GATING, byte);
}
static void sb_enable_cf9_io(void)
{
uint32_t reg = pm_read32(PM_DECODE_EN);
pm_write32(PM_DECODE_EN, reg | CF9_IO_EN);
}
static void sb_enable_legacy_io(void)
{
uint32_t reg = pm_read32(PM_DECODE_EN);
pm_write32(PM_DECODE_EN, reg | LEGACY_IO_EN);
}
void sb_clk_output_48Mhz(void)
{
u32 ctrl;
ctrl = misc_read32(MISC_CLK_CNTL1);
ctrl |= BP_X48M0_OUTPUT_EN;
misc_write32(MISC_CLK_CNTL1, ctrl);
}
static uintptr_t sb_init_spi_base(void)
{
uintptr_t base;
/* Make sure the base address is predictable */
base = lpc_get_spibase();
if (base)
return base;
lpc_set_spibase(SPI_BASE_ADDRESS, SPI_ROM_ENABLE);
return SPI_BASE_ADDRESS;
}
void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm)
{
uintptr_t base = sb_init_spi_base();
write16((void *)(base + SPI100_SPEED_CONFIG), SPI_SPEED_CFG(norm, fast, alt, tpm));
write16((void *)(base + SPI100_ENABLE), SPI_USE_SPI100);
}
void sb_disable_4dw_burst(void)
{
uintptr_t base = sb_init_spi_base();
write16((void *)(base + SPI100_HOST_PREF_CONFIG),
read16((void *)(base + SPI100_HOST_PREF_CONFIG))
& ~SPI_RD4DW_EN_HOST);
}
void sb_read_mode(u32 mode)
{
uintptr_t base = sb_init_spi_base();
uint32_t val = (read32((void *)(base + SPI_CNTRL0)) & ~SPI_READ_MODE_MASK);
write32((void *)(base + SPI_CNTRL0), val | SPI_READ_MODE(mode));
}
static void sb_spi_config_mb_modes(void)
{
const struct soc_amd_picasso_config *cfg = config_of_soc();
sb_read_mode(cfg->spi_read_mode);
sb_set_spi100(cfg->spi_normal_speed, cfg->spi_fast_speed, cfg->spi_altio_speed,
cfg->spi_tpm_speed);
}
static void sb_spi_config_em100_modes(void)
{
sb_read_mode(SPI_READ_MODE_NORMAL33M);
sb_set_spi100(SPI_SPEED_16M, SPI_SPEED_16M, SPI_SPEED_16M, SPI_SPEED_16M);
}
static void sb_spi_config_modes(void)
{
if (CONFIG(EM100))
sb_spi_config_em100_modes();
else
sb_spi_config_mb_modes();
}
static void sb_spi_init(void)
{
lpc_enable_spi_prefetch();
sb_init_spi_base();
sb_disable_4dw_burst();
sb_spi_config_modes();
}
static void fch_smbus_init(void)
{
/* 400 kHz smbus speed. */
const uint8_t smbus_speed = (66000000 / (400000 * 4));
pm_write8(SMB_ASF_IO_BASE, SMB_BASE_ADDR >> 8);
smbus_write8(SMBTIMING, smbus_speed);
/* Clear all SMBUS status bits */
smbus_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR);
smbus_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR);
asf_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR);
asf_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR);
}
/* Before console init */
void fch_pre_init(void)
{
/* Turn on LPC in case the PSP didn't use it. However, ensure all
* decoding is cleared as the PSP may have enabled decode paths. */
sb_enable_lpc();
lpc_disable_decodes();
if (CONFIG(POST_IO) && (CONFIG_POST_IO_PORT == 0x80)
&& CONFIG(PICASSO_LPC_IOMUX))
lpc_enable_port80();
sb_spi_init();
enable_acpimmio_decode_pm04();
fch_smbus_init();
sb_enable_cf9_io();
sb_enable_legacy_io();
enable_aoac_devices();
sb_reset_i2c_slaves();
if (CONFIG(PICASSO_UART))
set_uart_config(CONFIG_UART_FOR_CONSOLE);
}
static void print_num_status_bits(int num_bits, uint32_t status,
const char *const bit_names[])
{
int i;
if (!status)
return;
for (i = num_bits - 1; i >= 0; i--) {
if (status & (1 << i)) {
if (bit_names[i])
printk(BIOS_DEBUG, "%s ", bit_names[i]);
else
printk(BIOS_DEBUG, "BIT%d ", i);
}
}
}
static void sb_print_pmxc0_status(void)
{
/* PMxC0 S5/Reset Status shows the source of previous reset. */
uint32_t pmxc0_status = pm_read32(PM_RST_STATUS);
static const char *const pmxc0_status_bits[32] = {
[0] = "ThermalTrip",
[1] = "FourSecondPwrBtn",
[2] = "Shutdown",
[3] = "ThermalTripFromTemp",
[4] = "RemotePowerDownFromASF",
[5] = "ShutDownFan0",
[16] = "UserRst",
[17] = "SoftPciRst",
[18] = "DoInit",
[19] = "DoReset",
[20] = "DoFullReset",
[21] = "SleepReset",
[22] = "KbReset",
[23] = "LtReset",
[24] = "FailBootRst",
[25] = "WatchdogIssueReset",
[26] = "RemoteResetFromASF",
[27] = "SyncFlood",
[28] = "HangReset",
[29] = "EcWatchdogRst",
};
printk(BIOS_DEBUG, "PMxC0 STATUS: 0x%x ", pmxc0_status);
print_num_status_bits(ARRAY_SIZE(pmxc0_status_bits), pmxc0_status,
pmxc0_status_bits);
printk(BIOS_DEBUG, "\n");
}
/* After console init */
void fch_early_init(void)
{
sb_print_pmxc0_status();
i2c_soc_early_init();
if (CONFIG(DISABLE_SPI_FLASH_ROM_SHARING))
lpc_disable_spi_rom_sharing();
}
void sb_enable(struct device *dev)
{
printk(BIOS_DEBUG, "%s\n", __func__);
}
static void sb_init_acpi_ports(void)
{
u32 reg;
msr_t cst_addr;
/* We use some of these ports in SMM regardless of whether or not
* ACPI tables are generated. Enable these ports indiscriminately.
*/
pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK);
pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK);
pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK);
pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK);
/* CpuControl is in \_SB.CP00, 6 bytes */
cst_addr.hi = 0;
cst_addr.lo = ACPI_CPU_CONTROL;
wrmsr(CSTATE_BASE_REG, cst_addr);
if (CONFIG(HAVE_SMI_HANDLER)) {
/* APMC - SMI Command Port */
pm_write16(PM_ACPI_SMI_CMD, APM_CNT);
configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI);
/* SMI on SlpTyp requires sending SMI before completion
* response of the I/O write. The BKDG also specifies
* clearing ForceStpClkRetry for SMI trapping.
*/
reg = pm_read32(PM_PCI_CTRL);
reg |= FORCE_SLPSTATE_RETRY;
pm_write32(PM_PCI_CTRL, reg);
/* Disable SlpTyp feature */
reg = pm_read8(PM_RST_CTRL1);
reg &= ~SLPTYPE_CONTROL_EN;
pm_write8(PM_RST_CTRL1, reg);
configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI);
} else {
pm_write16(PM_ACPI_SMI_CMD, 0);
}
/* Decode ACPI registers and enable standard features */
pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD |
PM_ACPI_GLOBAL_EN |
PM_ACPI_RTC_EN_EN |
PM_ACPI_TIMER_EN_EN);
}
static int get_index_bit(uint32_t value, uint16_t limit)
{
uint16_t i;
uint32_t t;
if (limit >= TOTAL_BITS(uint32_t))
return -1;
/* get a mask of valid bits. Ex limit = 3, set bits 0-2 */
t = (1 << limit) - 1;
if ((value & t) == 0)
return -1;
t = 1;
for (i = 0; i < limit; i++) {
if (value & t)
break;
t <<= 1;
}
return i;
}
static void set_nvs_sws(void *unused)
{
struct soc_power_reg *sws;
struct global_nvs_t *gnvs;
int index;
sws = cbmem_find(CBMEM_ID_POWER_STATE);
if (sws == NULL)
return;
gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS);
if (gnvs == NULL)
return;
index = get_index_bit(sws->pm1_sts & sws->pm1_en, PM1_LIMIT);
if (index < 0)
gnvs->pm1i = ~0ULL;
else
gnvs->pm1i = index;
index = get_index_bit(sws->gpe0_sts & sws->gpe0_en, GPE0_LIMIT);
if (index < 0)
gnvs->gpei = ~0ULL;
else
gnvs->gpei = index;
}
BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, set_nvs_sws, NULL);
void southbridge_init(void *chip_info)
{
i2c_soc_init();
sb_init_acpi_ports();
acpi_clear_pm1_status();
}
static void set_sb_final_nvs(void)
{
struct global_nvs_t *gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS);
if (gnvs == NULL)
return;
gnvs->aoac.ic2e = is_aoac_device_enabled(FCH_AOAC_DEV_I2C2);
gnvs->aoac.ic3e = is_aoac_device_enabled(FCH_AOAC_DEV_I2C3);
gnvs->aoac.ic4e = is_aoac_device_enabled(FCH_AOAC_DEV_I2C4);
gnvs->aoac.ut0e = is_aoac_device_enabled(FCH_AOAC_DEV_UART0);
gnvs->aoac.ut1e = is_aoac_device_enabled(FCH_AOAC_DEV_UART1);
gnvs->aoac.ut2e = is_aoac_device_enabled(FCH_AOAC_DEV_UART2);
gnvs->aoac.ut3e = is_aoac_device_enabled(FCH_AOAC_DEV_UART3);
gnvs->aoac.espi = 1;
}
void southbridge_final(void *chip_info)
{
uint8_t restored_power = PM_S5_AT_POWER_RECOVERY;
if (CONFIG(MAINBOARD_POWER_RESTORE))
restored_power = PM_RESTORE_S0_IF_PREV_S0;
pm_write8(PM_RTC_SHADOW, restored_power);
set_sb_final_nvs();
}
/*
* Update the PCI devices with a valid IRQ number
* that is set in the mainboard PCI_IRQ structures.
*/
static void set_pci_irqs(void *unused)
{
/* Write PCI_INTR regs 0xC00/0xC01 */
write_pci_int_table();
/* Write IRQs for all devicetree enabled devices */
write_pci_cfg_irqs();
}
/*
* Hook this function into the PCI state machine
* on entry into BS_DEV_ENABLE.
*/
BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);