blob: 5f7d8049b2c6b596cb08366e1c3dca362b0196f6 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2016 Intel Corp.
* (Written by Alexandru Gagniuc <alexandrux.gagniuc@intel.com> for Intel Corp.)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define __SIMPLE_DEVICE__
#include <arch/early_variables.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <soc/flash_ctrlr.h>
#include <soc/intel/common/spi_flash.h>
#include <soc/pci_devs.h>
#include <spi_flash.h>
#include <spi-generic.h>
#include <stdlib.h>
#include <string.h>
/* Helper to create a SPI context on API entry. */
#define BOILERPLATE_CREATE_CTX(ctx) \
struct spi_flash_ctx real_ctx; \
struct spi_flash_ctx *ctx = &real_ctx; \
_get_spi_flash_ctx(ctx)
/*
* Anything that's not success is <0. Provided solely for readability, as these
* constants are not used outside this file.
*/
enum errors {
SUCCESS = 0,
E_NOT_IMPLEMENTED = -1,
E_TIMEOUT = -2,
E_HW_ERROR = -3,
E_ARGUMENT = -4,
};
/* Reduce data-passing burden by grouping transaction data in a context. */
struct spi_flash_ctx {
uintptr_t mmio_base;
device_t pci_dev;
uint32_t hsfsts_on_last_error;
};
static void _get_spi_flash_ctx(struct spi_flash_ctx *ctx)
{
uint32_t bar;
/* FIXME: use device definition */
ctx->pci_dev = SPI_DEV;
bar = pci_read_config32(ctx->pci_dev, PCI_BASE_ADDRESS_0);
ctx->mmio_base = bar & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
ctx->hsfsts_on_last_error = 0;
}
/* Read register from the SPI flash controller. 'reg' is the register offset. */
static uint32_t _spi_flash_ctrlr_reg_read(struct spi_flash_ctx *ctx, uint16_t reg)
{
uintptr_t addr = ALIGN_DOWN(ctx->mmio_base + reg, 4);
return read32((void *)addr);
}
uint32_t spi_flash_ctrlr_reg_read(uint16_t reg)
{
BOILERPLATE_CREATE_CTX(ctx);
return _spi_flash_ctrlr_reg_read(ctx, reg);
}
/* Write to register in SPI flash controller. 'reg' is the register offset. */
static void _spi_flash_ctrlr_reg_write(struct spi_flash_ctx *ctx, uint16_t reg,
uint32_t val)
{
uintptr_t addr = ALIGN_DOWN(ctx->mmio_base + reg, 4);
write32((void *)addr, val);
}
/*
* The hardware datasheet is not clear on what HORD values actually do. It
* seems that HORD_SFDP provides access to the first 8 bytes of the SFDP, which
* is the signature and revision fields. HORD_JEDEC provides access to the
* actual flash parameters, and is most likely what you want to use when
* probing the flash from software.
* It's okay to rely on SFPD, since the SPI flash controller requires an SFDP
* 1.5 or newer compliant SPI flash chip.
* NOTE: Due to the register layout of the hardware, all accesses will be
* aligned to a 4 byte boundary.
*/
static uint32_t read_spi_flash_sfdp_param(struct spi_flash_ctx *ctx,
uint16_t sfdp_reg)
{
uint32_t ptinx_index = sfdp_reg & SPIBAR_PTINX_IDX_MASK;
_spi_flash_ctrlr_reg_write(ctx, SPIBAR_PTINX,
ptinx_index | SPIBAR_PTINX_HORD_JEDEC);
return _spi_flash_ctrlr_reg_read(ctx, SPIBAR_PTDATA);
}
/* Fill FDATAn FIFO in preparation for a write transaction. */
static void fill_xfer_fifo(struct spi_flash_ctx *ctx, const void *data,
size_t len)
{
len = min(len, SPIBAR_FDATA_FIFO_SIZE);
/* YES! memcpy() works. FDATAn does not require 32-bit accesses. */
memcpy((void *)(ctx->mmio_base + SPIBAR_FDATA(0)), data, len);
}
/* Drain FDATAn FIFO after a read transaction populates data. */
static void drain_xfer_fifo(struct spi_flash_ctx *ctx, void *dest, size_t len)
{
len = min(len, SPIBAR_FDATA_FIFO_SIZE);
/* YES! memcpy() works. FDATAn does not require 32-bit accesses. */
memcpy(dest, (void *)(ctx->mmio_base + SPIBAR_FDATA(0)), len);
}
/* Fire up a transfer using the hardware sequencer. */
static void start_hwseq_xfer(struct spi_flash_ctx *ctx, uint32_t hsfsts_cycle,
uint32_t flash_addr, size_t len)
{
/* Make sure all W1C status bits get cleared. */
uint32_t hsfsts = SPIBAR_HSFSTS_W1C_BITS;
/* Set up transaction parameters. */
hsfsts |= hsfsts_cycle & SPIBAR_HSFSTS_FCYCLE_MASK;
hsfsts |= SPIBAR_HSFSTS_FBDC(len - 1);
_spi_flash_ctrlr_reg_write(ctx, SPIBAR_FADDR, flash_addr);
_spi_flash_ctrlr_reg_write(ctx, SPIBAR_HSFSTS_CTL,
hsfsts | SPIBAR_HSFSTS_FGO);
}
static void print_xfer_error(struct spi_flash_ctx *ctx,
const char *failure_reason, uint32_t flash_addr)
{
printk(BIOS_ERR, "SPI Transaction %s at flash offset %x.\n"
"\tHSFSTS = 0x%08x\n",
failure_reason, flash_addr, ctx->hsfsts_on_last_error);
}
static int wait_for_hwseq_xfer(struct spi_flash_ctx *ctx)
{
uint32_t hsfsts;
do {
hsfsts = _spi_flash_ctrlr_reg_read(ctx, SPIBAR_HSFSTS_CTL);
if (hsfsts & SPIBAR_HSFSTS_FCERR) {
ctx->hsfsts_on_last_error = hsfsts;
return E_HW_ERROR;
}
/* TODO: set up timer and abort on timeout */
} while (!(hsfsts & SPIBAR_HSFSTS_FDONE));
return SUCCESS;
}
/* Execute SPI flash transfer. This is a blocking call. */
static int exec_sync_hwseq_xfer(struct spi_flash_ctx *ctx,
uint32_t hsfsts_cycle, uint32_t flash_addr,
size_t len)
{
int ret;
start_hwseq_xfer(ctx, hsfsts_cycle, flash_addr, len);
ret = wait_for_hwseq_xfer(ctx);
if (ret != SUCCESS) {
const char *reason = (ret == E_TIMEOUT) ? "timeout" : "error";
print_xfer_error(ctx, reason, flash_addr);
}
return ret;
}
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
return MIN(buf_len, SPIBAR_FDATA_FIFO_SIZE);
}
/*
* Write-protection status for BIOS region (BIOS_CONTROL register):
* EISS/WPD bits 00 01 10 11
* -- -- -- --
* normal mode RO RW RO RO
* SMM mode RO RW RO RW
*/
void spi_flash_init(void)
{
uint32_t bios_ctl;
BOILERPLATE_CREATE_CTX(ctx);
bios_ctl = pci_read_config32(ctx->pci_dev, SPIBAR_BIOS_CONTROL);
bios_ctl |= SPIBAR_BIOS_CONTROL_WPD;
bios_ctl &= ~SPIBAR_BIOS_CONTROL_EISS;
/* Enable Prefetching and caching. */
bios_ctl |= SPIBAR_BIOS_CONTROL_PREFETCH_ENABLE;
bios_ctl &= ~SPIBAR_BIOS_CONTROL_CACHE_DISABLE;
pci_write_config32(ctx->pci_dev, SPIBAR_BIOS_CONTROL, bios_ctl);
}
/* Flash device operations. */
static struct spi_flash boot_flash CAR_GLOBAL;
static int nuclear_spi_flash_erase(const struct spi_flash *flash,
uint32_t offset, size_t len)
{
int ret;
size_t erase_size;
uint32_t erase_cycle;
BOILERPLATE_CREATE_CTX(ctx);
if (!IS_ALIGNED(offset, 4 * KiB) || !IS_ALIGNED(len, 4 * KiB)) {
printk(BIOS_ERR, "BUG! SPI erase region not sector aligned.\n");
return E_ARGUMENT;
}
while (len) {
if (IS_ALIGNED(offset, 64 * KiB) && (len >= 64 * KiB)) {
erase_size = 64 * KiB;
erase_cycle = SPIBAR_HSFSTS_CYCLE_64K_ERASE;
} else {
erase_size = 4 * KiB;
erase_cycle = SPIBAR_HSFSTS_CYCLE_4K_ERASE;
}
printk(BIOS_SPEW, "Erasing flash addr %x + %zu KiB\n",
offset, erase_size / KiB);
ret = exec_sync_hwseq_xfer(ctx, erase_cycle, offset, 0);
if (ret != SUCCESS)
return ret;
offset += erase_size;
len -= erase_size;
}
return SUCCESS;
}
/*
* Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
* that the operation does not cross 256-byte boundary.
*/
static size_t get_xfer_len(uint32_t addr, size_t len)
{
size_t xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
size_t bytes_left = ALIGN_UP(addr, 256) - addr;
if (bytes_left)
xfer_len = min(xfer_len, bytes_left);
return xfer_len;
}
static int nuclear_spi_flash_read(const struct spi_flash *flash, uint32_t addr,
size_t len, void *buf)
{
int ret;
size_t xfer_len;
uint8_t *data = buf;
BOILERPLATE_CREATE_CTX(ctx);
while (len) {
xfer_len = get_xfer_len(addr, len);
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_READ,
addr, xfer_len);
if (ret != SUCCESS)
return ret;
drain_xfer_fifo(ctx, data, xfer_len);
addr += xfer_len;
data += xfer_len;
len -= xfer_len;
}
return SUCCESS;
}
static int nuclear_spi_flash_write(const struct spi_flash *flash, uint32_t addr,
size_t len, const void *buf)
{
int ret;
size_t xfer_len;
const uint8_t *data = buf;
BOILERPLATE_CREATE_CTX(ctx);
while (len) {
xfer_len = get_xfer_len(addr, len);
fill_xfer_fifo(ctx, data, xfer_len);
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_WRITE,
addr, xfer_len);
if (ret != SUCCESS)
return ret;
addr += xfer_len;
data += xfer_len;
len -= xfer_len;
}
return SUCCESS;
}
static int nuclear_spi_flash_status(const struct spi_flash *flash, uint8_t *reg)
{
int ret;
BOILERPLATE_CREATE_CTX(ctx);
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_RD_STATUS, 0,
sizeof(*reg));
if (ret != SUCCESS)
return ret;
drain_xfer_fifo(ctx, reg, sizeof(*reg));
return ret;
}
/*
* We can't use FDOC and FDOD to read FLCOMP, as previous platforms did.
* For details see:
* Ch 31, SPI: p. 194
* The size of the flash component is always taken from density field in the
* SFDP table. FLCOMP.C0DEN is no longer used by the Flash Controller.
*/
struct spi_flash *spi_flash_programmer_probe(struct spi_slave *dev, int force)
{
BOILERPLATE_CREATE_CTX(ctx);
struct spi_flash *flash;
uint32_t flash_bits;
flash = car_get_var_ptr(&boot_flash);
/*
* bytes = (bits + 1) / 8;
* But we need to do the addition in a way which doesn't overflow for
* 4 Gbit devices (flash_bits == 0xffffffff).
*/
/* FIXME: Don't hardcode 0x04 ? */
flash_bits = read_spi_flash_sfdp_param(ctx, 0x04);
flash->size = (flash_bits >> 3) + 1;
memcpy(&flash->spi, dev, sizeof(*dev));
flash->name = "Apollolake hardware sequencer";
/* Can erase both 4 KiB and 64 KiB chunks. Declare the smaller size. */
flash->sector_size = 4 * KiB;
/*
* FIXME: Get erase+cmd, and status_cmd from SFDP.
*
* flash->erase_cmd = ???
* flash->status_cmd = ???
*/
flash->internal_write = nuclear_spi_flash_write;
flash->internal_erase = nuclear_spi_flash_erase;
flash->internal_read = nuclear_spi_flash_read;
flash->internal_status = nuclear_spi_flash_status;
return flash;
}
int spi_flash_get_fpr_info(struct fpr_info *info)
{
BOILERPLATE_CREATE_CTX(ctx);
if (!ctx->mmio_base)
return -1;
info->base = ctx->mmio_base + SPIBAR_FPR_BASE;
info->max = SPIBAR_FPR_MAX;
return 0;
}