blob: 181c71e57fe4ca32c281acf3e46ddb2d7444a03e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <amdblocks/data_fabric.h>
#include <amdblocks/pci_devs.h>
#include <arch/hpet.h>
#include <console/console.h>
#include <cpu/x86/lapic_def.h>
#include <device/pci_ops.h>
#include <soc/data_fabric.h>
#include <soc/pci_devs.h>
#include <types.h>
static void data_fabric_set_indirect_address(uint8_t func, uint16_t reg, uint8_t instance_id)
{
union df_ficaa ficaa = { .cfg_inst_acc_en = 1 };
/* convert register address to 32-bit register number */
ficaa.reg_num = reg >> 2;
ficaa.func_num = func;
ficaa.inst_id = instance_id;
pci_write_config32(SOC_DF_F4_DEV, DF_FICAA_BIOS, ficaa.raw);
}
uint32_t data_fabric_read32(uint8_t function, uint16_t reg, uint8_t instance_id)
{
/* Broadcast reads might return unexpected results when a register has different
contents in the different instances. */
if (instance_id == BROADCAST_FABRIC_ID)
return data_fabric_broadcast_read32(function, reg);
/* non-broadcast data fabric accesses need to be done via indirect access */
data_fabric_set_indirect_address(function, reg, instance_id);
return pci_read_config32(SOC_DF_F4_DEV, DF_FICAD_LO);
}
void data_fabric_write32(uint8_t function, uint16_t reg, uint8_t instance_id, uint32_t data)
{
if (instance_id == BROADCAST_FABRIC_ID) {
data_fabric_broadcast_write32(function, reg, data);
return;
}
/* non-broadcast data fabric accesses need to be done via indirect access */
data_fabric_set_indirect_address(function, reg, instance_id);
pci_write_config32(SOC_DF_F4_DEV, DF_FICAD_LO, data);
}
void data_fabric_print_mmio_conf(void)
{
printk(BIOS_SPEW,
"=== Data Fabric MMIO configuration registers ===\n"
"Addresses are shifted to the right by 16 bits.\n"
"idx control base limit\n");
for (unsigned int i = 0; i < NUM_NB_MMIO_REGS; i++) {
printk(BIOS_SPEW, " %2u %8x %8x %8x\n",
i,
data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i)),
data_fabric_broadcast_read32(0, NB_MMIO_BASE(i)),
data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i)));
}
}
void data_fabric_disable_mmio_reg(unsigned int reg)
{
union df_mmio_control ctrl = { .fabric_id = IOMS0_FABRIC_ID };
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), 0);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), 0);
}
static bool is_mmio_reg_disabled(unsigned int reg)
{
union df_mmio_control ctrl;
ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(reg));
return !(ctrl.we || ctrl.re);
}
int data_fabric_find_unused_mmio_reg(void)
{
for (unsigned int i = 0; i < NUM_NB_MMIO_REGS; i++) {
if (is_mmio_reg_disabled(i))
return i;
}
return -1;
}
void data_fabric_set_mmio_np(void)
{
/*
* Mark region from HPET-LAPIC or 0xfed00000-0xfee00000-1 as NP.
*
* AGESA has already programmed the NB MMIO routing, however nothing
* is yet marked as non-posted.
*
* If there exists an overlapping routing base/limit pair, trim its
* base or limit to avoid the new NP region. If any pair exists
* completely within HPET-LAPIC range, remove it. If any pair surrounds
* HPET-LAPIC, it must be split into two regions.
*
* TODO(b/156296146): Remove the settings from AGESA and allow coreboot
* to own everything. If not practical, consider erasing all settings
* and have coreboot reprogram them. At that time, make the source
* below more flexible.
* * Note that the code relies on the granularity of the HPET and
* LAPIC addresses being sufficiently large that the shifted limits
* +/-1 are always equivalent to the non-shifted values +/-1.
*/
unsigned int i;
int reg;
uint32_t base, limit;
union df_mmio_control ctrl;
const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT;
const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT;
data_fabric_print_mmio_conf();
for (i = 0; i < NUM_NB_MMIO_REGS; i++) {
/* Adjust all registers that overlap */
ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
if (!(ctrl.we || ctrl.re))
continue; /* not enabled */
base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i));
limit = data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i));
if (base > np_top || limit < np_bot)
continue; /* no overlap at all */
if (base >= np_bot && limit <= np_top) {
data_fabric_disable_mmio_reg(i); /* 100% within, so remove */
continue;
}
if (base < np_bot && limit > np_top) {
/* Split the configured region */
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
/* Although a pair could be freed later, this condition is
* very unusual and deserves analysis. Flag an error and
* leave the topmost part unconfigured. */
printk(BIOS_ERR, "Not enough NB MMIO routing registers\n");
continue;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
continue;
}
/* If still here, adjust only the base or limit */
if (base <= np_bot)
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
else
data_fabric_broadcast_write32(0, NB_MMIO_BASE(i), np_top + 1);
}
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
printk(BIOS_ERR, "cannot configure region as NP\n");
return;
}
union df_mmio_control np_ctrl = { .fabric_id = IOMS0_FABRIC_ID,
.np = 1, .we = 1, .re = 1 };
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), np_ctrl.raw);
data_fabric_print_mmio_conf();
}