blob: a992d9c98cb971d752a7e2085119186cfafe5c40 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <delay.h>
#include <device/pci_ops.h>
#include "raminit_native.h"
#include "raminit_common.h"
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK, u8 base_freq)
{
u32 FRQ;
FRQ = 256000 / (tCK * base_freq);
if (base_freq == 100) {
if (FRQ > 12)
return 12;
if (FRQ < 7)
return 7;
} else {
if (FRQ > 10)
return 10;
if (FRQ < 3)
return 3;
}
return FRQ;
}
static u32 get_REFI(u32 tCK, u8 base_freq)
{
u32 refi;
if (base_freq == 100) {
/* Get REFI based on MCU frequency using the following rule:
* tREFI = 7.8usec
* _________________________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* REFI : | 5460 | 6240 | 7020 | 7800 | 8580 | 9360 |
*/
static const u32 frq_xs_map[] =
{ 5460, 6240, 7020, 7800, 8580, 9360 };
refi = frq_xs_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get REFI based on MCU frequency using the following rule:
* tREFI = 7.8usec
* ________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 | 9360 | 10400 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320, 9360, 10400 };
refi = frq_refi_map[get_FRQ(tCK, 133) - 3];
}
return refi;
}
static u8 get_XSOffset(u32 tCK, u8 base_freq)
{
u8 xsoffset;
if (base_freq == 100) {
/* Get XSOffset based on MCU frequency using the following rule:
* tXS-offset: tXS = tRFC+10ns.
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* XSOffset : | 7 | 8 | 9 | 10 | 11 | 12 |
*/
static const u8 frq_xs_map[] = { 7, 8, 9, 10, 11, 12 };
xsoffset = frq_xs_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get XSOffset based on MCU frequency using the following rule:
* ___________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 | 12 | 14 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11, 12, 14 };
xsoffset = frq_xs_map[get_FRQ(tCK, 133) - 3];
}
return xsoffset;
}
static u8 get_MOD(u32 tCK, u8 base_freq)
{
u8 mod;
if (base_freq == 100) {
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* MOD : | 12 | 12 | 14 | 15 | 17 | 18 |
*/
static const u8 frq_mod_map[] = { 12, 12, 14, 15, 17, 18 };
mod = frq_mod_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get MOD based on MCU frequency using the following rule:
* _______________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 | 18 | 20 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16, 18, 20 };
mod = frq_mod_map[get_FRQ(tCK, 133) - 3];
}
return mod;
}
static u8 get_WLO(u32 tCK, u8 base_freq)
{
u8 wlo;
if (base_freq == 100) {
/* Get WLO based on MCU frequency using the following rule:
* Write leveling output delay
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* MOD : | 6 | 6 | 7 | 8 | 9 | 9 |
*/
static const u8 frq_wlo_map[] = { 6, 6, 7, 8, 9, 9 };
wlo = frq_wlo_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get WLO based on MCU frequency using the following rule:
* Write leveling output delay
* ________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 | 9 | 10 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8, 9, 10 };
wlo = frq_wlo_map[get_FRQ(tCK, 133) - 3];
}
return wlo;
}
static u8 get_CKE(u32 tCK, u8 base_freq)
{
u8 cke;
if (base_freq == 100) {
/* Get CKE based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* MOD : | 4 | 4 | 5 | 5 | 6 | 6 |
*/
static const u8 frq_cke_map[] = { 4, 4, 5, 5, 6, 6 };
cke = frq_cke_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get CKE based on MCU frequency using the following rule:
* ________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* WLO : | 3 | 3 | 4 | 4 | 5 | 6 | 6 | 7 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6, 6, 7 };
cke = frq_cke_map[get_FRQ(tCK, 133) - 3];
}
return cke;
}
static u8 get_XPDLL(u32 tCK, u8 base_freq)
{
u8 xpdll;
if (base_freq == 100) {
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* XPDLL : | 17 | 20 | 22 | 24 | 27 | 32 |
*/
static const u8 frq_xpdll_map[] = { 17, 20, 22, 24, 27, 32 };
xpdll = frq_xpdll_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get XPDLL based on MCU frequency using the following rule:
* _______________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 | 29 | 32 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26, 29, 32 };
xpdll = frq_xpdll_map[get_FRQ(tCK, 133) - 3];
}
return xpdll;
}
static u8 get_XP(u32 tCK, u8 base_freq)
{
u8 xp;
if (base_freq == 100) {
/* Get XP based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* XP : | 5 | 5 | 6 | 6 | 7 | 8 |
*/
static const u8 frq_xp_map[] = { 5, 5, 6, 6, 7, 8 };
xp = frq_xp_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get XP based on MCU frequency using the following rule:
* _______________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 8 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7, 8, 8 };
xp = frq_xp_map[get_FRQ(tCK, 133) - 3];
}
return xp;
}
static u8 get_AONPD(u32 tCK, u8 base_freq)
{
u8 aonpd;
if (base_freq == 100) {
/* Get AONPD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* AONPD : | 6 | 8 | 8 | 9 | 10 | 11 |
*/
static const u8 frq_aonpd_map[] = { 6, 8, 8, 9, 10, 11 };
aonpd = frq_aonpd_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get AONPD based on MCU frequency using the following rule:
* _______________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 | 11 | 12 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10, 11, 12 };
aonpd = frq_aonpd_map[get_FRQ(tCK, 133) - 3];
}
return aonpd;
}
static u32 get_COMP2(u32 tCK, u8 base_freq)
{
u32 comp2;
if (base_freq == 100) {
/* Get COMP2 based on MCU frequency using the following rule:
* ______________________________________________________________
* FRQ : | 7 | 8 | 9 | 10 | 11 | 12 |
* COMP : | CA8C264 | C6671E4 | C6671E4 | C446964 | C235924 | C235924 |
*/
static const u32 frq_comp2_map[] = { 0xCA8C264, 0xC6671E4, 0xC6671E4, 0xC446964, 0xC235924, 0xC235924 };
comp2 = frq_comp2_map[get_FRQ(tCK, 100) - 7];
} else {
/* Get COMP2 based on MCU frequency using the following rule:
* ________________________________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
* COMP : | D6FF5E4 | CEBDB64 | CA8C264 | C6671E4 | C446964 | C235924 | C235924 | C235924 |
*/
static const u32 frq_comp2_map[] = { 0xD6FF5E4, 0xCEBDB64, 0xCA8C264,
0xC6671E4, 0xC446964, 0xC235924, 0xC235924, 0xC235924
};
comp2 = frq_comp2_map[get_FRQ(tCK, 133) - 3];
}
return comp2;
}
static void ivb_normalize_tclk(ramctr_timing *ctrl,
bool ref_100mhz_support)
{
if (ctrl->tCK <= TCK_1200MHZ) {
ctrl->tCK = TCK_1200MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_1100MHZ) {
ctrl->tCK = TCK_1100MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_1000MHZ) {
ctrl->tCK = TCK_1000MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_900MHZ) {
ctrl->tCK = TCK_900MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_700MHZ) {
ctrl->tCK = TCK_700MHZ;
ctrl->base_freq = 100;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->base_freq = 133;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
ctrl->base_freq = 133;
} else {
ctrl->tCK = 0;
return;
}
if (!ref_100mhz_support && ctrl->base_freq == 100) {
/* Skip unsupported frequency. */
ctrl->tCK++;
ivb_normalize_tclk(ctrl, ref_100mhz_support);
}
}
static void find_cas_tck(ramctr_timing *ctrl)
{
u8 val;
u32 val32;
u32 reg32;
u8 ref_100mhz_support;
/* 100 Mhz reference clock supported */
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_B);
ref_100mhz_support = !!((reg32 >> 21) & 0x7);
printk(BIOS_DEBUG, "100MHz reference clock support: %s\n",
ref_100mhz_support ? "yes" : "no");
/* Find CAS latency */
while (1) {
/* Normalising tCK before computing clock could potentially
* results in lower selected CAS, which is desired.
*/
ivb_normalize_tclk(ctrl, ref_100mhz_support);
if (!(ctrl->tCK))
die("Couldn't find compatible clock / CAS settings\n");
val = DIV_ROUND_UP(ctrl->tAA, ctrl->tCK);
printk(BIOS_DEBUG, "Trying CAS %u, tCK %u.\n", val, ctrl->tCK);
for (; val <= MAX_CAS; val++)
if ((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
break;
if (val == (MAX_CAS + 1)) {
ctrl->tCK++;
continue;
} else {
printk(BIOS_DEBUG, "Found compatible clock, CAS pair.\n");
break;
}
}
val32 = NS2MHZ_DIV256 / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
}
static void dram_timing(ramctr_timing *ctrl)
{
/* Maximum supported DDR3 frequency is 1400MHz (DDR3 2800).
* We cap it at 1200Mhz (DDR3 2400).
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK == TCK_1200MHZ) {
ctrl->edge_offset[0] = 18; //XXX: guessed
ctrl->edge_offset[1] = 8;
ctrl->edge_offset[2] = 8;
ctrl->timC_offset[0] = 20; //XXX: guessed
ctrl->timC_offset[1] = 8;
ctrl->timC_offset[2] = 8;
ctrl->pi_coding_threshold = 10;
} else if (ctrl->tCK == TCK_1100MHZ) {
ctrl->edge_offset[0] = 17; //XXX: guessed
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 19; //XXX: guessed
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_1066MHZ) {
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_1000MHZ) {
ctrl->edge_offset[0] = 15; //XXX: guessed
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 17; //XXX: guessed
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_933MHZ) {
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_900MHZ) {
ctrl->edge_offset[0] = 14; //XXX: guessed
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15; //XXX: guessed
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->pi_coding_threshold = 12;
} else if (ctrl->tCK == TCK_800MHZ) {
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_700MHZ) {
ctrl->edge_offset[0] = 13; //XXX: guessed
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14; //XXX: guessed
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->pi_coding_threshold = 16;
} else if (ctrl->tCK == TCK_666MHZ) {
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->pi_coding_threshold = 16;
} else if (ctrl->tCK == TCK_533MHZ) {
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->pi_coding_threshold = 17;
} else { /* TCK_400MHZ */
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->pi_coding_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->pi_code_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->mdll_wake_delay = (128000 / ctrl->tCK) + 3;
if (ctrl->tCWL)
ctrl->CWL = DIV_ROUND_UP(ctrl->tCWL, ctrl->tCK);
else
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = DIV_ROUND_UP(ctrl->tRCD, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = DIV_ROUND_UP(ctrl->tRP, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = DIV_ROUND_UP(ctrl->tRAS, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = DIV_ROUND_UP(ctrl->tWR, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = DIV_ROUND_UP(ctrl->tFAW, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = DIV_ROUND_UP(ctrl->tRRD, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = DIV_ROUND_UP(ctrl->tRTP, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = DIV_ROUND_UP(ctrl->tWTR, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = DIV_ROUND_UP(ctrl->tRFC, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK, ctrl->base_freq);
ctrl->tMOD = get_MOD(ctrl->tCK, ctrl->base_freq);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK, ctrl->base_freq);
ctrl->tWLO = get_WLO(ctrl->tCK, ctrl->base_freq);
ctrl->tCKE = get_CKE(ctrl->tCK, ctrl->base_freq);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK, ctrl->base_freq);
ctrl->tXP = get_XP(ctrl->tCK, ctrl->base_freq);
ctrl->tAONPD = get_AONPD(ctrl->tCK, ctrl->base_freq);
}
static void dram_freq(ramctr_timing *ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported "
"frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
find_cas_tck(ctrl);
/* Frequency multiplier. */
u32 FRQ = get_FRQ(ctrl->tCK, ctrl->base_freq);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
if (ctrl->base_freq == 100)
reg1 |= 0x100; /* Enable 100Mhz REF clock */
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing *ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(GDCRCLKRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(GDCRCTLRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(RCOMP_TIMER) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK, ctrl->base_freq);
MCHBAR32(CRCOMPOFST2) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(CRCOMPOFST1_ch(channel)); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(CRCOMPOFST1_ch(channel)) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(M_COMP) |= 0x100;
udelay(20);
printram("done\n");
}
int try_init_dram_ddr3_ivy(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting Ivybridge RAM training (%d).\n",
fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(MRC_REVISION) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(PM_THML_STAT) = 0x5500;
/* Set scheduler chicken bits */
MCHBAR32(SCHED_CBIT) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(MC_INIT_STATE_G) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}